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Abstract: Ionic liquids (ILs) are known for their unique characteristics as solvents and electrolytes.
Therefore, new ILs are being developed and adapted as innovative chemical environments for differ-
ent applications in which their properties need to be understood on a molecular level. Computational
data-driven methods provide means for understanding of properties at molecular level, and quan-
titative structure–property relationships (QSPRs) provide the framework for this. This framework
is commonly used to study the properties of molecules in ILs as an environment. The opposite
situation where the property is considered as a function of the ionic liquid does not exist. The aim of
the present study was to supplement this perspective with new knowledge and to develop QSPRs
that would allow the understanding of molecular interactions in ionic liquids based on the structure
of the cationic moiety. A wide range of applications in electrochemistry, separation and extraction
chemistry depends on the partitioning of solutes between the ionic liquid and the surrounding
environment that is characterized by the gas-ionic liquid partition coefficient. To model this property
as a function of the structure of a cationic counterpart, a series of ionic liquids was selected with a
common bis-(trifluoromethylsulfonyl)-imide anion, [Tf2N]−, for benzene, hexane and cyclohexane.
MLR, SVR and GPR machine learning approaches were used to derive data-driven models and
their performance was compared. The cross-validation coefficients of determination in the range
0.71–0.93 along with other performance statistics indicated a strong accuracy of models for all data
series and machine learning methods. The analysis and interpretation of descriptors revealed that
generally higher lipophilicity and dispersion interaction capability, and lower polarity in the cations
induces a higher partition coefficient for benzene, hexane, cyclohexane and hydrocarbons in general.
The applicability domain analysis of models concluded that there were no highly influential outliers
and the models are applicable to a wide selection of cation families with variable size, polarity and
aliphatic or aromatic nature.

Keywords: Ionic liquid; QSPR; gas-ionic liquid partition coefficient; molecular interactions; support
vector regression; gaussian process regression; multiple linear regression

1. Introduction

Ionic liquids (ILs) are a special class of chemical compounds that consist of ions and
commonly refer to organic salts with a low melting point [1]. The combination of exclusive
properties of ionic liquids, such as extremely low vapor pressure, high polarity and thermal
stability, has been a major incentive behind their study as solvents and electrolytes in
synthesis [2–4], catalysis [2,5,6], electrochemistry [7–14], extraction and separation chem-
istry [4,15–21] and in many other applications [22–26]. Applications of ionic liquids often
involve complex molecular systems where IL is in contact with other organic compounds.
For such systems, the gas-ionic liquid partition coefficient is an important measure that
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characterizes the distribution of an organic compound between an ionic liquid and the
surrounding environment [27]. In order to optimize partition coefficients for specific appli-
cations, new ionic liquids are continuously produced [28–33]. Thereby, characterizing the
influence of the ionic counterparts of the IL and constructing gas-ionic partition coefficient
models based on the molecular structure of ion counterparts is essential in order to design
application-targeted ionic liquids as rapidly, cost-effectively and as precisely as possible.

The gas-ionic liquid partition coefficient, K, quantifies the distribution of a chemical
compound between a gas phase and an ionic liquid [34]:

K =
cIL
cG

, (1)

where cG and cIL are compound concentrations in the gas phase and the ionic liquid,
respectively. The partition coefficient is often provided in the logarithmic form, log K. The
coefficient can be calculated from inverse gas-liquid chromatography (GLC) experiments
as the ratio of the carrier gas volume used for solute elution to the stationary liquid phase
volume. Experimental methods for finding K are laborious, costly, slow and require ample
amounts of sufficiently pure compounds. Extensible screening efforts of compounds with
application-suited log K are enabled using theoretical and computational approaches, such
as quantitative structure–property relationships (QSPRs).

The literature shows that log K has been mostly modeled as a function of structure
of organic compounds partitioning between gas and ionic liquid. Examples include the
more commonly known Abraham solvation model [35–45] and a selection of linear and
non-linear QSPR approaches [46,47]. Our recent research effort in this direction concen-
trated on modeling the gas-ionic liquid partition coefficient of a large variety of organic
compounds in three ionic liquids [48]. We have previously developed a series of gas-liquid
partition coefficient models for a general treatment of solubility in traditional organic
solvents [49–52]. In another study, we modeled gas-liquid partition coefficients in methanol
and ethanol [53]. The series of research has shown that QSPR approaches that employ
theoretical molecular descriptors to study gas-liquid partition coefficients have been suc-
cessful for many applications involved in physico-chemical [54,55], toxicological [56–58],
biomedical [59,60] and material properties [61,62]. However, models for log K prediction in
the scientific literature involving the ionic liquid’s molecular structure are incredibly sparse,
with the only example being the ion-specific Abraham model [45]. Generally, QSPR-s
concentrate on predicting the partitioning capacity of organic solvents within a specific
ionic liquid [35–44,46,47]. These modeling efforts provide an understanding of partitioning
interactions from the perspective of organic compounds, while the ionic liquid remains
constant. On the other hand, it is equally important to understand the influence of ionic
liquid structure on the partitioning properties. Thereby, characterizing the influence of the
ionic counterparts of the IL and constructing gas-ionic partition coefficient models based
on the molecular structure of ion counterparts are essential to design application-targeted
ionic liquids as rapidly, cost-effectively and as precisely as possible. The present study
tests the hypothesis that log K can also be modeled based on the partial structure of the
ionic liquid. Advances in this computational modeling direction are beneficial to the ionic
liquid research and development community, because such models improve the general
understanding of ILs and help to design novel ILs while saving time and costs by reducing
the need for experiments.

The study concentrates on modeling the gas-ionic liquid partition coefficients for three
organic compounds hexane, cyclohexane and benzene in the series of ionic liquids with
common bis(trifluoromethylsulfonyl)imide ([Tf2N]−) anion using linear and non-linear
QSPR methods. [Tf2N]+ ILs are being extensively studied for various applications, for
example as a media for supercapacitors [63], a heavy metal adsorbent [64], an anticancer
agent [65] and gas solvent in sensors [66] among many other applications [67–69]. Variation
in ionic counterpart makes it possible more specifically to understand how molecular
interactions of partitioning by the ionic liquid and how to enable finding the application-
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appropriate ionic liquid. Hexane, cyclohexane and benzene are commonplace organic
compounds, more specifically, hydrocarbons having the same number of carbon atoms but
different molecular flexibility, saturation and a lack of electronegative atoms. Modeling
the log K of these compounds in various ionic liquids with a constant anion allows charac-
terizing the contributions of the structural properties of the IL cation with respect to three
incrementally different solute environments. The interpretation of linear and non-linear
QSPR models makes it possible to distinguish the main structural components of an ionic
liquid and an organic solute that influence distribution between them.

2. Results

The optimal linear and non-linear (hyperparameters in Table 1) models found for
hexane and cyclohexane data series showed cross-validated r2 values in the range 0.89
. . . 0.93. The linear and non-linear models for the benzene data series resulted in cross-
validated r2 values in the range 0.72 . . . 0.85. The RMSE values for all models are within
0.05 to 0.11. All models include three to five parameters and the individual training and
cross-validation statistics show high predictive capability on all validation folds (Table 2),
which can also be seen from the experimental to predicted log K plots (Figures 1–3).

Table 1. Hyperparameters of the SVR and GPR final models.

C ε γ

SVRh 1 0.001 auto

SVRc 5 0.001 0.1

SVRb 1 0.001 scale

Sigma_0 Noise_Level Length_Scale

GPRh 0.478 0.00947 3.7

GPRc 0.364 0.00888 9.52

GPRb 3.13 0.00215 2.91

Table 2. Statistical parameters of final linear and non-linear models on all cross-validation folds.

R2 RMSE CCC

MLRh SVRh GPRh MLRh SVRh GPRh MLRh SVRh GPRh

train 0.944 0.966 0.957 0.092 0.071 0.080 0.971 0.982 0.978

test 0.919 0.926 0.924 0.101 0.098 0.097 0.960 0.957 0.957

MLRc SVRc GPRc MLRc SVRc GPRc MLRc SVRc GPRc

train 0.915 0.946 0.940 0.102 0.081 0.085 0.955 0.972 0.969

test 0.891 0.910 0.903 0.110 0.097 0.097 0.942 0.953 0.950

MLRb SVRb GPRb MLRb SVRb GPRb MLRb SVRb GPRb

train 0.791 0.973 0.935 0.068 0.025 0.038 0.883 0.986 0.966

test 0.717 0.869 0.788 0.072 0.051 0.057 0.813 0.928 0.869
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Figure 1. Predicted vs. experimental log K scatter plots for each MLR model with training set ob-

servations in blue and validation set values in orange. Compounds are numbered in ascending log 

K order (Tables S1–S3). 

Figure 1. Predicted vs. experimental log K scatter plots for each MLR model with training set
observations in blue and validation set values in orange. Compounds are numbered in ascending log
K order (Tables S1–S3).
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Figure 2. Predicted vs. experimental log K scatter plots for each SVR model with training set
observations in blue and validation set values in orange. Compounds are numbered in ascending log
K order (Tables S1–S3).
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Figure 3. Predicted vs. experimental log K scatter plots for each GPR model with training set
observations in blue and validation set values in orange. Compounds are numbered in ascending log
K order (Tables S1–S3).
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2.1. Models for Hexane in [Tf2N]– Ionic Liquids

The final MLR model (Equation (2) of log K for hexane in [Tf2N]− ionic liquids (MLRh)
contained five molecular descriptors and had a cross-validation r2

cv10 of 0.919. The selected
descriptors included the following: VE2_A (average coefficient of the last eigenvector from
the distance matrix), AATS7s (averaged Moreau–Broto autocorrelation of lag 7 weighted
by intrinsic state), ATSC0s (centered Moreau–Broto autocorrelation of lag 0 weighted by
intrinsic state), AATSC2dv (averaged and centered Moreau–Broto autocorrelation of lag
2 weighted by valence electrons) and Xpc-4d (4-ordered Chi path-cluster weighted by
sigma electrons).

log K = 1.417

− 0.326 VE2_A

− 0.089 AATS7s (2)

− 0.126 ATSC0s

+ 0.06 AATSC2dv

− 0.133 Xpc-4d

The optimal five-parameter SVR model for hexane in [Tf2N]– ionic liquids (SVRh)
showed a cross-validation r2

cv10 of 0.926, which is slightly higher than the statistics of
the linear model. The selected molecular descriptors all were different in comparison
with MLR model: SMR_VSA5 (sum of Crippen–Wildman molar refractivity of atoms with
van der Waals surface area 2.45–2.75), AATSC0s (averaged and centered Moreau–Broto
autocorrelation of lag 0 weighted by intrinsic state), SpMAD_D (spectral mean absolute
deviation from distance matrix), AATS6m (averaged Moreau–Broto autocorrelation of lag
6 weighted by mass) and Xc-5d (5-ordered Chi cluster weighted by sigma electrons).

In the GPR model for hexane in [Tf2N]− ionic liquids (GPRh), the optimal model
was found at four parameters with a cross-validation coefficient of determination r2

cv10 of
0.924. Two of the molecular descriptors (SMR_VSA5, Xpc-4d) in the model were the same
as in SVR and MLR models, respectively. The other two descriptors did not occur before:
GATS1s (Geary coefficient of lag 1 weighted by intrinsic state) and ATSC1are (centered
Moreau–Broto autocorrelation of lag 1 weighted by Allred–Rochow EN).

2.2. Models for Cyclohexane in [Tf2N]– Ionic Liquids

In the optimal MLR model (Equation (3)) for cyclohexane in [Tf2N]– ionic liquids
(MLRc), cross-validation r2

cv10 was calculated to be 0.891. The model consisted of four
descriptors: VE2_A, GATS7Z (Geary coefficient of lag 7 weighted by atomic number),
ATSC0s and Xpc-4d.

log K = 1.808

− 0.329 VE2_A

− 0.101GATS7Z (3)

− 0.153 ATSC0s

− 0.126 Xpc-4d

The optimal SVR model derived for cyclohexane in [Tf2N]− ionic liquids (SVRc)
showed a cross-validation r2

cv10 of 0.910. The four descriptors in the model were SMR_VSA5,
Xc-5d, AATSC0s and AATS7m (averaged Moreau–Broto autocorrelation of lag 7 weighted
by mass).

Using five descriptors, the GPR model for cyclohexane in [Tf2N]– ionic liquids (GPRc)
achieved a cross-validation r2

cv10 of 0.903. The model consisted of molecular descrip-
tors that were not present in previous models: SLogP (Wildman–Crippen LogP), Xpc-4dv
(4-ordered Chi path-cluster weighted by valence electrons), AATS0s (averaged Moreau–
Broto autocorrelation of lag 0 weighted by intrinsic state), MATS8c (Moran coefficient of
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lag 8 weighted by Gasteiger charge) and AATSC6se (averaged and centered Moreau–Broto
autocorrelation of lag 6 weighted by Sanderson electronegativity).

2.3. Models for Benzene in [Tf2N]– Ionic Liquids

Regarding the MLR model for benzene in [Tf2N]− ionic liquids (MLRb), the optimal
model (Equation (4)) is characterized by a cross-validation r2

cv10 of 0.717. Using the OMP
algorithm, three descriptors were selected for the model: AATS0s (averaged Moreau–Broto
autocorrelation of lag 0 weighted by intrinsic state), GATS2dv (Geary coefficient of lag
2 weighted by valence electrons) and GATS3m (Geary coefficient of lag 3 weighted by mass).
None of them were present in the model for two other hydrocarbons.

log K = 2.791

− 0.131 AATS0s (4)

− 0.055 GATS2dv

− 0.042 GATS3m

In the case of the SVR model for benzene in [Tf2N]− ionic liquids (SVRb), however,
the four-parameter model showcased a cross-validation r2

cv10 of 0.851. The model included
different set of the descriptors: Mi (mean of constitutional weighted by ionization po-
tential), ATSC1s (centered Moreau–Broto autocorrelation of lag 1 weighted by intrinsic
state), GATS2pe (Geary coefficient of lag 2 weighted by Pauling electronegativity) and
AATSC8i (averaged and centered Moreau–Broto autocorrelation of lag 8 weighted by
ionization potential).

The three-parameter GPR model for benzene in [Tf2N]– ionic liquids (GPRb) had a
cross-validation r2

cv10 of 0.788 with the descriptors AATSC0s, GATS3Z (Geary coefficient
of lag 3 weighted by atomic number) and MDEC-12 (molecular distance edge between
primary C and secondary C).

3. Discussion
3.1. Descriptors Interpretation

The interpretation of descriptors selected into the final models allows the analysis of
the molecular structural factors that influence the gas-ionic liquid partition and interactions
influenced by the cationic counterparts. The relative importance and influence of individual
descriptors were analyzed using standardized regression coefficients in multiple linear
regression models (Equations (2)–(4)), and the permutation importance was used for
the descriptors chosen for the linear and non-linear models (Table 3). The variation in
structure of cationic counterpart and the influence to the solvent properties of ILs can be
understood in the context of major solute–solvent intermolecular interactions. The grouping
of molecular descriptors according to the related solvent-solute interactions [4] (Table 4)
allows generalizing which structural properties of the cation in the IL are relevant in the
final models and can be optimized in looking for IL with a new constitution. This grouping
considers the following major solute–solvent interaction mechanisms: dispersion forces
related to molecule size, shape and polarizability; Coulomb and dipolar interactions related
to cation counterpart charge distribution; and hydrogen bonding interaction related to the
presence of functional groups capable of hydrogen bonding. The MLR model regression
coefficient analysis allows a detailed look into the relationships between the log K and
molecular descriptors, and linking this to the solvent–solute interaction provides means
to gain knowledge on partition mechanism. Analogously, the SVR and GPR descriptor
permutation importance analysis provides the opportunity to examine the associations
between the selected descriptor, log K and major solvent–solute interaction.
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Table 3. Standardized regression coefficients of descriptors for linear models and permutation
importance of descriptors for linear and non-linear models. Between the models, the columns are
attributed to the same or similar descriptor where possible.

Model Descriptors: Standardized Regression Coefficients

MLRh
VE2_A AATS7s ATSC0s AATSC2dv Xpc-4d

−0.326 −0.089 −0.126 0.060 −0.133

MLRc
VE2_A GATS7Z ATSC0s Xpc-4d

−0.329 0.101 −0.153 −0.126

MLRb
GATS3m AATS0s GATS2dv

−0.042 −0.131 −0.055

Permutation Importances

MLRh
VE2_A AATS7s ATSC0s AATSC2dv Xpc−4d

1.43 0.096 0.214 0.048 0.237

MLRc
VE2_A GATS7Z ATSC0s Xpc-4d

1.79 0.156 0.376 0.264

MLRb
GATS3m AATS0s GATS2dv

1.50 0.272 0.166

SVRh
SMR_VSA5 AATS6m AATSC0s Xc-5d SpMAD_D

0.324 0.155 0.422 0.189 0.351

SVRc
SMR_VSA5 AATS7m AATSC0s Xc-5d

1.04 0.0938 0.226 0.237

SVRb
Mi AATSC8i ATSC1s GATS2pe

0.837 0.218 0.511 0.319

GPRh
SMR_VSA5 GATS1s ATSC1are Xpc-4d

1.92 0.0472 0.476 0.564

GPRc
SLogP MATS8c AATS0s AATSC6se Xpc-4dv

1.33 0.0664 0.254 0.0129 0.513

GPRb
MDEC-12 GATS3Z AATSC0s

0.638 0.985 1.01
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Table 4. Descriptor structural contribution and related solvent interaction based on descriptor
analysis.

Solvent Interaction Main Structural
Contribution Descriptors

MLR SVR GPR

Dispersion Forces
(molecule size,

polarizability and
molecule shape)

Atom count/
chain length

VE2_A,
GATS3m SpMAD_D, Mi * MDEC-12,

GATS3Z

Molecule surface
area SMR_VSA5 SMR_VSA5

Branching
Xpc-4d,

AATSC2dv,
GATS2dv

Xc-5d Xpc-4d,
Xpc-4dv

Lipophilicity SLogP

Coulomb and
Dipolar Interactions

(Charge/electron
cloud distribution)

Gasteiger charge MATS8c

Electronegativity
Mi *,

AATSC8i,
GATS2pe

ATSC1are,
AATSC6se

Bond order AATSC2dv,
GATS2dv

Heteroatoms/hydrogen
bonding atoms

AATS7s,
AATS0s,
ATSC0s,
GATS7Z,
ATSC0s

AATSC0s,
AATS6m,
AATS7m,
AATSC8i
ATSC1s

GATS1s,
AATS0s,

AATSC6se,
AATSC0s

Hydrogen Bonding
(Presence of HB

capable hetero atoms)

* descriptors that relate to multiple structural contributions.

3.2. Linear Models Descriptors

Linear models for hexane (MLRh) and cyclohexane (MLRc) are very similar. They
have three common descriptors: VE2_A, ATSC0s and Xpc-4d. All these three descriptors
have negative regression coefficients (Equations (2) and (4)) with similar values when
compared between these models. The descriptor with the highest regression coefficient
value is VE2_A, which is inversely proportional to the size of a molecule and related to
dispersion forces (Figure S1). The Xpc-4d descriptor is influenced on the extent of branching
in the cation, which is also related to its size and shape (Figure S3), and it has a negative
regression coefficient, suggesting that higher log K value is associated with less branching.
When comparing two molecules with identical atom counts, a higher extent of branching
will decrease the surface area of the molecule and, therefore, will weaken intermolecular
dispersion force interactions. The significance of dispersion force interactions in linear
models is expected because both hexane and cyclohexane are non-polar molecules and,
therefore, exhibit the hydrophobic effect towards polar groups in the cations of the ILs.
That could explain the strong influence of the dispersion interaction and higher relative
solubility of hexane and cyclohexane in the IL with lower Xpc-4d values. The importance
of hydrophobic effects is further supported by the negative regression coefficient of the
autocorrelation descriptor ATSC0s, which has the highest values for hydroxyl and cyano
functionalized cations, followed by the cations with the ether group (Figure S2). Therefore,
the ATSC0s descriptor values are higher for cations with polar groups and due to a negative
regression coefficient, the model predicts lower log K values for hydrogen-bonding capable
polar cations.

The remaining descriptors with slightly lower regression coefficients (Equations (2) and (4))
in the hexane and cyclohexane models were AATSC2dv, AATS7s and GATS7Z. The AATS7s
(Equation (2), Figure S5) and GATS7Z (Equation (4), Figure S6) descriptors are similar and
their values are lowest for small cations, because the calculation of the distance matrix
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for a cation requires atom pairs with seven or more bonds apart to produce non-zero
descriptor values. These descriptors characterize different structural aspects, where the
AATS7s descriptor values are highest for aromatic and hydroxyl group-containing cations,
while the GATS7Z descriptor values are highest for cations with long alkyl chains, ethers
and aromatic cations. The AATSC2dv with a positive regression coefficient (Equation (2))
is also higher for aromatic cations (Figure S4). Therefore, the contribution of AATS7s and
AATSC2dv descriptors is reduced for aromatic cations due to opposite signs in the MLRh
model (Equation (2)). The higher values of the AATS7s for alcohol further support the
prediction of lower values for cations with polar functional groups in the MLRh model.

In the linear model for benzene in [Tf2N]− ILs (MLRb), the most influential descriptor
based on the standardized regression coefficient was AATS0s. The descriptor is based
on the average intrinsic electrotopological state [70], which increases due to O and N
atoms, and from atoms with more attached hydrogens and greater bond order in the cation
(Figure S7). It follows that the smaller cations with hydroxyl, cyano and ester functional
groups and π-systems have the largest values. Due to its negative regression coefficient
(Equation (4)), the model predicts lower log K values for cations with functional groups
that exhibit hydrogen bonding and stronger dipolar interaction. This descriptor is also
present in the previous two models with negative regression coefficients. The GATS2dv
and GATS3m had also negative standardized coefficients in the MLRb model (Equation (4)).
The GATS2dv descriptor values were lower for cations with aromatic π-systems and high
bond order groups (Figure S8). This appears to reduce the contribution from the AATS0s
descriptor value for such cations. Additionally, a trend for cations with a shorter alkyl chain
and otherwise identical structure showed increases in the GATS2dv value (for example
[HexylMPip]+ < [PentylMPip]+ < [ButylMPip]+). In that light, GATS2dvs in combination
with the AATS0s descriptor have a compound effect for cations with π-systems. The
descriptor also takes into account the dispersion force-related alkyl chain length, which
results in a slightly higher predicted log K value for cations with longer alkyl chains.
GATS3m characterized the same dispersion force-related alkyl chain length contribution
effect as discussed for the GATS2dv descriptor. Furthermore, cations with the longest
alkyl side chains typically had the smallest GATS3m values with a few exceptions, such as
phosphoniums (Figure S9). Moreover, this further evidences the negative correlation of the
GATS3m descriptor relative to the dispersion force strength.

3.3. SVR Models Descriptors

The final SVR models for hexane (SVRh) and cyclohexane (SVRc) in [Tf2N]− ILs
are similar in terms of the selected descriptors. The SMR_VSA5, AATSC0s and Xc-5d
descriptors are common in both models. In addition, the AATS6m descriptor in SVRh and
AATS7m in SVRc have almost identical calculation schemes. The SMR_VSA5 (Figure S10)
and SpMAD_D (Figure S15) descriptors selected for the SVRh model are both proportional
to the cation’s size. In addition, SMR_VSA5 is based on molar refractivity, which is directly
related to polarizability. Consequently, the descriptors are related to dispersion force
strength, which has a strong influence in the model. Both descriptors are among the top
three descriptors with the highest permutation importance scores (Table 3). Similarly, the
permutation importance of the SMR_VSA5 descriptor in the SVRc model is the highest. In
the SVRh and SVRc models, the AATSC0s descriptor is also among the top three influential
descriptors. This descriptor is highly correlated with the AATS0s and ATSC0s descriptors
selected in the linear models. Therefore, the AATSC0s (Figure S11) descriptor characterizes
the hydrogen bonding capability and dipolar interaction strength of the cationic part in ILs.
The Xc-5d descriptor in the SVRh and SVRc models has a value of 0 for most cations in the
data sets, and it identifies molecules with two bonded high branching atoms (Figure S12).
Therefore, it characterizes branching in the cation and could relate to dispersion forces.
The AATS6m (Figure S13) in SVRh and AATS7m (Figure S14) in SVRc descriptors identify
regions of the cation with higher average atomic mass among adjacent atoms, which is
influenced by the presence of heteroatoms and the proportion of hydrogens in the cation,
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relating to hydrogen bonding and dipolar interaction forces. The proportion of hydrogens
decreases with longer alkyl chains as also evidenced by the increasing descriptor values for
[M3BAm]+ < [HexM3Am]+ < [M3OAm]+, meaning that the descriptor values also relate to
dispersion interaction strength in some parts.

The SVRb model descriptor’s permutation importance decreased in the order of
Mi > ATSC1s > GATS2pe > AATSC8i (Figures S16–S19). The Mi descriptor is the sum of
atomic contributions of ionization potentials, divided by the ionization potential of car-
bon. The descriptor is normalized by the atom’s count in the cation. Its values have a
low variance from 1.111 to 1.162 (Figure S16). The descriptor is also influenced by cation
sizes, where the smallest cations have the largest descriptor value, and cations with shorter
alkyl side chains have higher Mi values. Consequently, the descriptor could take into
account both cation size and charge distribution, where the size is related to the dispersion
interaction strength, and the presence of hetero atoms is related to dipolar interactions. The
second largest importance was for the ATSC1s descriptor, which has a similar calculation
scheme with the ATSC0s and AATSC0s descriptors. This descriptor identifies parts of the
cation with hydrogen bonding capability and higher dipolar action strength (Figure S17).
The lower importance descriptors AATSC8i and GATS2pe are based on atom ionization po-
tential and the Pauling electronegativity, respectively. The AATSC8i descriptor (Figure S19)
is calculated from atomic ionic potentials as Mi descriptor and could account for similar
molecular interactions. The GATS2pe descriptor identifies parts of the molecule with high
differences in Pauling electronegativity over a two-bond distance within the molecule.
Smaller descriptor values are characteristic for aromatic heterocyclic cations, and larger
values for ammoniums or aliphatic heterocyclic cations. The GATS2pe descriptor could,
therefore, account for the effect of the cation family.

3.4. GPR Models Descriptors

The SMR_VSA5 and Xpc-4d descriptors of the GPRh model, which were already
discussed earlier, had the highest permutation importance in the model and are related the
model prediction to dispersion interaction strength. GATS1s (Figure S20) separates different
cation families and groups the aromatic cations close together and the aliphatic heterocyclic
cations close together. This descriptor could account for interactions that differ between
the cation families. The ATSC1are (Figure S22) is based on Allred–Rochow electronegativity
between adjacent atoms [71,72]. Consequently, it could identify polar bonds in the cations
and act as a measure of dipolar interaction strength.

The highest permutation importance descriptor SLogP (Figure S22) in the GPRc model
is a measure of the lipophilicity of the cations. Lipophilicity and hydrophobicity of the
cation could play a considerable role in the solubility properties of the IL. According to the
permutation importance value, the next most important descriptor was Xpc-4dv (Figure
S23), which identifies path-clusters in the cations and relates to extent of branching similarly
to Xpc-4d. Moreover, the descriptor similarly accounts for structural features related to the
dispersion interaction. In addition, Xpc-4dv seems to separate different cation families and
has lower values for aromatic heterocyclic cations. The AATS0s descriptor has the third
highest importance and appeared in the MLRb model. Therefore, the descriptor could relate
to hydrogen bonding capability and dipolar interaction strength in this model. The other
descriptors AATSC6se and MATS8c (Figures S24 and S25) had relatively low permutation
importance, about 1–2 factors of ten smaller than for SLogP and consequently the descriptors
are less impactful. Only a few cations have non-zero and non-negligible AATSC6se values
and the MATS8c values are in a small range from −0.52 to 0.152. AATSC6se considers the
Sanders electronegativity of atoms and the MATS8c is based on Gasteiger charge. Both
descriptors might account for dipolar interaction capability of the cation to some length.

In the GPRb model, the highest permutation importance was achieved by AATSC0s,
which similarly in previous analysis could account for hydrogen bonding and dipolar
interaction capability of the cation. GATS3Z (Figure S26) had a similar permutation impor-
tance to AATSC0s and is almost identical to the GATS3m descriptor, which appeared in the
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MLRb model. Based on the GATS3m analysis, GATS3Z could account for dispersion force
strength. Lastly, MDEC-12 (Figure S27) had a slightly lower permutation importance in the
model. The calculation is based on distance between primary and secondary carbon pairs
in the cation graph. Generally, more such pairs in the cation accumulate towards a bigger
descriptor value. Cations with long alkyl chains have the largest values. Consequently, the
descriptor relates to cation size and accounts for dispersion force strength in the model
as well.

3.5. Comparison of Models for Different Solutes in [Tf2N]– ILs

The interpretation of the descriptors selected into linear and non-linear models indi-
cates some similarities and differences in the relative importance of the major solvent-solute
interactions with respect to log K. All the models have descriptors that relate to dispersion
forces, Coulomb and dipolar interactions, and hydrogen bonding capability (Table 4). Based
on the linear models, the descriptors with highest standardized regression coefficient were
related to dispersion forces in the case of hexane and cyclohexane. For the benzene linear
model, the highest but negative regression coefficient was for AATS0s, for which its value
was the largest for the smaller cations with hydroxyl, cyano and ester functional groups and
π-systems. The relation to dipolar interactions and hydrogen bonding was more important
in the case of benzene considering linear models. As for the log K value, based on descriptor
interpretation, the log K prediction for all linear models was positively correlated with
dispersion interaction capability and negatively correlated with dipolar interactions and
hydrogen bonding means. A similar conclusion can be derived from the interpretation
of permutation of descriptors of non-linear models, where the dispersion force related
descriptors had the highest permutation importance for hexane and cyclohexane. Moreover,
for benzene, the dipolar interaction counterpart descriptors had the highest permutation
importance. Over all models, the more sizable, non-polar and lipophilic cations with longer
alkyl chains and less aromaticity are predicted to have higher log K. Structurally, hexane
and cyclohexane are more flexible molecules while benzene is more rigid. Consequently,
hexane can acquire an optimal conformation in the IL environment, while cyclohexane is
less flexible in that sense and benzene has even fewer degrees of freedom. The interactions
related to lipophilicity are affected by packing density of interacting molecules. The de-
scriptors selected for hexane and cyclohexane models had some emphasis on lipophilicity
and the GPRc model even contained SLogP, which is a direct measure of lipophilicity.
Regarding the higher relative importance of dipolar interaction capability of the cation in
benzene models, a possible interpretation is that the benzene–cation interaction might be
more sensitive to polar groups present in the cation than for hexane and cyclohexane. Since
the solute is competing with anion–cation interactions in the solution, the anion–cation
interaction, which changes between the cations, could instead be weaker to produce a
higher solubility. Consequently, based on the descriptor interpretation, the larger and
non-polar cations exhibit a weaker ion-cation interaction and by that induce the increase in
the log K of the solute.

3.6. Analysis of Outliers

The applicability domain of the MLR models was analyzed using an influence plot
(Figures 4–6) of standardized residuals against leverage values, where the size of points
scales with Cook’s distance. On this plot horizontal and vertical lines identify thresholds
for determining the moderate and high influence outliers. All Cook’s distance values were
less than 1.0 indicating that the models do not contain highly influential outliers.

The number of data points with residuals of amplitude 2.0 or more standard deviations
was roughly within the expected amount of 5% for the data set sizes. Normally distributed
data with 60 samples are expected to contain about three such data points and residual
analysis showed that all the linear models had four instances of residual amplitudes higher
than 2.0.
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Based on the model diagnostics and 10-fold cross-validation, these linear models
are applicable for accurately predicting partition coefficients of hexane, cyclohexane, and
benzene in the ionic liquids with the [Tf2N]− anion. Overall, CCC (Table 2) evidenced
that all the optimal models have potentially good predicting capabilities when applied to
unforeseen data.
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by the Cook’s distance (Di) value for the point. Cations are numbered in ascending log K order
(Tables S1–S3).



Int. J. Mol. Sci. 2022, 23, 7534 16 of 28Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 16 of 30 
 

 

 

Figure 6. Influence plot for the benzene MLR model. The dotted horizontal lines distinguish pos-

sible outliers and vertical lines the high-leverage compounds. The point size is determined by the 

Cook’s distance (Di) value for the point. Cations are numbered in ascending log K order (Tables S1–

S3). 

The leverage values for the MLRh model (Figure 4) indicate four high leverage cat-

ions (Table 5): (1) [PrOHMMorp]+, (8) [4-CNBPy]+, (6) [C1,9(M2iPAm)2]2+ and (3) 

[EtOHM3Am]+. [PrOHMMorp]+ and [EtOHM3Am]+ are two out of the four alcohols in the 

data set and they also had relatively low log K values compared to the rest. In contrast to 

these similarities, the high leverage compounds were relatively unique to the data set. 

[PrOHMMorp]+ was one of the two morpholiniums and [C1,9(M2iPAm)2]2+ is also exclu-

sive by being the only di-cation. Meanwhile, [4-CNBPy]+ is one out of the two cyano 

functionalized cations. Among the moderate leverage ILs were (2) [EtOHMIm]+, (5) 

[1-PrOHPy]+, (40) [TDC]+ and (16) [Et3S]+ (Table 5). The trend might imply that alcohols in 

the hexane series have some leverage on the model. However, two out of the four alco-

hols had low internally standardized residuals. Both [Et3S]+ and [TDC]+ have rare struc-

Figure 6. Influence plot for the benzene MLR model. The dotted horizontal lines distinguish possible
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distance (Di) value for the point. Cations are numbered in ascending log K order (Tables S1–S3).

The leverage values for the MLRh model (Figure 4) indicate four high leverage cations
(Table 5): (1) [PrOHMMorp]+, (8) [4-CNBPy]+, (6) [C1,9(M2iPAm)2]2+ and (3) [EtOHM3Am]+.
[PrOHMMorp]+ and [EtOHM3Am]+ are two out of the four alcohols in the data set and
they also had relatively low log K values compared to the rest. In contrast to these similari-
ties, the high leverage compounds were relatively unique to the data set. [PrOHMMorp]+

was one of the two morpholiniums and [C1,9(M2iPAm)2]2+ is also exclusive by being the
only di-cation. Meanwhile, [4-CNBPy]+ is one out of the two cyano functionalized cations.
Among the moderate leverage ILs were (2) [EtOHMIm]+, (5) [1-PrOHPy]+, (40) [TDC]+

and (16) [Et3S]+ (Table 5). The trend might imply that alcohols in the hexane series have
some leverage on the model. However, two out of the four alcohols had low internally
standardized residuals. Both [Et3S]+ and [TDC]+ have rare structural properties in the data
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set, where [Et3S]+ is the only sulfonium and [TDC]+ is the only cycloalkanylium and the
only carbon cation, which could explain their moderate influence on the model.

Table 5. Structures and abbreviations of cations.

[PrOHMMorp]+
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The residual analysis determined four moderate or high residual cations for the
MLRh model. The moderate residual cations were (16) [Et3S]+, (13) [BzMPyrr]+ and (5) [1-
PrOHPy]+, and the (1) [PrOHMMorp]+ cation had a high negative internally standardized
residual. The moderate residual [Et3S]+ cation was already indicated as a unique sulfonium
in the leverage diagnosis, and it is also one of the smallest cations in the entire data
series. The cations indicated by the residual analysis of the influence plot do not share
an overarching common structural theme. The Cook’s distance values of the potentially
influential data points were all below 1.0, where the [PrOHMMorp]+ cation had the highest
Cook’s distance of 0.65. The [PrOHMMorp]+ log K value for hexane was the lowest out of
all experimental log K values in the study, where the next lowest was [EtOHMIM]+ cations
that were three-times higher experimental result. This makes the [PrOHMMorp]+ cation a
significant outlier in terms of the provided experimental values and might explain why it
has the most influence on the hexane MLR model.

The cations with a moderate leverage in the MLRc model (Figure 5) were (1) [PrOHMMorp]+,
(2) [CNMeM2iPAm]+, (3) [(Meo)2Im]+, (4) [EtOHM2iPAm]+, (6) [EtOHM3Am]+ and the
(7) [C1,9(M2iPAm)2]2+ had highest leverage. Similarly to the hexane series, a common struc-
tural property of the significant leverage compounds is the presence of the hydroxyl group.
Since the MLRh and MLRc models contained descriptors that account for similar structural
properties, a similar pattern could be expected. [EtOHM2iPAm]+ and [EtOHM3Am]+ have
a similar structure while being relatively small cations compared to the rest. In regards
to the high leverage [C1,9(M2iPAm)2]+, the only di-cation can be expected to have unique
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interaction relative to cyclohexane molecules and the [Tf2N]- counteranion that the linear
model might not encapsulate so well.

Based on the residual analysis, the moderate residual cations were (9) [MeoeMMorp]+,
(13) [BzPy]+ and (48) [M3BAm]+. Similarly to the hexane model, the (1) [PrOHMMorp]+

cation showed a high residual. Evidently, both of the morpholiniums appeared among
the significant residual cations. The [PrOHMMorp]+ log K value for cyclohexane was
again the lowest out of all experimental log K values in the cyclohexane data series. This
might indicate that some structural features of the morpholiniums or interaction with
its environment are more difficult to capture with the descriptors selected in the linear
model. Other high residual cations for the MLRc model do not resemble a common
structural theme.

From the leverage analysis of the influence plot for MLRb model (Figure 6), the
following significant leverage cations were found: (2) [EtOHMIm]+, (26) [4-CNBPy]+, and
(29) [Et3S]+. [Et3S]+ indicated the highest leverage and previous analysis already turned its
attention to its rare structure with a sulfonium cation and small size, which could explain
its possible influence here as well. The moderate leverage cations could have leverage due
to hydroxyl ([EtOHMIm]+) and cyano ([4-CNBPy]+) functionalizations. No other common
structural features are obvious and the Cook’s distances show that the significant leverage
cations for the MLRb model are not highly influential.

An analysis of the internally standardized residuals for the MLRb model indicated
no high residuals and four moderate residual cations: (3) [PrOHMMorp]+, (7) [BzPy]+,
(8) [C1,9(M2iPAm)2]2+ and (26) [4-CNBPy]+. In the benzene data series, [PrOHMMorp]+

had the third-lowest log K value, which could explain its moderate residual. Secondly,
the moderate residual of [C1,9(M2iPAm)2]2+ could be due to its unique di-cation nature.
Furthermore, [4-CNBPy]+ is one out of the only two cyano functionalized cations used
for the MLRb model, which might be the reason for its moderate residual. The residual
analysis did not indicate a distinct pattern in the possible outliers for the benzene series and
the Cook’s distances were all below 1.0, which demonstrates no highly influential outliers.

4. Materials and Methods
4.1. Data Set

The data set comprised three series of experimental gas-ionic liquid partition co-
efficients (log K) measured at 298 K for benzene, hexane and cyclohexane in various
ionic liquids where bis(trifluoromethylsulfonyl)imide ([Tf2N]–) was the common anion
(Tables S1–S3, Supplementary Material) [42,73–109]. These three data series had similar
sizes with 57, 60 and 60 partition coefficients for hexane, cyclohexane and benzene, respec-
tively. In addition, all three data series consisted of the same cations, except the hexane data
set that did not have log K values for three cations. The cations of ionic liquids studied were
diverse in terms of their molecular structure, including different cation families, functional
groups, aliphatic or aromatic rings and aliphatic chain branching and length. Nearly half
the cations were either the imidazolium or ammonium cation families. More sparsely
represented were the pyrrolidiniums with 8, pyridiniums with 6 and piperidiniums with
5 cations, followed by other cation families with up to two representatives. Notable further
functionalized cations were the 6 ethers, 5 alcohols and the 2 nitriles. Experimental gas-
ionic liquid partition coefficient values ranged from 0.209 to 2.248 for hexane, 0.836 to 2.569
for cyclohexane and 2.395 to 3.001 for benzene.

4.2. Cation Structure and Data Series Preparation Workflow

The preparation of each data series for modeling followed a general workflow (sum-
marized in Figure 7) that consisted of SMILES [110] creation for the cation part of the
ionic liquid, descriptor generation, removal of redundant descriptors, standardization of
descriptor values and subdividing for cross-validation. The names of the cations were used
to create the corresponding SMILES representations. The molecular descriptors were calcu-
lated with the Mordred [71] library (version 1.1.1) that uses the rdkit [111] library (version
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2018.09.3). The calculation resulted in 1613 2D molecular descriptors for each cation, which
formed a cation-descriptor matrix. The redundant constant value descriptors and all but
one in sets of collinear descriptors were removed from the solutes cation-descriptor matrix.
The remaining descriptors were standardized to a mean of 0 and a standard deviation of 1.
In the resulting matrices, the cations were sorted in the ascending order by log K values.
Then, the cations were subdivided into ten folds where each fold consisted of every tenth
cation in the log K sorted matrix. The described partitioning scheme resulted in ten data sets
that contained evenly distributed partition coefficient values for 10-fold cross-validation.
As a result of the preparation, three cation-descriptor matrices for benzene, hexane and
cyclohexane all consisted of 1180 descriptors and 10-folds.
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Constant &
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Figure 7. Data series preparation workflow.
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4.3. Multiple Linear Regression

Multiple linear regression (MLR) is given by the linear combination of molecular
descriptors with a modeled property ŷ [112]:

ŷ = β0 + β1X1 + β2X2 + . . . + βkXk, (5)

where β0, β1, . . . , βk are regression coefficients and X1, X2, . . . , Xk are molecular descriptors.
The regression coefficients vector β̂ is regularly calculated using the ordinary least squares
method to minimize squared error [112]:

β̂ = (XTX)
−1

XTy, (6)

given experimental property values y and the molecular descriptor values of matrix X.
The orthogonal matching pursuit (OMP) algorithm is a bottom-up feature selection

algorithm that selects a feature into a linear model on each iteration based on the correlation
of the features to the residual of the linear model estimations [48,113]. OMP was used for
the selection of features (molecular descriptors) into MLR models. The OMP algorithm
is computationally efficient for the selection of descriptors that have a low correlation
between each other and therefore accounts for potentially more varied chemical information
with each selected descriptor. From the Scikit-learn [114] (version 0.24.2) library, the
OrthogonalMatchingPursuit class was used as the implementation of OMP.

The expansion of the search space of the OMP algorithm and improvements in the
selected combination of descriptors was achieved by iteratively expelling the highest corre-
lated descriptor to log K. In order to procure a wider selection of linear models using OMP,
after the initial selection, the descriptor with the highest correlation to log K was expelled
and OMP was applied again. This process was repeated until the highest correlation to
log K complied with R < 0.4. Out of the models with the same number of descriptors
found by the OMP algorithm, the one with the highest coefficient of determination was
deemed optimal. The number of descriptors selected started with one and the amount was
incremented until the model did not show significant improvement. In this case, significant
improvement was confirmed if the parameter with an extra descriptor corrected at least
20% of the prediction error according to the coefficient of determination.

4.4. Support Vector Regression

The support vector regression (SVR) algorithm solves a constrained optimization
problem to find the optimal set of training points xsv called the support vectors, the re-
gression coefficients, and the intercept in the SVR model [115]. The support vectors are
equidistant from the computed regression line and mark the margin boundary termed the
ε-tube around the regression line, where points outside the ε-tube are penalized in the
optimization expression.

The resulting model can account for non-linearity with respect to the features due to
transformations via the kernel function [116]. The kernel function maps training points
into higher dimensional space, which characterizes the similarity between two data points
and can be chosen according to the modeling problem. The linear, polynomial, radial basis
function (RBF) and sigmoid kernel are some of the commonly applied kernel functions.
The SVR algorithm involves hyperparameters C and ε, which influence the optimization
expression. The error penalization term C is generally chosen to be 1 but its value should
be configured with attention to the input data, as it influences how much the errors σi
penalize the optimization expression and in turn deviate the regression line. In addition to
C and ε, the chosen kernel function may contain additional hyperparameters; for example,
the RBF function can be tuned by changing a scale coefficient γ.

The Scikit-learn [114] (version 0.24.2) library SVR class and the RBF kernel were used
as SVR implementation. The prediction of the SVR model for a molecule with descriptors x
is as follows:

ŷ = ∑i∈SV αi K(xi, x) + b, (7)
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where α are the regression coefficients of the support vector training points, xi includes
descriptor values for the i-th support vector, K is the kernel function, and b is the intercept.

Descriptor selection for the SVR models followed a bottom-up scheme, where descrip-
tors were selected into the model based on the highest 10-fold cross-validated validation
coefficient of determination. After a new descriptor was selected into the model, all de-
scriptors were also substituted one by one until the model did not improve anymore from
any single parameter substitution. The concluded optimal model had its hyperparameters
C, ε and γ tuned by refitting with a combination of hyperparameters from a grid of prede-
termined values (Table 6). Whether a higher parameter model was considered better was
based on improvement in comparison to the optimal model with one less parameter. If the
higher parameter model corrected at least 20% of the prediction error, more parameters
were added until the model did not improve by 20% anymore.

Table 6. SVR hyperparameter tuning values.

C 0.001, 0.005, 0.1, 0.5, 1,5, 10, 50, 100, 500, 1000

ε 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0, 5.0, 10.0

γ 0.001, 0.005, 0.01, 0.05, 0.1, ‘auto’, ‘scale’

4.5. Gaussian Process Regression

In the Gaussian process regression (GPR) method, a distribution over functions is
defined using the training data, a covariance function and corresponding log K values [117].
The predictions from the fitted GPR model form a full predictive distribution with a mean
and standard deviation at every point of the input space [117]. The GPR model predicted
distribution for validation data points x∗i can be calculated by evaluating the mean f ∗ and
the covariance matrix V[ f∗] from the following [117]:

f ∗ = K(X∗, X)[K(X, X)]−1y, (8)

V[ f∗] = K(X∗, X∗)− K(X∗, X)[K(X, X)]−1K(X, X∗), (9)

where X is the training cation-descriptor matrix, X∗ is the validation cation-descriptor
matrix, y is the vector of log K values corresponding to the training data points, and K(A, B)
is the kernel dot product, e.g., the covariance function between the input matrices A and
B [117]. The commonly used RBF kernel function maps the descriptors into an infinite-
dimensional descriptor space; however, by only using dot products between kernel mapped
inputs, the individual kernel-mapped descriptors do not need to be calculated [117].

Kernels used in constructing the GPR model have an effect on the derived space of
functions [117]. Commonly applied kernels include the constant, white noise, dot product,
polynomial, RBF kernel and combinations [117]. In this study, the Scikit-learn [118] (ver-
sion 0.24.2) library implementation of the GaussianProcessRegressor class was used with
the kernel combination of the sum of WhiteKernel, DotProduct and the RBF kernel from
the same library module. The fitting of the GaussianProcessRegressor also optimized the
kernel’s hyperparameters [118]. Of the GPR models with the same number of descriptors,
the model with the highest coefficient of determination was considered optimal. Whether a
higher parameter model was better than a model with one less parameter was based on a
20% error improvement, similarly to the SVR descriptor selection method.

4.6. Diagnostics and Applicability Domain of Models

The performance of models was evaluated using 10-fold cross-validation to avoid over-
fitting. The model predictive capability was assessed in the training process by calculating
the coefficient of determination (Equation (10)), r2, and evaluation external to descriptor
selection and producing the models was measured by the concordance correlation coef-
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ficient (Equation (11)) [119], CCC. As another comparison tool, the mean squared error
(Equation (12)), RMSE, has been provided along with the models’ statistical parameters.

r2 = 1− ∑ (yi − ŷi)
2

∑ (yi −
−
y i)

2 , (10)

CCC =

2 ∑n
i=1

(
ŷi −

−
ŷ
)(

yi −
−
y
)

∑n
i=1 (ŷi −

−
ŷ)

2
+ ∑n

i=1 (yi −
−
y)

2
+ n(

−
ŷ − ŷ)

2 , (11)

RMSE =

√
1
n ∑ (yi − ŷi)

2 (12)

Additional diagnostics were performed for the linear models to identify outliers,
high leverage data points, and influential data points. Data points exceeding the critical
leverage value h∗3 (Equation (14)) are considered as high leverage, where the critical
value is calculated from the model’s descriptor amount k and data set size n. A matrix of
model molecular descriptor values in columns along with an additional constant column
comprises design matrix X used in the calculation of the leverage hii of a data point i:

H = X·(XT ·X)
−1·XT , (13)

h∗3 =
3·(k + 1)

n
, (14)

where H is called the hat matrix and hii includes its main diagonal values. For outlier
diagnostics, the standardized residuals ri of the model are examined for each data point i:

ri =
ŷi − yi

σ̂·
√

1− hii
, (15)

σ̂2 =
eT ·e

n− k− 1
, (16)

ei = (1− hii)·yi, (17)

where σ̂ is the mean squared error of the linear regression model, and ei is the residual of
the i-th data point. A data point with |ri| > 2 should be inspected and a data point with
|ri| > 3 is likely to be an outlier and requires closer analysis.

An observation’s influence on the model is assessed by Cook’s distance (Di), a measure
of the effect of removing a given data point.

Di =
ri

2

k + 1
· hii
1− hii

(18)

A common rule is to take a closer look at observations with Cook’s distance higher
than one. The accuracy of the model’s predictions may be distorted by high leverage and/or
high residual observations and Cook’s distance provides a method to find influential data
points that could indicate the regions of the molecular space, where more experimental
data are required.

4.7. Availability of Regression Models

The MLR, SVR and GPR models and related data can be made available in various
data formats [120]. To follow the best practices of QSAR model reporting [121], the models
with data are stored at the QsarDB repository [122] in QSAR Data Bank format [123]. A
digital object identifier (DOI) has been assigned for the models and data [124].
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5. Conclusions

The present study successfully tested the hypothesis that the gas-ionic liquid parti-
tion coefficient (log K) can be successfully modeled in a data-driven manner based on
the partial structure of the ionic liquid, namely the varying cationic counterpart. QSPR
models were derived for gas-ionic liquid partition coefficients for three organic com-
pounds hexane, cyclohexane and benzene in the series of ionic liquids with common
bis(trifluoromethylsulfonyl)imide ([Tf2N]−) anion using linear and non-linear QSPR meth-
ods. Variation in ionic counterpart makes it possible to more specifically understand the
molecular interactions of partitioning by the ionic liquid and how to enable finding the
application-appropriate ionic liquid. Three machine learning approaches (MLR, SVR and
GPR) were used to derive data driven models and their performance was compared. The
comparison of different modeling methods showed that both linear and non-linear models
have excellent performance, while non-linear models had better performance. The selection
of a suitable model for the prediction of log K depends on the circumstances and they offer
different benefits. For example, the MLR models have an advantage in that they are simple
and easy to interpret. The SVM models had the best prediction performance, and GPR
models can provide uncertainty measurements on the predictions. The cross-validation
coefficients of determination were in the range of 0.71–0.93 and also other performance
statistics indicated strong accuracy of models for all data series and machine learning meth-
ods. The analysis and interpretation of descriptors revealed how the structure of cationic
counterpart influences molecular interactions and that generally higher lipophilicity and
dispersion interaction capability and lower polarity in the cations induces a higher partition
coefficient for benzene, hexane, cyclohexane and hydrocarbons in general. Applicability
domain analysis of models exposed outliers, but it concluded that they are not highly
influential and that the models are applicable to a wide selection of cation families with
variable size, polarity and aliphatic or aromatic nature.
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