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This paper presents systematic methods for the detection of influential individuals that affect the log
odds (LOD) score curve. We derive general formulas of influence functions for profile likelihoods and
introduce them into two standard quantitative trait locus detection methods—the interval mapping
method and single marker analysis. Besides influence analysis on specific LOD scores, we also develop
influence analysis methods on the shape of the LOD score curves. A simulation-based method is
proposed to assess the significance of the influence of the individuals. These methods are shown
useful in the influence analysis of a real dataset of an experimental population from an F2 mouse
cross. By receiver operating characteristic analysis, we confirm that the proposed methods show better
performance than existing diagnostics.
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1 Introduction

Quantitative trait locus (QTL) analysis is a statistical method for detecting the precise location of
chromosome regions associated with a particular phenotypic trait. To date, many models have been
proposed for this analysis (e.g., Lander and Botstein, 1989; Zeng, 1993; Kao and Zeng, 1997; Sen and
Churchill, 2001). Among them, single marker analysis and the interval mapping method are the most
widely used. In QTL detection, log odds (LOD) scores are calculated for marker loci to indicate the
plausibility of the existence of QTLs (e.g., Siegmund and Yakir, 2007; Wu et al., 2007).

Figure 1 shows the LOD scores computed using data on 170 F2 mice. The LOD scores at 119 marker
loci are plotted as small circles. The circles on the same chromosome are linked by solid segments, and
the joint lines form the LOD score curve. The highest peak appears at chromosome 16; moreover, two
moderate peaks located closely on chromosome 3 are observed. For geneticists planning to clone the
genes responsible for QTLs, it is important to determine whether the two moderate peaks were caused
by two QTLs or by stochastic fluctuations. However, the sample sizes of experimental populations
generated from genetic crosses are usually not large and normally consist of a few hundred individuals
at most. In such small populations, a few observations can have a major impact on LOD score curves
and lead to unstable results.
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Figure 1 LOD score curves for mouse chromosomes.

The importance of such sensitivity analysis is well recognized in experimental genetics. In genetic
experiments, errors in genotyping and phenotyping are inevitable, which could cause unstable results.
To solve this problem efficiently, we can find those individuals having large influence on the LOD score
curve, to genotype them again, and to remeasure the phenotypes. Therefore, statistical methods for
the identification of influential individuals are helpful in the process of QTL detection. In general,
an observation is called influential if it has a large impact on the estimates of interest. It should
be distinguished from outliers that are distinct from most of the data points in a sample but not
necessarily influential (Bollen and Jackman, 1990). In fact, influential individuals are not necessarily
bad and need not to be removed if reliable. They may contain the most interesting information and
should be examined carefully. If the reexamination reveals that the original influential data are correct,
and if the assumed model fits the data well, geneticists can go to the next stage for positional cloning of
the causative gene for the phenotype. If the data are found to be unreliable, researchers need to conduct
another QTL analysis based on the updated dataset. However, the conventional method currently used
by geneticists to find influential individuals is inadequate from a statistical viewpoint (see Section 4).
The purpose of this paper is to provide systematic methods for identifying individuals that influence
LOD score curves.

In statistical terminology, the LOD score is nothing but a profile likelihood function based on a
statistical model describing the relationship between genotypes and phenotypes. In this paper, we first
present a general theory of influence functions for profile likelihoods and apply formulas to the models
of QTL detection. Then, to identify individuals that affect the shape of the profile likelihood, we
propose the use of the empirical influence functions (EIFs) for a linear combination of LOD scores,
which is designed specifically for the shape of interest. We propose three methods for designing the
linear combination coefficients: projection based on orthogonal polynomials, principal component
analysis (PCA) based on the EIF matrix, and the quadratic form of the EIFs. To assess the significance
of the EIFs, we also propose a simple method for providing p-values by a robustified parametric
bootstrap. This method is confirmed to control false positive rates through numerical studies.

C© 2014 The Author. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



Biometrical Journal 56 (2014) 4 699

This paper is organized as follows. In Section 2, the general formulas of influence functions for profile
likelihoods are derived. In Section 3, EIFs are introduced into QTL analysis. In Section 4, the three
methods for designing the linear combination are proposed. After that, the method for calculating
p-values for significance testing is proposed. In Section 5, we apply these methods to a real dataset of
an experimental mouse population. In Section 6, we examine the validity and the statistical power of
the proposed methods through simulations. Finally, in Section 7, we summarize the proposed methods,
discuss the results of our data analysis, and provide guidelines for application. Mathematical details
are provided in the Appendix.

2 Influence functions for the profile likelihood

As previously stated, the LOD score in QTL detection is defined as a profile likelihood, because the
model describing the relationship between genotypes and phenotypes (and covariates, if available)
includes an unknown location parameter γ of the QTL. The details of the QTL models are given in
Section 3. Here, we develop the theory of influence analysis for profile likelihood functions in a general
setting, apart from the context of QTL detection.

We assume that for each individual i = 1, . . . , n, its observation record xi is taken from a statistical
model f (·; γ , θ), where γ ∈ � ⊆ R is the parameter of interest, and θ ∈ � ⊆ R

p is a vector consisting
of the other parameters. In QTL detection, the parameter space � is the search region for the QTLs
and is a discrete or continuous set; we consider both cases.

Let �(γ , θ; x) = �(γ , θ) = log f (x; γ , θ) be the log-likelihood function. The average log profile
likelihood function Mn with respect to parameter γ is defined as

Mn(γ ) = 1
n

n∑
i=1

�
(
γ , θ̂n(γ ); xi

)
, where θ̂n(γ ) = argmax

θ∈�

n∑
i=1

�(γ , θ; xi) (1)

(e.g., Murphy and van der Vaart, 2000). To develop an influence analysis on the characteristics of the
profile likelihood Mn, we focus on the following functionals of Mn:

(i) linear functional:
∫
�

Mn(γ )dC(γ ),
(ii) maximum of the profile likelihood: maxγ∈� Mn(γ ),

(iii) maximizer of the profile likelihood: argmaxγ∈� Mn(γ ).

Let φ(F ) be a functional of the distribution function F and let φ(Fn) be its sample version, where Fn
is the empirical distribution function defined by the data {xi}i=1,...,n. Let δx be the distribution function
that has probability mass 1 at x. Then, the influence function of φ(F ) is defined as the directional
derivative of φ at F in the direction of δx:

IF(x;φ, F ) = lim
ε→0

φ((1 − ε)F + εδx) − φ(F )

ε
=
( d

dε

)
0
φ
(
F ε

x

)
,

where F ε
x = (1 − ε)F + εδx, and ( d

dε
)0 denotes the derivative coefficient with respect to ε at ε = 0. The

EIF (Hampel et al., 1986) of φ(Fn) at the observation record xi is the influence function of φ at Fn in
the direction of δxi

:

EIF(i;φ) = EIFi(φ) = IF(xi;φ, Fn). (2)

Here, EIF(i;φ) measures the influence of individual i on the statistic φ(Fn). To simplify the notation,
we use EIFi(φ) interchangeably. The basic strategy of influence analysis is identifying individuals with
large absolute values of EIFi(φ).

To derive the EIFs for the functionals (i)–(iii) of Mn, we first express Mn(γ ) as a functional of
the empirical distribution function Fn. Let L(γ , θ; F ) = ∫ �(γ , θ; y)dF (y). Since 1

n

∑n
i=1 �(γ , θ; xi) =
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L(γ , θ; Fn), the profile likelihood function and its maximizer in (1) can be rewritten as Mn(γ ) =
M(γ , Fn) and θ̂n(γ ) = θ̂(γ , Fn), respectively, where

M(γ , F ) = L
(
γ , θ̂(γ , F ); F

)
and θ̂(γ , F ) = argmax

θ∈�

L(γ , θ; F ).

Then, the EIFs of the functionals (i)–(iii) can be obtained by the following theorem. The regularity
conditions and the proofs are provided in Appendix A.1.

Theorem 2.1. (i) Let C be a bounded variation function on �. The influence function of the linear
functional φ1(C; F ) = ∫

�
M(γ , F )dC(γ ) at F is

IF(x;φ1(C; ·), F ) =
∫ {

�
(
γ , θ̂(γ , F ); x

)− L
(
γ , θ̂(γ , F ); F

)}
dC(γ ), (3)

provided that θ̂(γ , F ) = argmaxθ∈� L(γ , θ; F ) exists uniquely.
(ii) The influence function of the maximum profile likelihood φ2(F ) = maxγ∈� M(γ , F ) at F is

IF(x;φ2, F ) = �
(
γ̂ (F ), θ̂(F ); x

)− L
(
γ̂ (F ), θ̂(F ); F

)
, (4)

provided that (γ̂ (F ), θ̂(F )) = argmax(γ ,θ )∈�×� L(γ , θ; F ) exists uniquely.
(iii) Assume that � is a continuous set. The influence function of the maximizer of the profile likelihood

φ3(F ) = argmaxγ∈� M(γ , F ) at F is

IF(x;φ3, F ) = �γ (γ̂ , θ̂; x) − Lγ θ (γ̂ , θ̂; F )L−1
θθ (γ̂ , θ̂; F )�θ (γ̂ , θ̂; x)

−Lγ γ (γ̂ , θ̂; F ) + Lγ θ (γ̂ , θ̂; F )L−1
θθ (γ̂ , θ̂; F )Lθγ (γ̂ , θ̂; F )

, (5)

where (γ̂ , θ̂) = (γ̂ (F ), θ̂(F )). Here, the subscripts indicate partial derivatives. For example,
Lθ (γ , θ; F ) = ∂L(γ , θ; F )/∂θ is the gradient vector and Lθθ is the Hessian matrix.

Actually, (5) is a special case of the influence function formula for M-estimators. Its numerator and
denominator are the efficient score and the Fisher information for parameter γ in the presence of the
nuisance parameter θ, respectively (e.g., Murphy and van der Vaart, 2000).

3 Statistical models and influence functions

3.1 Experimental crossing data

We first review the statistical models of QTL analysis. For simplicity, we only consider the data from F2
populations, although the statistical methods developed here are applicable to all other experimental
design data.

In QTL analysis, data are taken from n individuals (e.g., mice). The observation record of the i-th
(i = 1, . . . , n) individual consists of a phenotype yi, a genotype vector zi = (z(1)

i , . . . , z(m)
i ) at m marker

loci located at d1, . . . , dm, and covariates ui. (In this paper, we let ui be a scalar for simplicity.) Moreover,
we assume that a putative QTL exists that has genotype z∗

i at location γ on a chromosome and affects
trait yi. Note that γ is an unknown parameter, and z∗

i is an unobserved variable in general. We assume
that except for the QTL, none of the loci affect the phenotype. In the F2 population from two strains
A and B, each marker has one of the three genotypes: AA homozygous, AB heterozygous, and BB
homozygous. Throughout this paper, we use z( j)

i , z∗
i = −1, 0, 1 to denote genotypes AA, AB, and BB,

respectively.
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3.2 Statistical model for the interval mapping method

Various methods and computer programs are available for QTL detection. Among them, we consider
two basic methods—the interval mapping method and single marker analysis. It should be noted that
influence functions can be defined in any QTL detection method that is based on LOD score. In this
paper, we pick these two methods as examples. Although both methods are formulated as single QTL
models, they are often applied for constructing scan statistics to decide whether a QTL exists at a
particular location, even though more than one QTL may exist (Wright and Kong, 1997).

Interval mapping is a classical method proposed by Lander and Botstein (1989) in the early stages
of research on QTL analysis. Although many other procedures have been developed from this method,
it is still used as a standard method and has been incorporated into many leading software packages
(e.g., Manly and Olson, 1999; Broman et al., 2003). Here, we briefly review the statistical model for
this method.

The statistical model for the interval mapping method consists of two parts. One part determines
the joint distribution of the genotypes at the marker loci and the putative QTL. Because the positions
of the marker loci are known, once the position γ of the QTL is given (as an unknown parameter), we
can calculate the joint distribution P(zi, z∗

i ; γ ) of the m + 1 genotypes (zi, z∗
i ) = (z(1)

i , . . . , z(m)
i , z∗

i ) ∈
{−1, 0, 1}m+1 as a function of γ by using the stochastic structure of the linkage. Similarly, we can
calculate the joint distribution P(zi), and then the conditional distribution of z∗

i given zi can be
obtained as

P(z∗
i |zi; γ ) = P(zi, z∗

i ; γ )

P(zi)
. (6)

Appendix A.2 provides details of (6) under Haldane’s linkage model.
The second part of the interval mapping method models the stochastic behavior of phenotype yi

when genotype z∗
i of the QTL and covariate ui are given. Various statistical models can be constructed

for different types of yi. Since the concept of influence analysis can easily be extended to other settings,
we only consider real-valued traits and use the normal linear model.

For individuals i = 1, . . . , n, assume that

z∗
i |zi ∼ P(·|zi; γ ), yi|(zi, z∗

i , ui) ∼ N
(
αz∗

i + βw(z∗
i ) + μ + νui, σ

2), (7)

where

w(z) =
{

1 (z = ±1),

−1 (z = 0),

and θ = (α, β, μ, ν, σ 2) are unknown parameters. Then, the probability density function of yi, given
(zi, ui), becomes a three-component finite mixture of normal distributions

f (yi|zi, ui; γ , θ) =
1∑

z∗
i =−1

g(yi|z∗
i , ui; θ)P(z∗

i |zi; γ ), (8)

where g(yi|z∗
i , ui; θ) is the density function of the normal distribution in (7).

In model (7), the parameters α and β indicate the additive and dominance effects of the QTL,
respectively. The null hypothesis H0 : α = β = 0 means that no QTL affects the phenotype. Note
that when H0 is true, the density g(yi|z∗

i , ui; θ) in (8) becomes unrelated to z∗
i , and the QTL location

parameter γ is no longer identifiable. In the rest of the paper, we refer to the density (8) as g(yi|∗, ui; θ)

under H0.
The LOD score is defined as the base 10 logarithm of the likelihood ratio (LR) for testing the null

hypothesis H0 when the QTL location is γ . The test statistic is defined as a function of γ . Let θ̂(γ )
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be the maximum likelihood estimator (MLE) given γ , and let θ̃ be the MLE under H0. As mentioned
above, θ̃ is independent of γ . Thus, the LOD score in the interval mapping method is defined as

LOD(γ ) = n
log 10

{
Ln

(
γ , θ̂(γ )

)− Ln

(̃
θ
)}

, (9)

where Ln

(
γ , θ̂(γ )

) = 1
n

∑n
i=1 log f

(
yi|zi, ui; γ , θ̂(γ )

)
, and Ln (̃θ) = 1

n

∑n
i=1 log g

(
yi|∗, ui; θ̃

)
. Because

Ln(γ , θ̃) does not depend on γ , we denote it as Ln (̃θ).
An EM algorithm for estimating θ̂(γ ) can be found in Lander and Botstein (1989), and θ̃ can be

obtained by using the ordinary least-square method. A LOD score curve obtained from the interval
mapping method is shown in Figure 2A.

3.3 Influence functions in the interval mapping method

Inside the braces of (9), the first term is the profile likelihood with respect to γ , and the second term
is the ordinary likelihood. Although both are conditional likelihoods given (zi, ui), the general theory
discussed in Section 2 is valid without any alteration. The theorem below follows immediately from
Theorem 2.1 and the definition of the EIF in (2).

Theorem 3.1.

(i) The empirical influence function of a linear combination of k LOD scores LODC(c) =∑k
j=1 c jLOD(γ j ) with the coefficient vector c = (c j ) for individual i is

EIFCi(c) = EIF
(
i; LODC(c)

) = n
log 10

k∑
j=1

c j

{
�i

(
γ j, θ̂(γ j )

)− �i0

(̃
θ
)}− LODC(c), (10)

where �i(γ , θ) = log f (yi|zi, ui; γ , θ) and �i0(θ) = log g(yi|∗, ui; θ). In particular,

EIF(i; LOD(γ )) = n
{
�i(γ , θ̂(γ )) − �i0 (̃θ)

}
/ log 10 − LOD(γ ).

(ii) The empirical influence function of the maximum score maxγ∈� LOD(γ ) = LOD(γ̂ ) for individ-
ual i is

EIF
(
i; LOD(γ̂ )

) = n
log 10

{
�i

(
γ̂ , θ̂

)− �i0

(̃
θ
)}− LOD(γ̂ ), (11)

where (γ̂ , θ̂) = argmax(γ ,θ )∈�×� Ln(γ , θ).

(iii) The empirical influence function of the maximizer γ̂ for individual i is

EIF(i; γ̂ ) = �i,γ (γ̂ , θ̂) − Ln,γ θ (γ̂ , θ̂)L−1
n,θθ (γ̂ , θ̂)�i,θ (γ̂ , θ̂)

−Ln,γ γ (γ̂ , θ̂) + Ln,γ θ (γ̂ , θ̂)L−1
n,θθ (γ̂ , θ̂)Ln,θγ (γ̂ , θ̂)

, (12)

where the subscripts indicate partial derivatives.

The derivatives with respect to γ and/or θ can be computed numerically or analytically.

3.4 Statistical model and influence functions in single marker analysis

In the interval mapping method, the putative QTL is assumed to be located in a continuous region �.
However, when the observed markers are sufficient in number and densely located, we can assume that
the QTL is one of the marker loci and use a simpler method—single marker analysis. This method is
actually a special case of the interval mapping method.
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Assume that the possible QTL region � is given by the locations of the marker loci {d1, . . . , dm}.
When γ = d j for some j, the conditional probability (6) becomes

P(z∗
i |zi; γ ) =

{
1
(
if z∗

i = z( j)
i
)
,

0 (otherwise).

Then, the statistical model in (7) is reduced to the following single marker analysis model:

yi|(zi, ui) ∼ N
(
αz( j)

i + βw
(
z( j)

i

)+ μ + νui, σ
2), i = 1, . . . , n, (13)

where z( j)
i is the marker genotype observed at location d j ∈ �.

As in the interval mapping method, the parameters α and β in model (13) indicate the additive
effect and the dominance effect, respectively. We again consider the null hypothesis H0 : α = β = 0.
Let θ̂(γ ) be the MLE given γ , and let θ̃ be the MLE under H0. We can again use (9) to define the LOD
score, but γ is restricted to � = {d1, . . . , dm}, and γ̂ = argmaxγ∈� LOD(γ ). Similarly, the EIFs of the
score LOD(γ ) at individual i can be obtained from (10) and its maximum LOD(γ̂ ) is given in (11). The
EIFs for γ̂ cannot be defined since γ̂ takes discrete values.

4 Influence analysis on aspects of the shape

4.1 Influence analyses for the shape of LOD score curves

If we are only interested in the score LOD(γ ) at a particular location γ , we can calculate
EIFi(LOD(γ )) for each individual i from (10) and conclude that individuals having large absolute
values |EIFi(LOD(γ ))| influence the LOD score. However, as stated in Section 1, attention is paid not
only to the value of the score at a particular γ but also to the shape of the score curve in genetics
studies.

A conventional approach to find influential individuals for the shape of the LOD score curve in an
experimental population generated from a genetic cross is to examine the individual genotype data in
the region in question. Because of the linkage, strong positive correlations exist among the genotypes
z(1)

i , . . . , z(k)
i (1 ≤ k ≤ m) on a linked chromosomal region. The probability that flanking markers take

the same genotypes (e.g., z( j)
i = z( j+1)

i ) is close to 1. If some individuals have recombinant genotypes
at some markers in the linked region of interest, they may influence the shape of the LOD score curve.
Therefore, geneticists try to identify individuals that show recombinant genotypes near that region.
However, this method has some difficulties. First, because recombinant genotypes may have many
different patterns, identifying all the potentially influential patterns is difficult. Second, because this
method does not take phenotype and covariates into consideration, the detected individuals are not
necessarily influential.

In this section, to detect individuals having a large influence on a particular shape of the LOD score
curve, we propose to use EIFCi(c), the EIF of LODC(c) =∑ j c jLOD(γ j ) for individual i. Regardless
of whether the set � of possible QTL locations is continuous or discrete, we are interested in the
shape of the LOD score curve in the region where k chromosome positions γ1, . . . , γk are located. The
influence matrix is defined as an n × k matrix

EIF = (EIF(γ1), . . . , EIF(γk)
)
, where EIF(γ ) = (EIF1(LOD(γ )), . . . , EIFn(LOD(γ ))

)′
is the n × 1 EIF vector of LOD(γ ). We also define EIFi = (EIFi(LOD(γ1)), . . . , EIFi(LOD(γk))

)′
, the

transpose of the i-th row vector of EIF.
In this approach, the choice of the coefficient vector c = (c j )1≤ j≤k is crucial. For example, if we

want to examine a linear increasing trend in LOD scores (LOD(γ1), LOD(γ2), LOD(γ3)) at 3 loci, then
a monotone coefficient vector c = (c1, c2, c3)

′ with (c1 < c2 < c3) can be used for this purpose. The
following are three strategies for setting the coefficients c systematically, when we do not have a clear
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idea for choosing c. Note that the coefficients c should be chosen by taking the selection of locations
γ j into consideration. We let Cov be the covariance matrix of

(
LOD(γ1), . . . , LOD(γk)

)
, and use the

matrix Cov as the metric for standardizing EIFs.
Our first proposal is the use of orthogonal polynomials. Let c∗

l = Cov−1((γ1)
l , . . . , (γk)l )′ (l =

0, 1, . . .), where (·)l is the l-th power. Let c0 = c∗
0/

√
c∗

0
′ Cov c∗

0. Applying the Gram–Schmidt orthonor-

malization process to c∗
l ’s, we define cl sequentially by

c̃l = c∗
l −

l−1∑
k=0

(c′
k Cov c∗

l ) ck, cl = 1√̃
c′

l Cov c̃l

c̃l (l = 1, 2, . . .). (14)

The process (14) is written as a recursion form

H l = H l−1 − Cov cl−1c′
l−1, cl = 1√

c∗
l
′H l Cov H ′

l c
∗
l

H ′
l c

∗
l (l = 1, 2, . . .),

where H 0 = Ik. Note that H l is an orthogonal projection matrix. The vectors cl are orthonormal in the
sense that c′

k Cov cl = 1 (k = l), 0 (k 
= l). Hence, the LODC(cl ) are uncorrelated between different l ’s.
Then EIFCi(cl ) (i = 1, . . . , n) can be obtained from (10). It also can be written as EIFCi(cl ) = c′

l EIFi.
One advantage of this method is that the coefficient vectors are easy to interpret. The vectors c0, c1,
and c2 are corresponding to the grand mean, linearity, and curvature, respectively.

Alternatives to using specific contrasts are our second and third proposals given below. Note that the
matrices H l defined in (14) can be used for deleting the components that are not of interest. For example,
for deleting the parallel shift or linear components, we can consider a class of linear combinations
of EIFs defined by a projection LODC(H ′c) = c′H (LOD(γ1), . . . , LOD(γk))′ with H = H 1 or H 2,
respectively. In the following discussion, we start from this projected LOD score.

Our second proposal is based on the PCA of Lu et al. (1997) and Tanaka (1994). Noting that the
variance of LODC(H ′c) is c′(HCovH ′)c, we consider the following singular value decomposition for
the standardized influence matrix:

EIFH ′(H Cov H ′)− 1
2 =

∑
l

√
λl hl u′

l , (15)

where hl and ul are orthonormal n- and k-vectors, respectively, and (·)− 1
2 is the symmetric square root

matrix of the Moore–Penrose pseudoinverse matrix. Multiplying both sides of (15) by ul and defining

cl := (H Cov H ′)−1/2ul , we have EIFH ′(H Cov H ′)−1/2ul = EIF(H ′cl ) = √λl hl . Then H ′cl becomes
the coefficient vector corresponding to the l-th component, and the principal component

√
λl hl is

the corresponding influence function. We refer to
√

λl hl as the influence score vector in the context
of influence analysis. For individual i, the EIF with respect to the l-th component can be written as
EIFCi(H

′cl ) = c′
l HEIFi = √λl (hl )i.

This is an exploratory approach, and as in most cases of PCA, the result of this approach is not
always easy to interpret. Thus, we recommend that the number of principal components, rank(H ),
not to be large.

Our third proposal is to use the coefficients c maximizing EIFCi(H
′c) = c′H EIFi under the con-

dition Var(LODC(H ′c)) = c′(H Cov H ′)c = 1. Define a = H EIFi, Q = H Cov H ′, and let c′Qc = 1.
Using the Cauchy–Schwarz inequality, we have

c′a = (Q1/2c)′ (Q−1/2a) ≤
√

c′Qc ·
√

a′Q−a =
√

a′Q−a .
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Because the maximizer is c = κQ−a for a constant κ ≥ 0, we find that

κ = 1√
a′Q−a

, c = Q−a√
a′Q−a

=
(
H Cov H ′)−H EIFi√

EIF′
iH

′(H Cov H ′)−H EIFi

and the maximum is the square root of the quadratic form below:

QEIFi = EIF′
iH

′(H Cov H ′)−H EIFi = (EIF H ′(H Cov H ′)−H EIF′)ii. (16)

Note that QEIFi can be rewritten in a way of the PCA-based method: QEIFi =∑k
l=1(EIFCi(H

′cl ))
2 =∑k

l=1 λl (hl )
2
i . We refer to this EIF as the quadratic EIF (QEIF) hereinafter. This alternative method

can be used when PCA does not give an explicable result.

4.2 Approximation of Cov

For the covariance matrix Cov, we propose an approximate value evaluated under the null hypothesis
H0. It might seem better to use the covariance under the non-null model. However, in QTL analysis, the
single-QTL models (7) or (13) are used for defining only the scanning statistic (LOD score), and each
column vector EIF(γ j ) comes from a different statistical model for the specified γ j . Hence, model-based
approaches such as the use of observed information or Cook’s local influence (Cook, 1986) cannot
be applied to our problem. Therefore, we use the covariance under the null model as a second-best
alternative.

To estimate Cov, we define two n × 2 matrices: Z(γ ) = (z̄i(γ ), w̄i(γ )
)

1≤i≤n and U = (1, ui

)
1≤i≤n,

with z̄i(γ ) =∑1
z∗

i =−1 z∗
i P(z∗

i |zi; γ ) and w̄i(γ ) =∑1
z∗

i =−1 w(z∗
i )P(z∗

i |zi; γ ). We propose an approxima-
tion for Cov as follows. The regularity conditions and the proof are provided in Appendix A.3.

Theorem 4.1. When n is large, the covariance matrix Cov of the LOD scores under the assumption of
no QTL can be approximated by

(Cov) jl = Cov
(
LOD(γ j ), LOD(γl )

) .= 2
(2 log 10)2

tr
(
R(γ j )R(γl )

)
, j, l ∈ {1, . . . , k}, (17)

where

R(γ ) = (Z(γ ) U
){(Z(γ )′

U ′

)(
Z(γ ) U

)}−1(Z(γ )′
U ′

)
− U (U ′U )−1U ′. (18)

4.3 Significance of EIFs

To assess the statistical significance of the EIFs for suspected individuals, we calculate their p-values in
the framework of multiple testing problem without identifying the unknown true QTL model. In this
case, nonparametric resampling approaches look favorable. However, they have difficulty in estimating
tail probabilities of extreme statistics. To address this problem, we propose a robustified parametric
bootstrap below.

First, estimate the involved parameters from the given (observed) dataset by a robust regression
(such as, using the Huber estimator) for the full regression model

yi = μ +
∑
j∈J

(
α jz

( j)
i + β jw(z( j)

i )
)+ νui + εi, εi ∼ N(0, σ 2), (19)

where J is a region including all possible QTLs of interest (see, e.g., Section 5.3). The effects from QTLs
outside J can be regarded as a part of εi. Second, generate datasets with the same sample size as in the
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dataset using the estimated model (19) and Haldane’s linkage model. Then find the maximum absolute
EIF from each simulated dataset. Finally, the p-value can be calculated as the upper probability of the
empirical distribution of the maximum EIFs. Individuals with relatively small p-values can be declared
influential.

The validity of this method is examined in Section 6.1. In the next section, we will use SEIFi =
EIFCi/

√∑n
i=1 EIFC2

i , the standardized version of EIFCi, instead of the original ones for estimating
p-values. This is because an additional numerical comparison study we conducted shows that the
original EIFC sometimes gives too conservative p-values when no outlier exists. The proposed method
is also applicable to the interval mapping method by generating datasets with model (19) containing
all marker loci on the chromosome under consideration.

5 Analysis of F2 mice data

5.1 F2 mice data

In this section, we show how our proposed methods work with a real dataset, which is available from
Supporting Information. Our data are taken from n = 170 F2 progeny generated from the intercross
of F1 hybrids of C57BL/6J and MSM/Ms mouse strains. Extensive phenotypic variation and great
genomic diversity are observed between these two strains (Takada et al., 2008). In this analysis, we
consider blood adiponectin concentration (log10[ng/ml]) as a quantitative trait. Adiponectin is a key
adipokine in metabolic syndrome and is important in mammalian metabolism. Genotypes of the
F2 progeny were observed at m = 119 marker loci (including 94 SNP markers and 25 microsatellite
markers). The LOD score curves obtained by single marker analysis are depicted in Figure 1. The LOD
score curve at chromosome 16 attains the maximum. In fact, the adiponectin coding gene (Adipoq,
MGI:106675) is located on this chromosome. In our analysis below, we focus on chromosome 3 where
six SNP marker loci are genotyped.

5.2 Data analysis on a single location

The LOD score curve obtained from the interval mapping method is shown in Figure 2A. We chose
the point (γ̂ = 32.2, LOD(γ̂ ) = 3.55) for further analysis because it is the maximum peak point of the
LOD score curve.

The EIF values of the maximum (11) and the maximizer (12) of the LOD score for the 170 individuals
are plotted in Figure 2B. In this figure, each circle corresponds to one mouse. The horizontal axis
indicates the influence of each mouse on the maximum LOD score, and the vertical axis measures the
influence of all the mice on the location of the putative QTL.

In order to show the extent of the influence of individuals on the LOD score, we plot the LOD
score curves obtained without the specific mice and compare them with the original LOD score curve.
The extreme points in the horizontal direction are No. 13 and No. 63. Accordingly, in Figure 2C, the
maximum LOD score decreases and increases over a wide range of values by deleting mice No. 13 and
No. 63. Figure 2D shows that deletion of mice No. 62 or No. 94 leads to a peak location shift from
side to side without changing the maximum LOD score substantially. In particular, the data for No. 94
moves the location of the putative QTL by 3.2 centi-Morgans (cM). Although these mice are not
detected as influential using the method in Section 4.3, we can see from this example that influential
individuals may mislead us when making decisions about the existence and the locations of the QTLs.

5.3 Data analysis on aspects of the shape

For the LOD score curve on chromosome 3 in Figure 1, let us focus on the locations of the peaks and
valley (γ3, γ4, γ5) = (35.4, 53.8, 68.4) cM, and check whether any mice determine the two-peak shape.
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Figure 2 The LOD score curve for chromosome 3 and influence analyses on the maximum point of
the curve. (A) The solid line is the LOD score curve obtained from the interval mapping method.
The LOD score curve attains maximum of 3.55 at 32.2 cM. (B) EIF of the maximum LOD score (11)
and EIF of the putative QTL location (12) for each mouse. The mice with identification numbers are
candidate influential individuals. (C) The maximum LOD score is changed by removing the two mice.
(D) The location of the maximum LOD score is moved by removing the two mice.

From (14), we can calculate a vector of cl to detect the influential mice that significantly affect
the parallel shift, inclination, or curvature of the LOD score curve. For the curvature, vector c2 =
(1.04,−2.36, 1.31)′ is obtained. Figure 3A depicts the SEIFi obtained from the orthogonal polynomial
method with c2 for the 170 individuals. Among the individuals, mouse No. 60 has the largest SEIF of
0.447. Its phenotype is 4.776, and genotypes at the 3 loci (γ3, γ4, γ5) are (0,−1, 0). This mouse appears
to greatly affect the curvature of the LOD score curve (Figure 3C), and thus is worthy of attention.
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Figure 3 Influence analyses for the shape of the LOD score curve. (A) SEIFs of the 170 mice obtained
by the orthogonal polynomial method. Each circle indicates one mouse. (B) Scatter chart of the two
influence score vectors obtained from the PCA method. The mice with identification numbers have
a noticeably larger impact on the shape of the LOD score curve on chromosome 3. (C) LOD score
curves without mice No. 23 and No. 60. (D) Comparison of the LOD score curves obtained from the
original dataset and the changed dataset.

To assess its significance, we conduct a parametric bootstrap according to the procedure in Section
4.3. We use Huber’s robust method to estimate the regression coefficients and the error variance in (19).
In our study, the R function rlm() with the option psi=psi.huber is used. Under model (19) with
J = {3, 4, 5}, based on 1000 repeated simulations, the p-value for mouse No. 60 is estimated as 0.39.
Model (19) with all loci on chromosome 3 (i.e., J = {1, 2, . . . , 6}) gives similar result. Accordingly,
No. 60 is not an influential mouse.
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Using the PCA approach, we again search influential individuals for the shape of the LOD score
curve on chromosome 3. In this method, projection matrix H = H 1 in (14) is used to remove the
parallel shift of the LOD score curve. The scatter plot of the two influence score vectors is shown in
Figure 3B.

The correlations between the eigenvectors hl = (hli)1≤i≤n and EIFC(cl ) = (EIFCi(cl )
)

1≤i≤n for l =
1, 2, obtained in the previous example are

Corr
(
(h1, h2), (EIFC(c1), EIFC(c2))

) =
(

0.977 0.366
−0.215 0.931

)
.

This result suggests that the first eigenvector indicates the inclination and the second eigenvector
indicates the curvature of the LOD score curve, even though they do not work in exactly the same way
as the vectors cl .

The influence from mice No. 23 and No. 60 is shown in Figure 3C by comparing the original LOD
score curve with those obtained from the dataset without these mice. The solid line connects the
original LOD scores to form the curve for chromosome 3. The dotted line is obtained by removing
mouse No. 23, which has the largest absolute value at the first eigenvector. We now observe that the
first peak and the valley have gone down but the second peak has gone up. The dashed line indicates
the LOD score curve without mouse No. 60, which has the largest value at the second eigenvector. In
this case, the valley of this curve disappeared almost completely.

In our dataset, mouse No. 60 is not approved as influential. However, when we change its phenotype
(4.776) to 3.842, the minimum phenotype in the dataset, its SEIF becomes −0.647, and the fictional
mouse is detected as influential according to its small p-value 0.02 (see the LOD score curves in
Figure 3D). This numerical experiment shows that the proposed method for p-value in Section 4.3 can
accomplish its goal.

6 Simulation studies

6.1 Assessing the method in Section 4.3

In this subsection, we examine the validity of our method for p-values from Section 4.3. We confirm
that in the case of the single marker analysis, this method controls the false positive rate when no
outlier exists, and has statistical power when outliers exist.

The outline of our simulation study consists of the following steps:

(i) Assume a true QTL model. Repeat the steps (ii)–(v) N times.
(ii) Generate a dataset D0 from the assumed true model. Calculate T0 = max |SEIFi| from D0,

where SEIFi = EIFCi/

√∑n
i=1 EIFC2

i with EIFCi given in (10).
(iii) From the assumed model, generate another dataset D1 with one outlier included. Calculate

T1 = max |SEIFi| from D1 as in (ii).
(iv) As stated in Section 4.3, fit the full model (19) to the dataset D0 by Huber’s method as in

Sections 4.3 and 5.3, and generate a new dataset D̃0 using the estimated robust regression
parameters. Calculate T̃0 = max |SEIFi| from D̃0.

(v) Apply the same procedure as in (iv) to the data D1 to obtain the dataset D̃1 and T̃1.
(vi) Compare empirical distributions of T0, T1, T̃0, and T̃1 based on the N iterations.

Because T̃0 and T̃1 are samples from the model with robust estimators, the distributions of both T̃0
and T̃1 are expected to approximate the distribution of T0 (i.e., null distribution). As stated below, our
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simulation study shows that this expectation is correct. That is, it is appropriate to use T̃ (either T̃0 or
T̃1, in practice) instead of T0. This means that our proposal for estimating p-values is validated.

As the true model in step (i), we use model (19) with four plausible settings: M0 : J = ∅ (no QTL),
M1 : J = {3} (one QTL at γ3), M2 : J = {3, 5} (two QTLs at γ3 and γ5), and M3 : J = {3, 4, 5} (the full
model). The last model is also used as the full model in steps (iv) and (v). In steps (ii)–(v), genotypes
z( j)

i are generated with Haldane’s model, sexes ui are produced as a Bernoulli sequence independently
of z( j)

i , phenotypes in D0 and D1 are generated form the true model, and phenotypes in D̃0 and D̃1are
generated from the full model. In step (iii), the outlier is generated as follows: genotypes (z(3)

i , z(4)
i , z(5)

i )
at the third, fourth, and fifth loci are set as the relatively rare genotype sequence (0,−1, 0), which
seemed to have the largest effect in the dataset, and is the same as that of mouse No. 60; error εi of the
phenotype is generated from N(0, (3σ )2).

Figure 4 shows the simulation results for the four models. The empirical distribution functions of
Tk and T̃k (k = 0, 1) are depicted as black and gray lines, respectively. We find that the distribution
of T̃0 and T̃1 are close to each other, which means that the distribution of T̃ (T̃0 or T̃1) is stable for the
existence of outliers. We also find that T̃0 and T̃1 are close to T0 and distinct from T1. This indicates
that when no outlier exists the false positive rate is appropriately controlled (i.e., unbiased) and when
outliers exist it has statistical power in detecting influential individuals. We also tried simulations with
two outliers. The results are similar and omitted.

6.2 Power comparisons by ROC analysis

In this subsection, we confirm the statistical power of our proposals by comparing them with existing
diagnostics in regression analysis. We assess four diagnostics, the EIFC (10), the QEIF (16), Cook’s D
(Cook, 1977), and the standardized residual r, by a receiver operating characteristic (ROC) analysis
(Fawcett, 2006). In the context of QTL analysis, Hayat et al. (2008) studied the detection power of a
modified version of Cook’s D (Zewotir and Galpin, 2005) in a QTL model with random effects. Since
our QTL model is a fixed-effect model, we use the original Cook’s D in the comparisons. We restrict
our attention again to detecting individuals that influence the two-peak shape of the LOD score curve
on chromosome 3.

Cook’s D and the standardized residual r are defined through the regression model (19) with
J = {3, 4, 5}. Note that Cook’s D is the quadratic form of the EIF vector for the parameter vector
((α j, β j ) j∈{3,4,5}, μ, ν).

In this simulation, the two-QTL model (19) with J = {3, 5} is used as the true model. Each dataset
contains two outliers and 168 normal individuals. The outliers are designed to have specified geno-
types (0,−1, 0) at the third, fourth, and fifth loci. These genotypes are the same as those used in
Section 6.1. The error εi of each outlier’s phenotype is simulated in the following different ways: (a)
Normal distribution N(0, (2σ )2), (b) N(0, (3σ )2), (c) t-distribution with 3 df and scale parameter
2σ , and (d) Cauchy distribution with scale parameter 2σ . Note that σ is the scale parameter used in
generating εi for the 168 normal individuals. In each dataset, the genotypes and sexes of the normal
individuals are generated from Haldane’s model and Bernoulli distribution, respectively. Their phe-
notypes are simulated from the two-QTL model with the parameters estimated from the adiponectin
dataset.

The ROC curves of the four indicators are shown in Figure 5 based on 1000 replicates. For the
varying thresholds, the average rates of correctly classifying the true influential cases (detection rates),
and the average rates of misclassifying the normal cases as influential cases (false positive rates) are
plotted. As expected, outliers with larger σ 2 have larger absolute EIFs, and are thus more easily
detected. In all panels, the EIFC has the largest area under its ROC curve and hence the best average
performance. As the second-best method, QEIF is shown useful when the target shape cannot be fully
specified.
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Figure 4 Simulation results for Section 6.1. Distributions of the maximum |SEIF| and their approxi-
mations based on 1000 replicates. (A), (B), (C), and (D) are the simulation results under the models M0,
M1, M2, and M3, respectively. Solid lines are the empirical distribution functions of simulated T0 and
their approximations T̃0 when there are no outliers. Dashed lines are empirical distribution functions
of simulated T1 and T̃1 when one outlier exists. (T0, T̃0, T1, T̃1 are referred to as “T no outlier,” “T̃ no
outlier,” “T 1 outlier,” “T̃ 1 outlier” in the legends, respectively.)

7 Discussion and guidelines

7.1 Summary and discussion

In this paper, we developed a general theory of profile likelihood function, and apply it to the linear
functional of LOD score function. We also proposed methods to detect influential individuals to the
shape of LOD score curves.
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Figure 5 Simulation results for Section 6.2. Comparison of ROC curves. EIFC: linear combination of
EIFs, QEIF: quadratic EIF, Cook: Cook’s D, Resid: standardized residual r. Distribution of outliers,
εi, is (A) N(0, (2σ )2), (B) N(0, (3σ )2), (C) t3 with scale 2σ , and (D) Cauchy with scale 2σ .

The proposed methods have the following four remarkable features.

(i) These methods focus on interactive effects of genotype and phenotype—Phenotype and geno-
types are incorporated in influence analysis on LOD scores. For example, in our dataset, mouse
No. 13 has genotypes (−1,−1,−1) and the minimum phenotype 3.842, but its EIF on the cur-
vature of the LOD score curve is 0.077, which is much less than that of 0.447 for mouse No. 60.
However, as shown in Section 5.3, when the phenotype works with genotypes (0,−1, 0), its
influence becomes significant. The probability of genotypes (0,−1, 0) under Haldane’s model
is 0.014. There are also some mice with rarer genotypes, such as mouse No. 9 (−1, 0,−1)
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Table 1 Three methods for designing coefficients.

Method Advantage [A] and drawback [D]

Orthogonal polynomial [A] Coefficients are easy to interpret. Detection power is high.
[D] Need to choose the degree of polynomial, or need to try various

degrees (e.g., linear, quadratic, cubic, . . .).
PCA-based method [A] Useful as an exploratory data analysis.

[D] Results are not necessarily clear (not easy to interpret).
Quadratic form (QEIF) [A] Omnibus test, and easy to use.

[D] Detection power is lower than for the orthogonal polynomial.

and mouse No. 128 (1, 0,−1), both with probability 0.007. However, neither of these mice
has significant influence on the shape of the LOD score curve. Hence, the proposed methods
do not separately detect outlier phenotype or rare genotypes. Note that, using these methods,
individuals with outlier phenotypes, or rare multilocus genotypes including epistasis or con-
cordant genotypes may also be identified as influential if they change the LOD score curve
significantly.

(ii) The proposed approach based on the EIF can be applied to other QTL models —In this paper,
two simple models are dealt with as examples. However, the proposed approach can be applied
to more complicated multiple QTL models based on LOD score, such as multiple interval
mapping (Kao et al., 1999).

(iii) Three methods are proposed to design coefficients of linear combination of LOD scores—They
can be used when we have no clear idea for choosing the coefficients. Here we give a summary
on the feature of these methods in Table 1.

(iv) A method to assess the significance of each detected individual is proposed—We proposed
a simulation based method to assess the significance of detecting influential individuals, and
confirmed that this method is approximately valid (i.e., controlling false positives) in the case
of the single marker analysis.

7.2 Practical guidelines

The proposed influence analysis methods are designed to identify individuals that change significantly
the LOD score curve. The data of the identified individuals may contain observation errors. Therefore,
we should reexamine them at the first. The data of detected individuals that are confirmed to be
accurate and reliable are potentially informative for the gene mapping process.

Influence analysis is a model-based method. It is desirable to do QTL detection and influence analysis
using models that are well fitted to the data. As stated in Section 3, our proposed EIF approaches can
be applied to any QTL detection models based on LOD score. When the assumed model is incorrect,
it is not easy to interpret the results.

On the other hand, the one-QTL model (single marker analysis or the interval mapping method)
is often used in initial scan even though it may not be the true model. Even in this case, the detected
individuals provide important information. They may be true influential individuals in the assumed
model, or they may suggest other possibilities of QTL model such as multiple-QTL or epistasis model.
In any of these cases, the detected individuals are informative and should be investigated carefully in
subsequent QTL analysis.

In the process of QTL analysis, aside from influence analysis, the significance of LOD scores should
be checked by standard methods such as permutation test (Churchill and Doerge, 1994).
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The dataset and software used in this article are available from the authors or at NIG Mouse
Phenotype Database http://molossinus.lab.nig.ac.jp/phenotype/index.html .
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Appendix

A.1 Regularity conditions and proof of Theorem 2.1

The conditions required in Theorem 2.1 are listed below. Nθ denotes a neighborhood of θ.

A1. �(γ , θ; y) is a C2-function of θ, where C2 means twice continuously differentiable.
A2.

∫ |�(γ , θ; y)|dF (y) < ∞,
∫ ‖�θ (γ , θ; y)‖dF (y) < ∞.

A3. For each θ, a function g(y; γ , θ) exists such that
∥∥�θθ (γ , θ′; y)

∥∥
F ≤ g(y; γ , θ) (∀θ′ ∈ Nθ ) and∫

g(y; γ , θ)dF (y) < ∞, where ‖ ‖F is the Frobenius norm of the matrix.
A4. The Hessian matrix Lθθ (γ , θ̂(γ , F ); F ) is negative definite.

B1.
∫ ∫ |�(γ , θ; y)|dF (y)dVC(γ ) < ∞,

∫ ∫ ‖�θ (γ , θ; y)‖dF (y)dVC(γ ) < ∞, where dVC(γ ) is the
variation of dC(γ ), and

∫ |�(γ , θ; x)|dVC(γ ) < ∞,
∫ ‖�θ (γ , θ; x)‖dVC(γ ) < ∞.

B2. For each θ, a function g(y; γ , θ) exists such that
∥∥�θ (γ , θ′; y)

∥∥ ≤ g(y; γ , θ) (∀θ′ ∈ Nθ ) and∫ ∫
g(y; γ , θ)dF (y)dVC(γ ) < ∞,

∫
g(x; γ , θ)dVC(γ ) < ∞.

C1. �(γ , θ; y) is a C2-function of γ and θ.
C2.

∫ |�(γ , θ; y)|dF (y) < ∞,
∫ {|�γ (γ , θ; y)| + ∥∥�θ (γ , θ; y)

∥∥}dF (y) < ∞.
C3. For each θ, a function g(y; γ , θ) exists such that |�γγ (γ , θ′; y)| + ∥∥�γ θ (γ , θ′; y)

∥∥+∥∥�θθ (γ , θ′; y)
∥∥

F ≤ g(y; γ , θ) (∀θ′ ∈ Nθ ) and
∫

g(y; γ , θ)dF (y) < ∞.
C4. The Hessian matrix below is negative definite:(

Lγ γ (γ̂ (F ), θ̂(F ); F ) Lγ θ (γ̂ (F ), θ̂(F ); F )

Lθγ (γ̂ (F ), θ̂(F ); F ) Lθθ (γ̂ (F ), θ̂(F ); F )

)
.

Lemma A.1. Assume A1–A4. Then,

(a) θ̂(γ , F ε
x ) with F ε

x = (1 − ε)F + εδx is C1 in ε when |ε| is small. The influence function of θ̂(γ , ·)
is given as

IF(x, θ̂(γ , ·), F ) = −Lθθ (γ , θ̂(γ , F ); F )−1�θ (γ , θ̂(γ , F ); x).

(b) The influence function of the profile likelihood at γ , M(γ ; ·), is given as

IF(x, M(γ ; ·), F ) = �(γ , θ̂(γ , F ); x) − L(γ , θ̂(γ , F ); F ).
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Proof of Lemma A.1. Define a vector-valued function H (ε, θ) =
(

Hj (ε, θ)
)

1≤ j≤p
with Hj (ε, θ) =∫

�θ j
(γ , θ; y)dF ε

x (y). Then, under conditions A1–A3, H (ε, θ) is C1 in (ε, θ). Because of the

assumption of the unique existence of the maximizer θ̂(γ , F ) ∈ �, 0 = Lθ j
(γ , θ̂(γ , F ); F ) =∫

�θ j
(γ , θ̂(γ , F ); y)dF (y) = Hj (0, θ̂(γ , F )). Here, the exchangeability of differential and integral signs

is assured by A3. Noting that ∂
∂ε

Hj (ε, θ)|(ε,θ )=(0,θ̂ (γ ,F )) = �θ j
(γ , θ̂(γ , F ), x), and the Jacobian matrix

(
∂

∂θk
Hj (ε, θ)

∣∣∣
(ε,θ )=(0,θ̂ (γ ,F ))

)
1≤ j,k≤p

= Lθθ (γ , θ̂(γ , F ); F )

is nonsingular by A4, we obtain the result for part (a) by the implicit function theorem and the
definition that ( d

dε
)0̂θ(γ , F ε

x ) = IF(x, θ̂(γ , ·), F ).
For part (b), since L(γ , θ; F ) is linear in F ,

IF(x; M(γ ; ·), F ) = ( d
dε

)0M(γ , F ε
x ) = ( d

dε
)0L(γ , θ̂(γ , F ε

x ); F ε
x )

= ( d
dε

)0L(γ , θ̂(γ , F ε
x ); F ) − L(γ , θ̂(γ , F ); F ) + �(γ , θ̂(γ , F ); x).

Here, the first term becomes
∑

j Lθ j
(γ , θ̂(γ , F ); F )IF(x, (̂θ(γ )) j; F ) = 0. �

Regularity conditions and proof of (i) of Theorem 2.1. Assume A1–A4. Under these regularity
conditions,

∫
L(γ , θ; F )dC(γ ) and

∫
�(γ , θ; x)dC(γ ) are C1 in θ, and differentiation ( d

dε
)0 and the

integration with respect to dF (y) and dC(γ ) are exchangeable. Equation (3) is proved in the same way
as part (b) of Lemma A.1. �

Regularity conditions and proof of (ii) and (iii). Assume A1–A4 (if � is discrete) or C1–C4 (if � is
continuous). Here, we only consider the case where � is continuous. Note that the maximizer γ̂ of the
profile likelihood M(γ , F ) is simply the MLE based on the ordinary likelihood L(γ , θ, F ), and hence
maxγ M(γ ; F ) = max(γ ,θ) L(γ , θ, F ). Then, from Lemma A.1, (b), the IF of the maximum profile
likelihood is given as (4). Moreover, from Lemma A.1, (a), the IF of (γ̂ (·), θ̂(·)) is given as

(
IF(x, γ̂ (·), F )

IF(x, θ̂(·), F )

)
= −

(
Lγ γ (γ̂ , θ̂; F ) Lγ θ (γ̂ , θ̂; F )

Lθγ (γ̂ , θ̂; F ) Lθθ (γ̂ , θ̂; F )

)−1 (
�γ (γ̂ , θ̂; x)

�θ (γ̂ , θ̂; x)

)∣∣∣∣
γ̂=γ̂ (F ), θ̂=θ̂ (F )

.

By means of the inversion formula of the partitioned matrix, we obtain (5). �

A.2 Conditional distribution of the putative QTL genotype

The conditional probability P(z∗
i |zi; γ ) can be obtained as follows: Let εi = (ε(1)

i , . . . , ε
(m)
i
)

and δi =(
δ

(1)
i , . . . , δ

(m)
i
)

denote the genotypes originating from the mother and the father, respectively, of each
F2 individual. Each element of εi and δi takes 1 or −1, because they are from the F1 population.
Thus, the genotype of the F2 individual can be written as zi = 1

2 (εi + δi). Although the elements of
εi = (ε(1)

i , . . . , ε
(m)
i
)

take the values ±1 with the same probability 1
2 , they are strongly correlated by

the linkage. For example, under the assumption of the most basic linkage model, Haldane’s map
function, the vector

(
ε

(1)
i , . . . , ε

(m)
i
)

can be considered as a Markov sequence with probability P
(
ε

(1)
i =

±1
) = 1

2 , P
(
ε

( j+1)
i = ±ε

( j)
i
∣∣ε( j)

i
) = 1

2 (1 ± ρ j, j+1), where ρ jk = e−2|dk−d j |/100 ( j and k are on the same
chromosome), 0 (otherwise), and d j denotes the location of the marker locus j measured in cM.
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Similarly, δi = (δ
(1)
i , . . . , δ

(m)
i ) has the same Markov property. Because δi and εi are independent, the

m-vector zi has the probability distribution

P(zi) =
∑
zi

1
22m

m−1∏
j=1

(
1 + ε( j)

i ε( j+1)
i ρ j+1, j

) (
1 + δ( j)

i δ( j+1)
i ρ j+1, j

)
,

where the summation
∑

zi
is taken over all possible δi, εi ∈ {1,−1}m such that zi = (εi + δi)/2.

Similarly, when genotype z∗
i = (ε∗

i + δ∗
i )/2 of the putative QTL at location γ is taken into consider-

ation, the joint probability of the (m + 1)-vector (zi, z∗
i ) can be obtained as

P(zi, z∗
i ; γ ) =

∑
zi,z

∗
i

1
22(m+1)

m−1∏
k=1,k
= j

(
1 + ε(k)

i ε(k+1)
i ρk+1,k

)(
1 + δ(k)

i δ(k+1)
i ρk+1,k

)

×
(

1 + ε( j)
i ε∗

i e−2(γ−d j )
)(

1 + ε∗
i ε( j+1)

i e−2(d j+1−γ )
)(

1 + δ( j)
i δ∗

i e−2(γ−d j )
)(

1 + δ∗
i δ

( j+1)
i e−2(d j+1−γ )

)
for d j ≤ γ ≤ d j+1, where the summation

∑
zi,z

∗
i

is taken over all possible δi, εi ∈ {1,−1}m, δ∗
i , ε

∗
i ∈

{1,−1} such that zi = (εi + δi)/2 and z∗
i = (ε∗

i + δ∗
i )/2.

Then, the conditional probability is obtained as (6).

A.3 Regularity conditions and proof of Theorem 4.1

We derive the asymptotic null covariance (17) of LOD(γ ) = n
{
Ln(γ , θ̂(γ )) − Ln (̃θ)

}
/ log 10 in (9),

where θ̂(γ ) and θ̃ are the MLEs for θ = (α, β, μ, ν, σ 2) under the H1 and H0, respectively.
Ln is the quasi-likelihood in the sense that the yi’s are independent but not identically distributed.

For the quasi-likelihood, the asymptotic properties of the MLE and the likelihood ratio test still hold
under regularity conditions (White, 1996). We use the asymptotic equivalence of the LR and Rao’s
score statistic under H0 in Lemma A.2. Write fi(γ , θ) = f (yi|zi, ui; γ , θ), gi(z

∗, θ) = g(yi|z∗, ui; θ),
and Pi(z

∗; γ ) = P(z∗|zi; γ ) for simplicity. Let si(γ , θ) = ∂
∂θ

log fi(γ , θ) be the efficient score vector. Let
θ0 = (0, 0, μ0, ν0, σ

2
0 ) be the true parameter in H0.

We assume the regularity conditions:

D1. The covariates ui’s are bounded.

D2. As n → ∞, 1
n

(
Z(γ )′

U ′

)(
Z(γ ) U

)
converges to a positive definite matrix.

Lemma A.2. Assume D1 and D2 above. Then, under H0,

2n
{
Ln(γ , θ̂(γ )) − Ln (̃θ)

} = Sn(γ , θ̃)′I−1
n (γ , θ̃)Sn(γ , θ̃) + op(1), (A.1)

where

Sn(γ , θ) = 1√
n

n∑
i=1

si(γ , θ) and In(γ , θ) = 1
n

n∑
i=1

Cov(γ ,θ )(si(γ , θ)).

Proof of Lemma A.2. First, it is straightforward to show that under assumptions D1 and D2,
limn→∞ In(γ , θ) = I(γ , θ) exists, and the central limit theorem Sn(γ , θ0)

d−→ N(0, I (γ , θ0)) works.
Moreover, under assumptions D1 and D2, it is easy to construct functions h( j)

i (y) ( j = 0, 1, 2) such
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that
∥∥( ∂

∂θ
) j log fi(γ , θ)

∥∥ ≤ h( j)
i (yi) and E(γ ,θ)

[
h( j)

i (yi)
] ≤ M for all θ in a neighborhood of θ0. Using

these facts, we can confirm all of the regularity conditions of Theorems 8.9 and 8.10 of White (1996),
from which the stochastic equivalence (A.1) follows. �

Under H0, the efficient score vector and the Fisher information matrix have simple forms. Since
under H0, gi(z

∗, θ0) does not depend on z∗, the efficient score vector is

si(γ , θ0) =
∂
∂θ

fi(γ , θ0)

fi(γ , θ0)
=
∑1

z∗=−1

{
∂
∂θ

log gi(z
∗, θ0)

}
gi(z

∗, θ0)Pi(z
∗; γ )∑1

z∗=−1 gi(z∗, θ0)Pi(z∗; γ )

= gi(∗, θ0)
∑1

z∗=−1

{
∂
∂θ

log gi(z
∗, θ0)

}
Pi(z

∗; γ )

gi(∗, θ0)
∑1

z∗=−1 Pi(z∗; γ )

=
1∑

z∗=−1

{ ∂

∂θ
log gi(z

∗, θ0)
}

Pi(z
∗; γ )

=
1∑

z∗=−1

1

σ 2
0

(
z∗ei(ξ0), w(z∗)ei(ξ0), ei(ξ0), uiei(ξ0),

1
2

(ei(ξ0)
2

σ 2
0

− 1
))′

Pi(z
∗; γ )

= 1

σ 2
0

((
z̄i(γ ), w̄i(γ ), 1, ui

)
ei(ξ0),

1
2

(ei(ξ0)
2

σ 2
0

− 1
))′

,

where ξ0 = (μ0, ν0) and ei(ξ0) = yi − μ0 − ν0ui. Because e(ξ0) = (ei(ξ0))1≤i≤n ∼ Nn(0, σ 2
0 In),

Sn(γ , θ0) = 1√
nσ 2

0

⎛
⎜⎝

(
Z (γ )′

U ′

)
e(ξ0)

1
2

(e(ξ0)′e(ξ0)

σ 2
0

− n
)
⎞
⎟⎠, In(γ , θ0) = 1

σ 2
0

⎛
⎝ 1

n

(
Z (γ )′

U ′

)
(Z(γ ),U ) 0

0′ 1
2

⎞
⎠.

Moreover, substituting θ̃ = (0, 0, μ̃, ν̃, σ̃ 2) into θ0 in Sn(γ , θ0) and In(γ , θ0), and taking into account
that σ̃ 2 = e(ξ̃ )′e(ξ̃ )/n with ξ̃ = (μ̃, ν̃ ), (A.1) can be rewritten as

Sn(γ , θ̃)′I−1
n (γ , θ̃)Sn(γ , θ̃) = 1

σ̃ 2
e(ξ̃ )′{In − Q(γ )}e(ξ̃ ) (A.2)

with

Q(γ ) = In − (Z(γ ) U
){(Z(γ )′

U ′

)(
Z(γ ) U

)}−1(Z(γ )′

U ′

)
.

Under H0, ei(ξ̃ ) is the residual error in the regression model yi = μ + νui + ei, ei ∼ N(0, σ 2). Hence,
e(ξ̃ ) ∼ Nn(0, σ 2

0 Q) and Q = In − U (U ′U )−1U ′ under H0. Representing the residuals as e(ξ̃ ) = σ0Qε

with an n-vector ε ∼ Nn(0, In) and noting that σ̃ 2/σ 2
0 = 1 + op(1), it is seen from (A.2) that

Sn(γ , θ̃)′I−1
n (γ , θ̃)Sn(γ , θ̃) = ε′Q{In − Q(γ )}Qε + op(1) = ε′R(γ )ε + op(1), (A.3)

where R(γ ) = Q{In − Q(γ )}Q = Q − Q(γ ) is given in (18). Combining (A.1) and (A.3) with Lemma
A.3 below, we get the result

Cov
(

2n
{
Ln(γ j, θ̂γ j

) − Ln (̃θ)
}
, 2n
{
Ln(γk, θ̂γk

) − Ln (̃θ)
}) = 2tr

(
R(γ j )R(γk)

)+ o(1),

and (17) follows. The proof of Theorem 4.1 is completed.
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Lemma A.3. Let ε ∼ Nn(0,�) be a zero-mean Gaussian vector with a covariance matrix �. Let A
and B be symmetric matrices. Then, Cov(ε′Aε, ε′Bε) = 2tr(A�B�).

Proof of Lemma A.3. Write ε = (εi), � = (σi j ), A = (ai j ), and B = (bi j ). For 1 ≤ i, j, k, l ≤ n, since
εi’s have mean 0, we have

E[εiε jεkεl ] = E[εiε j ]E[εkεl ] + E[εiεk]E[ε jεl ] + E[εiεl ]E[ε jεk]

= σi jσkl + σikσ jl + σilσ jk,

and hence

Cov(ε′Aε, ε′Bε) = E[ε′Aεε′Bε] − E[ε′Aε]E[ε′Bε]

=
∑

ai jbkl

(
E[εiε jεkεl ] − E[εiε j ]E[εkεl ]

)
= 2

∑
ai jbklσ jkσl i = 2tr(A�B�).

�
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