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Abstract: Identification of disease-related microRNAs (disease miRNAs) is helpful for understanding
and exploring the etiology and pathogenesis of diseases. Most of recent methods predict
disease miRNAs by integrating the similarities and associations of miRNAs and diseases.
However, these methods fail to learn the deep features of the miRNA similarities, the disease
similarities, and the miRNA–disease associations. We propose a dual convolutional neural
network-based method for predicting candidate disease miRNAs and refer to it as CNNDMP.
CNNDMP not only exploits the similarities and associations of miRNAs and diseases, but also
captures the topology structures of the miRNA and disease networks. An embedding layer is
constructed by combining the biological premises about the miRNA–disease associations. A new
framework based on the dual convolutional neural network is presented for extracting the deep
feature representation of associations. The left part of the framework focuses on integrating the
original similarities and associations of miRNAs and diseases. The novel miRNA and disease
similarities which contain the topology structures are obtained by random walks on the miRNA
and disease networks, and their deep features are learned by the right part of the framework.
CNNDMP achieves the superior prediction performance than several state-of-the-art methods during
the cross-validation process. Case studies on breast cancer, colorectal cancer and lung cancer further
demonstrate CNNDMP’s powerful ability of discovering potential disease miRNAs.

Keywords: miRNA–disease association; convolutional neural network; random walk;
network topology structure

1. Introduction

miRNAs are non-coding single-stranded RNA molecules encoded by endogenous genes with a
length of about 22 nucleotides. miRNAs exert their biological functions primarily via regulating the
expression of target genes (mRNAs). miRNAs usually target to a specific sequence in the 3′ untranslated
terminal of mRNAs, inhibiting the translation of the target genes [1–5]. With the development of
molecular biology and biotechnology, scientists find that the abnormal expression of miRNAs is closely
related to various human diseases [6–8]. Therefore, predicting the potential disease-associated miRNAs
is of great significance for understanding disease etiology and pathogenesis.

In recent years, several computational methods have been proposed for predicting
disease-associated miRNAs, which can be classified into two main categories in general.
miRNAs implement their biological functions by regulating the expression of their target mRNAs [9].
Therefore, the first category of methods is based on target genes to predict the potential associations
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between diseases and miRNAs. Jiang et al. [10] estimated the functional similarities of miRNAs through
the number of target genes co-associated with miRNAs. The similarities among diseases is measured
according to the phenotype of the disease, and the known miRNA–disease associations are combined
to predict the potential miRNA–disease associations. However, the number of experimentally
validated target genes is not sufficient, which cannot provide sufficient and effective data to support
the prediction. Li et al. [11] used target gene prediction software TargetScan [12], MiRanda [13],
and PITA [14] to predict target genes that a certain miRNA might regulate. The disease-related miRNAs
are then predicted by measuring the functional consistency between the predicted target genes and
existing disease-related genes. As the false-positive rate of target genes predicted by the software are
very high, it is difficult for this method to achieve high prediction accuracy. The methods in the second
category are based on the biological observation that miRNAs with similar functions are usually
associated with similar diseases and vice versa [15–18]. Xuan et al. [19] and Xiao et al. [20] proposed
the method based on non-negative matrix factorization from the similarity and association perspective
of miRNAs and diseases. Liu et al. [21] and Liao et al. [22] proposed the method of predicting
miRNA–disease associations via random walking in networks composed of multiple data sources.
Zeng et al. [23] proposed a disease miRNA prediction algorithm based on the structural perturbation
method. Chen et al. [24] and Zhang et al. [25] proposed a path-based method for predicting miRNAs
that are associated with diseases. Ding et al. [26] integrated known miRNA–disease associations
and experimentally validated miRNA–target associations and proposed a prediction method based
on a disease–miRNA–target heterogeneous network. As these methods are based on the traditional
computing model [27–29], it is difficult to extract the deep feature representation from the multiple
kinds of data.

There are limited associations between miRNAs and diseases, so their associations are sparse.
The similarities between diseases are also sparse. Since convolutional neural networks (CNNs) are
suitable for dealing with this kind of sparse data [30], we propose a CNN-based prediction method.
The topological structures of miRNAs and diseases are also very important for miRNA–disease
association prediction. Therefore, we construct a dual CNN-based prediction model to learn the
depth feature representation in sparse data and capture the topological information in miRNA and
disease networks.

2. Results and Discussion

2.1. Performance Evaluation Metrics

Considering that most of the diseases in the HMDD database are only associated with a few
miRNAs, they are not sufficient to evaluate the prediction performance of our method. Therefore,
we performed five-fold cross-validation on the 15 diseases associated with more than 90 miRNAs
to compare the prediction performance between CNNDMP and several state-of-the-art methods.
First, we regard the known miRNA–disease associations as positive samples, and randomly divide
them into five equal parts, and the unknown associations are regarded as negative samples.
The negative samples (whose quantity is equal to that of the positive samples) are selected randomly
from all the negative ones. These negative samples are also divided into five equal parts. Four parts
of positive samples and four parts of negative samples are used as the training data in each-fold
cross-validation. The remaining positive and the remaining negative samples are used as the testing
data to verify the prediction performance.

We can obtain the association prediction scores in the testing data via the CNN prediction model
and sort them by their values in descending order. If a known association exists between a pair of
miRNA–disease sample, and the prediction score of the association is higher than the given threshold
δ, it is a successfully identified positive sample. If the prediction score of a negative sample is lower
than δ, it is a successfully identified negative sample. By changing the threshold, we can calculate the
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corresponding true positive rate (TPR), false positive rate (FPR), precision (Precision) and recall rate
(Recall). They are defined as follows,

TPR =
TP

TP + FN
, FPR =

FP
TP + FP

(1)

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

(2)

where TP and TN represent the number of positive and negative samples correctly identified,
FP represents the number of negative samples misidentified as positive samples, and FN represents the
number of positive samples misidentified as negative samples. Each time the threshold δ is changed,
the corresponding TPR and FPR values, as well as the Precision and Recall values, are obtained.
The receiver operating feature curve (ROC) and the precision–recall curve (PR) are then drawn using
these values. The areas under the ROC curve (ROC-AUC) and the PR curve (PR-AUC) are used to
evaluate the whole prediction performance.

Biologists usually select the top-ranked miRNA candidates from the prediction result to further
validate their associations with the disease. Therefore, we calculate the average recall values of the top
30, 60, 90–210 and 240 candidates for 15 diseases. Through the recall, we compare how many positive
samples appear in the top k candidates in different methods. The larger the recall value, the more
positive samples are identified successfully.

2.2. Comparison with Other Methods

CNNDMP is compared with GSTRW [22], DMPred [19], PBMDA [24] and Liu’s Method [21],
which are state-of-the-art prediction methods for miRNA–disease associations. The parameters
involved in each method need to be adjusted to achieve the best prediction performance. In our method,
w f , wp and d are set to 3, 2 and 11, respectively. Each convolutional layer contains 20 convolution
filters, so nconv is set to 20. The restart probability β of random walk is 0.8, and the harmonic parameter
λ is set to 0.9. λ varies from 0.1 to 0.9, and the corresponding performances of CNNDMP are listed
in Table 1. For the other methods, we use the parameters mentioned in the corresponding papers
(γ = θ = 0.2,α = β = 0.8, λ = η = 0.2, w = 0.6 for GSTRW, L = 3,α = 2.26 for PBMDA,
λM = 1

70 , λD = 1
10 , θ = 1

20 for DMPred, λ = 0.8, δ = 0.9,η = 0.1,γ = 0.5 for Liu’s Method).

Table 1. ROC-AUCs and PR-AUCs at different values of λ.

Parameter λ 0.1 0.2 0.3 0.4 0.4 0.5 0.7 0.8 0.9

ROC-AUC 0.890 0.918 0.934 0.939 0.946 0.950 0.952 0.954 0.956
PR-AUC 0.340 0.401 0.442 0.462 0.491 0.503 0.513 0.521 0.538

The AUC-ROC values of the five methods (CNNDMP, GSTRW, DMPred, PBMDA, and Liu’s
Method) for 15 diseases are 0.956, 0.802, 0.917, 0.844, and 0.865, respectively (Table 2, Figure 1).
CNNDMP achieved the best prediction performance, and its average AUC-ROC is 0.956, which is
higher by 15.4%, 3.9%, 11.2%, and 9.1% compared to the other four methods, respectively.
The miRNA–disease association scores of GSTRW are dependent on the calculation of miRNA
similarities and disease similarities. Therefore, GSTRW performs the worst in all methods.
The performance of PBMDA is similar to that of Liu’s Method as they all exploit the network topology
information. DMPred utilizes miRNA- and disease-related information and achieves a competitive
predictive performance. Our method, CNNDMP, completely integrates the original feature of miRNAs,
diseases and network topology, combines them with the powerful representation learning capability
of CNN and achieves the best prediction performance.
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Table 2. Prediction results of CNNDMP and the other four methods for 15 diseases in terms
of ROC-AUCs.

Disease Name ROC-AUC CNNDMP GSTRW DMPred PBMDA Liu’s Method

Breast neoplasm 0.987 0.822 0.938 0.852 0.863
Hepatocellular carcinoma 0.986 0.779 0.900 0.803 0.845

Renal cell carcinoma 0.950 0.816 0.903 0.813 0.832
Squamous cell carcinoma 0.936 0.817 0.908 0.881 0.890

Colorectal neoplasm 0.910 0.737 0.842 0.826 0.857
Glioblastoma 0.926 0.814 0.904 0.803 0.842
Heart failure 0.972 0.817 0.987 0.791 0.828

Acute myeloid leukemia 0.961 0.788 0.890 0.844 0.874
Lung neoplasm 0.962 0.791 0.948 0.905 0.920

Melanoma 0.978 0.789 0.913 0.836 0.860
Ovarian neoplasm 0.958 0.830 0.929 0.889 0.897

Pancreatic neoplasm 0.945 0.838 0.916 0.891 0.904
Prostatic neoplasm 0.964 0.822 0.951 0.843 0.855
Stomach neoplasm 0.954 0.762 0.908 0.821 0.836

Urinary bladder neoplasm 0.956 0.816 0.919 0.854 0.865

Average AUC 0.956 0.802 0.917 0.844 0.865Int. J. Mol. Sci. 2018, 19, x 4 of 15 
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Figure 1. Receiver operating feature curve (ROC) curve of CNNDMP and the other four methods.
AUC = area under the curve.

There are far more unobserved miRNA–disease associations than known ones, so there is a serious
class imbalance between them. For the imbalanced associations, the PR curves are better than ROC
curves in reflecting the prediction performance of different methods. Figure 2 shows the PR curves of
CNNDMP, GSTRW, DMPred, PBMDA and Liu’s Method for 15 diseases. Their PR-AUCs are 0.538,
0.177, 0.392, 0.324, and 0.334, respectively. The PR-AUC of CNNDMP is 36.1%, 14.6%, 21.4%, and 20.4%
higher than the other methods. As shown in Table 3, CNNDMP yields the best average performance
in terms of PR-AUCs and achieves the best performance for 14 of 15 common diseases.
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Table 3. Prediction results of CNNDMP and the other four methods for 15 diseases in terms
of PR-AUCs.

Diseases Name PR-AUC CNNDMP GSTRW DMPred PBMDA Liu’s Method

Breast neoplasm 0.894 0.322 0.699 0.574 0.573
Hepatocellular carcinoma 0.893 0.279 0.501 0.454 0.498

Renal cell carcinoma 0.365 0.150 0.293 0.181 0.186
Squamous cell carcinoma 0.287 0.109 0.213 0.211 0.208

Colorectal neoplasm 0.367 0.141 0.186 0.367 0.371
Glioblastoma 0.330 0.151 0.219 0.217 0.243
Heart failure 0.602 0.191 0.700 0.168 0.189

Acute myeloid leukemia 0.368 0.140 0.211 0.191 0.236
Lung neoplasms 0.636 0.147 0.511 0.537 0.503

Melanoma 0.657 0.171 0.389 0.363 0.397
Ovarian neoplasm 0.490 0.169 0.404 0.361 0.361

Pancreatic neoplasm 0.555 0.137 0.329 0.364 0.354
Prostatic neoplasm 0.568 0.166 0.463 0.282 0.264
Stomach neoplasm 0.608 0.220 0.446 0.344 0.346

Urinary bladder neoplasm 0.470 0.163 0.315 0.252 0.280

Average AUC 0.538 0.177 0.392 0.324 0.334

For the top k miRNA candidates, the higher recall rate means that there are more positive samples
successfully identified. Figure 3 shows the average recall rates for 15 diseases in the top k miRNA
candidates. CNNDMP’s recall rates for the top 30 to 240 candidate results are 0.629, 0.878, 0.966, 0.990,
0.998, 0.999, 1.0, and 1.0, respectively. The results in Figures 1–3 and Tables 2 and 3 show that our
method is indeed effective in discovering potential disease miRNAs.



Int. J. Mol. Sci. 2018, 19, 3732 6 of 15

Int. J. Mol. Sci. 2018, 19, x 5 of 15 

 

 

Figure 2. Precision–recall (PR) curve of CNNDMP and the other four methods. 

Table 3. Prediction results of CNNDMP and the other four methods for 15 diseases in terms of  

PR-AUCs. 

Diseases Name PR-AUC CNNDMP GSTRW DMPred PBMDA Liu’s Method 

Breast neoplasm 0.894 0.322 0.699 0.574 0.573 

Hepatocellular carcinoma 0.893 0.279 0.501 0.454 0.498 

Renal cell carcinoma 0.365 0.150 0.293 0.181 0.186 

Squamous cell carcinoma 0.287 0.109 0.213 0.211 0.208 

Colorectal neoplasm 0.367 0.141 0.186 0.367 0.371 

Glioblastoma 0.330 0.151 0.219 0.217 0.243 

Heart failure 0.602 0.191 0.700 0.168 0.189 

Acute myeloid leukemia 0.368 0.140 0.211 0.191 0.236 

Lung neoplasms 0.636 0.147 0.511 0.537 0.503 

Melanoma 0.657 0.171 0.389 0.363 0.397 

Ovarian neoplasm 0.490 0.169 0.404 0.361 0.361 

Pancreatic neoplasm 0.555 0.137 0.329 0.364 0.354 

Prostatic neoplasm 0.568 0.166 0.463 0.282 0.264 

Stomach neoplasm 0.608 0.220 0.446 0.344 0.346 

Urinary bladder neoplasm 0.470 0.163 0.315 0.252 0.280 

Average AUC 0.538 0.177 0.392 0.324 0.334 

 

Figure 3. Recall values of top k candidates of CNNDMP and the other four methods. 

In addition, to further verify that the ROC-AUC and PR-AUC of CNNDMP are significantly 

higher than the other methods, we performed a paired t-test. All paired t-test results are less than 

0.05, which indicates that CNNDMP’s performance is significantly better than the other methods 

(Table 4). 

Figure 3. Recall values of top k candidates of CNNDMP and the other four methods.

In addition, to further verify that the ROC-AUC and PR-AUC of CNNDMP are significantly
higher than the other methods, we performed a paired t-test. All paired t-test results are less than 0.05,
which indicates that CNNDMP’s performance is significantly better than the other methods (Table 4).

Table 4. Comparison of different methods based on AUCs with a paired t-test.

p-Value DMPred GSTRW PBMDA Liu’s Method

p-value of ROC-AUC between
CNNDMP and other methods 6.44998 × 10−4 9.60973 × 10−16 2.65553 × 10−10 1.25344 × 10−10

p-value of PR-AUC between
CNNDMP and other methods 0.02972 1.75747 × 10−6 0.00111 0.00151

2.3. Comparison between the Individual Networks and the Integrated Network

To verify that the performance of the integrated network is better than the individual networks,
we evaluate the prediction performances of the left and right networks within CNNDMP, respectively.
The values of ROC-AUC and PR-AUC of the left network are 0.916 and 0.509, respectively. For the
right network, the values of ROC-AUC and PR-AUC are 0.905 and 0.494, respectively. Compared with
the left and right networks, the ROC-AUC of the integrated network increased by 4% and 5.1%, and the
PR-AUC increased by 2.9% and 4.4%.

2.4. Case Studies on Breast Cancer, Colorectal Cancer and Lung Cancer

To further demonstrate CNNDMP’s ability to discover potential disease-associated miRNAs,
we used three independent databases, dbDEMC [31], miRCancer [32], and PhenomiR [33], as well
as the relevant literature to verify the candidates of breast cancer, colorectal cancer and lung cancer.
We take the prediction results of breast cancer as an example, and list the results of this case analysis
in detail.

We list the case study of the top 50 miRNA candidates related to breast cancer in Table 5.
dbDEMC is a database of differentially expressed miRNAs in human cancers, and it contains 2224
differentially expressed miRNAs in 36 cancer types. Forty-three of the 50 miRNA candidates
are included in this database, which confirmed the differential expression of these candidates
in breast cancer. PhenomiR is also a database of differentially expressed miRNAs in human
cancers. miRCancer is a miRNA–cancer associations database that collects 6323 miRNA–cancer
associations from 4875 academic papers covering 184 cancers. PhenomiR includes two miRNA
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candidates, and miRCancer contains two candidates. Five miRNA candidates are confirmed in the
relevant literature.

Table 5. The top 50 breast cancer-related candidates.

Rank miRNA Name Evidence Rank miRNA Name Evidence

1 hsa-mir-1266 dbDEMC 26 hsa-mir-663 dbDEMC
2 hsa-mir-942 dbDEMC 27 hsa-mir-545 dbDEMC
3 hsa-mir-384 dbDEMC 28 hsa-mir-525 dbDEMC
4 hsa-mir-374b dbDEMC 29 hsa-mir-520f dbDEMC
5 hsa-mir-1293 dbDEMC 30 hsa-mir-520g dbDEMC
6 hsa-mir-3148 Literature [34] 31 hsa-mir-659 dbDEMC
7 hsa-mir-569 Literature [35] 32 hsa-mir-150 miRCancer, PhenomiR
8 hsa-mir-431 dbDEMC 33 hsa-mir-592 dbDEMC
9 hsa-mir-711 Literature [36] 34 hsa-mir-1254 dbDEMC
10 hsa-mir-325 dbDEMC 35 hsa-mir-548c dbDEMC
11 hsa-mir-1302 Literature [37] 36 hsa-mir-675 miRCancer
12 hsa-mir-33a dbDEMC 37 hsa-mir-3940 Literature [38]
13 hsa-mir-1246 dbDEMC 38 hsa-mir-1299 dbDEMC
14 hsa-mir-376b dbDEMC 39 hsa-mir-377 dbDEMC
15 hsa-mir-487a dbDEMC 40 hsa-mir-519a dbDEMC
16 hsa-mir-1236 dbDEMC 41 hsa-mir-1180 dbDEMC
17 hsa-mir-548a dbDEMC 42 hsa-mir-1184 dbDEMC
18 hsa-mir-624 dbDEMC 43 hsa-mir-3151 dbDEMC
19 hsa-mir-633 dbDEMC 44 hsa-mir-627 dbDEMC
20 hsa-mir-1181 dbDEMC 45 hsa-mir-1273a dbDEMC
21 hsa-mir-382 dbDEMC 46 hsa-mir-1972 dbDEMC
22 hsa-mir-448 dbDEMC 47 hsa-mir-208a dbDEMC, PhenomiR
23 hsa-mir-583 dbDEMC 48 hsa-mir-668 dbDEMC
24 hsa-mir-518a dbDEMC 49 hsa-mir-635 dbDEMC
25 hsa-mir-433 dbDEMC 50 hsa-mir-619 dbDEMC

The top 50 colorectal cancer-related candidates are given in Supplementary Table S1.
The databases of dbDEMC and miRCancer respectively include 48 candidates and one candidate whose
abnormal expressions have been identified in colorectal cancer. A candidate marked ‘Unconfirmed’
means that it is not currently supported by the databases and the relevant literature.

In terms of lung cancer, the top 50 candidates are listed in Supplementary Table S2.
Forty candidates are included in dbDEMC and three candidates are contained by miRCancer which
have abnormal expression in lung cancer. A candidate is supported by PhenomiR to have abnormal
regulation in lung cancer. Four candidates are supported by the relevant literature to be differentially
expressed in lung cancer. Three candidates marked ‘Unconfirmed’ are not currently supported by the
databases and the relevant literature. The case studies on the three diseases confirm that the CNNDMP
has a powerful ability to discover potential disease miRNAs.

2.5. Predicting Novel Disease-Related miRNAs

By comparing the ROC curve, PR curve and the recall rate of the top k candidates for the five
methods by cross-validation, CNNDMP has achieved the best prediction performance. Subsequent
case analysis results further confirm that CNNDMP has good prediction performance in discovering
the associations between miRNAs and diseases. Therefore, we further apply this method to all
326 diseases. We take all the positive samples and the corresponding negative samples as training data.
Finally, the top 100 miRNA candidates for each disease are given in Supplementary Table S3.
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3. Materials and Methods

3.1. Dataset

The miRNA–disease associations used in this study derive from the human miRNA–disease
database (HMDD) [39]. HMDD has collected thousands of reliable association pairs between miRNAs
and diseases. After integrating different miRNA records and unifying the miRNA and disease
names, we finally retained 5088 miRNA–disease associations, involving 490 miRNAs and 326 diseases.
Disease terms are available from the National Library of Medicine (http://www.ncbi.nlm.nih.gov/
mesh). The phenotypic similarities and the semantic similarities are obtained from a published
study [18].

3.2. Construction of a miRNA–Disease Heterogeneous Network

miRNA similarity measurement. Based on the biological observation that miRNAs with similar
functions usually tend to be associated with similar diseases, the similarity of two miRNAs is estimated
by measuring the similarities of their associated diseases. For example, miRNA ma is associated with
diseases d1, d3, d5, d6, and d7, whereas miRNA mb is associated with diseases d2, d3, d4, and d6.
Wang et al. [40] calculated the similarity between Sa = {d1, d3, d5, d6, d7} and Sb = {d2, d3, d4, d6} as
the similarity of ma and mb, denoted as M(ma, mb). The similarity between Sa and Sb includes the
following three steps: first, the similarities between d1 and each of the diseases in Sb are calculated,
and the maximum similarity is taken as the similarity between d1 and Sb. Similarly, the similarities
between d3, d5, d6, d7 and Sb are obtained, respectively. Second, the similarities between each of diseases
in Sb and Sa are calculated. Finally, these similarities are accumulated and divided by the total number
of diseases in Sa and Sb. We use the matrix M ∈ RNm×Nm to represent the similarities of miRNAs,
where Nm is the number of miRNAs. The values of miRNA similarities are distributed between 0
and 1.

Disease similarity measurement. The disease similarity measures how similar they are from the
perspectives of disease semantics and phenotype. The terms related to a disease are represented by a
directed acyclic graph (DAG). If there are more common terms between the DAGs of two diseases,
it means that the two diseases are more similar. At the same time, two diseases that share more
common phenotypes are often more similar. Therefore, we quantify the similarity of two diseases
based on their semantics and phenotype. Xuan et al. have successfully integrated this information
and calculated the similarities between diseases. Therefore, disease similarities can be obtained from
published studies [19,41]. We use the matrix D ∈ RNd×Nd to represent the similarities between diseases
and values of the similarities vary from 0 and 1, where Nd represents the number of diseases.

miRNA–disease associations. If miRNA mi is associated with disease dj then Aij = 1, or Aij = 0
when their association has not been observed. We use A ∈ RNm×Nd to represent the associations
between miRNAs and diseases.

By exploiting the similarities of miRNAs and diseases, as well as the known associations
between miRNAs and diseases, we construct a heterogeneous network including two kinds of nodes
(miRNAs and diseases), and the matrix representation of the network (Figure 4).

http://www.ncbi.nlm.nih.gov/mesh
http://www.ncbi.nlm.nih.gov/mesh
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Figure 4. Construction of a miRNA–disease heterogeneous network and matrix representation. (a) 
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than 0 and the matrix representation 𝐌. We represent miRNA network topology information and the 
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and the weight on edge represents miRNA similarity values in the weighted network. (b) The disease 

similarities network and its matrix representation 𝐃. (c) The miRNA–disease associations network is 

constructed based on the known associations between miRNAs and diseases, and its corresponding 

matrix representation 𝐀. When a disease is associated with a miRNA, they are connected by a dotted 

line. (d) miRNA–disease heterogeneous network. It effectively integrates miRNA similarities, disease 

similarities and miRNA–disease association information. 

3.3. Prediction Model Based on Dual CNN 

Figure 4. Construction of a miRNA–disease heterogeneous network and matrix representation.
(a) The miRNA similarities network is constructed based on two miRNAs whose similarity are greater
than 0 and the matrix representation M. We represent miRNA network topology information and the
similarity values between miRNAs by a weighted network. Each node represents a miRNA entity,
and the weight on edge represents miRNA similarity values in the weighted network. (b) The disease
similarities network and its matrix representation D. (c) The miRNA–disease associations network is
constructed based on the known associations between miRNAs and diseases, and its corresponding
matrix representation A. When a disease is associated with a miRNA, they are connected by a
dotted line. (d) miRNA–disease heterogeneous network. It effectively integrates miRNA similarities,
disease similarities and miRNA–disease association information.

3.3. Prediction Model Based on Dual CNN

We construct a prediction model based on dual CNN, which is composed of left and right parts.
The left part learns from the original feature information of miRNAs and diseases. The complex,
implicit and nonlinear miRNA–disease feature information is captured by the CNN layer. The right
part combines miRNA and disease network topology information and represents it deeply by the
CNN layer. Finally, we integrate the results of the left and right to obtain final prediction scores for
disease-associated miRNAs.

3.3.1. Embedding Layer

Embedding in the left part by integrating miRNA and disease original feature information.
Functionally similar miRNAs are usually involved in similar diseases and vice versa. Therefore,
we integrate miRNA and disease similarities and miRNA–disease associations to construct the
embedding in the left part. We take the miRNA m1 and disease d2 in Figure 5 as an example to
elaborate the integration process. The first row of M represents the similarities between m1 and all
the miRNAs, and the second row of AT represents the associations between d2 and all the miRNAs.
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The miRNA m1 is similar to m2 and m4, and the disease d2 has a known association with m2, m4 and
m5. Thus, miRNA m1 and disease d2 are likely to be associated. Similarly, we integrate the first row of
A with the second row of D. Among them, miRNA m1 is associated with d1, d3 and d6, and disease d2

is similar to d1 and d3, so miRNA m1 and disease d2 are likely to be associated. The final integration
result is represented by the feature matrix X ∈ R2×(Nm+Nd).
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Embedding in the right part by integrating the networks topology. We firstly obtain network
topology information by random walking in the miRNA and disease networks, respectively. The basic
principle of a random walk with restart is that the walker starts from a node in the network at 0th
time and walks randomly in the miRNA (or disease) network. When the current node of the walker
is more similar to a neighbor node, the probability that the walker turns to it is greater. Therefore,
after the walking process converges, the probability that the walker reaches a certain node is greater,
indicating that the node is more similar to the starting node. We define the convergent vector as p∞,
which represents the similarities between the starting node and all the nodes.

We take the miRNA network as an example to illustrate its computational process in detail.
Firstly, we need to row-normalize the original miRNA similarities matrix M to obtain the probabilistic
transfer matrix W. Then, based on the following random walk with restart iteration formula,

p(t + 1) = (1− β)WTp(t) + βp(0) (3)

the network topology-based miRNA similarities are obtained. Taking miRNA m1 as an example,
the current random walk from node m1, the first element of p(0) is then set to 1 and the other elements
are 0. The parameter β ∈ (0, 1) represents the probability that the walker returns to the starting node m1

for re-walking. WT is the transposed matrix of W, p(t) represents the probability that the walker arrives
at each miRNA node at time t, and p(t + 1) represents the arrival probability at time t + 1. After the
walking process is converged, the vector p∞

m1
is obtained and regarded as a part of the embedding in

the right part. When L1 norm between p(t + 1) and p(t) is less than 10−6, the convergence condition
is satisfied. Similarly, in the disease network, we randomly walk from the disease d2 node, and finally
get the vector p∞

d2
as a part of the right embedding.
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We integrate the similarity and association information of miRNA m1 and disease d2 based on
network topology to form the embedding in Figure 6. The final integration result is represented by the
feature matrix Y ∈ R2×(Nm+Nd).
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in the right part.

3.3.2. Convolutional Module on the Left

We treat the embedding X ∈ R2×(Nm+Nd) as the input data of the CNN module to learn
the original feature representation (Figure 7). For the convolutional layer, we set the length and
width of a convolution filter to w f and d, and the nconv convolution filters can be represented as

Wconv ∈ Rw f×d×nconv . We apply Wconv to X to get the feature output Z1 ∈ R2×(Nm+Nd−w f +1)×nconv ,

Xconv,i =
(

Xi1, Xi2, . . . , Xi(i1+w f−1)

)
, Xconv,i ∈ RW f×d (4)

Z1(2, i, j) = g(Xconv,i ∗Wconv(:, :, j) + bconv(j))
i ∈

[
1, Nm + Nd − w f + 1

]
, j ∈ [1, nconv]

(5)

where Z1(2, i, j) is the convolution result when the jth convolution filter slides to the ith position of X,
and g is a nonlinear activation function (relu). bconv is a bias vector, and Xi1 is the first column vector in
the sliding window when the filter moves to the ith position of X. In the pooling layer, the max-pooling
operation is performed on Z1 to get Q1 ∈ R2× 1

2 (Nm+Nd)×nconv ,

Q1(2, p, j) = max
(
Z1(2, r, j), Z1

(
2, r + wp − 1, j

))
(6)

where Q1(2, p, j) is the pooling value of the pth position of the jth convolution filter and wp is the
sliding window length of the pooling operation. We use Q1 as the input of the second convolutional
layer, and obtain the output of the second pooling layer Q2 ∈ R2× 1

4 (Nm+Nd)×2nconv . Similarly, Q2 as the
input of the third convolutional layer can obtain Q3 ∈ R2× 1

8 (Nm+Nd)×3nconv . Finally, we flatten Q3 to a
column vector q ∈ Rv×1

(
v = 2× 1

8 (Nm + Nd)× 3nconv

)
, and obtain the association prediction score

of m1 and d2 through the fully connected layer. The score is defined as score1 ∈ R2×1,

score1 = H× q (7)
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where H ∈ R2×v is a weight matrix between the fully connected layer and the output layer.
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3.3.3. Convolutional Module on the Right

The embedding Y ∈ R2×(Nm+Nd) in the right part is input to learn the feature representation of
the network topology (Figure 7). The convolution and pooling processes of the right part are similar to
that in the left part. The convolutional operation Z2 and the max-pooling operation U1 are defined
as follows,

Yconv,i =
(

Yi1, Yi2, . . . , Yi(i1+w f−1)

)
, Yconv,i ∈ Rw f×d (8)

Z2(2, i, j) = g(Yconv,i ∗Wconv(:, :, j) + bconv(j)) (9)

U1(2, p, j) = max
(
Z2(2, r, j), Z2

(
2, r + wp − 1, j

))
(10)

where Z2 is the feature output of the convolution operation and Yi1 is the first column vector in the
sliding window when the filter moves to the ith position of Y. U1 is obtained by performing the
max-pooling operation on Z2. We use U1 as the input of the second convolutional layer, and obtain
the output of the second pooling layer U2 ∈ R2× 1

4 (Nm+Nd)×2nconv . Similarly, U2 as the input of the third
convolutional layer can obtain U3 ∈ R2× 1

8 (Nm+Nd)×3nconv . Finally, we flatten U3 to the column vector
p ∈ Rv×1,

(
v = 2× 1

8 (Nm + Nd)× 3nconv

)
and get the association score between m1 and d2 by the

fully connected layer. The score is defined as score2 ∈ R2×1,

score2 = K× p (11)

where K ∈ R2×v is the weight matrix between the fully connected layer and the output layer.
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3.3.4. Combined Strategy

The association scores score1 and score2 are obtained from different perspectives of
miRNA–disease information. To take complete advantage of the prediction results from the left
and right parts, we integrate the two scores as the final association score between a miRNA and a
disease. It is defined as follows,

score = λ× score1 + (1− λ)× score2 (12)

where the parameter λ ∈ (0, 1) is used to adjust the importance of score1 and score2. The loss functions
of the left and right CNNs are defined as loss1 and loss2,

loss1 = −
T

∑
i=1

[ylabel × log a + (1− ylabel)× log(1− a)] (13)

a =
escore1(2)

∑2
j=1 escore1(j)

(14)

loss2 = −
T

∑
i=1

[ylabel × log b + (1− ylabel)× log(1− b)] (15)

b =
escore2(2)

∑2
j=1 escore2(j)

(16)

where ylabel indicates the actual association between a miRNA and a disease. ylabel is 1 when the
miRNA is associated with the disease, otherwise ylabel is 0. score1(1) and score1(2) represent the
scores of miRNA–disease associations that are classified as the negative sample and the positive
one, respectively. a and b indicate the corresponding probabilities obtained by the softmax function.
T represents the number of training samples.

4. Conclusions

A novel method based on a dual convolutional neural network, CNNDMP, is developed for
prioritizing potential disease miRNAs. CNNDMP’s embedding layer is constructed from the biological
perspective by combining the biological premise about miRNA–disease associations. At the same time,
the embedding layer captures the original similarities and associations of miRNAs and diseases, as well
as the topology structure of the miRNA and disease networks. The new framework based on a dual
convolutional neural network is constructed for learning the deep features of the original similarities
and associations of miRNAs and diseases, and the new miRNA and disease similarities. The results
of cross-validation on 15 common diseases confirms CNNDMP’s superior performance. The case
studies on three diseases further show that CNNDMP has a strong ability to discover candidate
disease miRNAs.
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