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Acute lung injury (ALI), and its more severe form, acute respiratory distress syndrome
(ARDS), are syndromes of acute hypoxemic respiratory failure resulting from a variety
of direct and indirect injuries to the gas exchange parenchyma of the lungs. The clin-
ical syndrome is characterized by critical hypoxemia (partial pressure of oxygen in
arterial blood/fraction of inspired oxygen <300 for ALI and <200 for ARDS), bilateral
pulmonary infiltrates suggesting edema, no clinical or measured evidence of cardiac
failure, and no other explanation for these findings. Pulmonary or nonpulmonary infec-
tions with sepsis are the most common causes of ALI and ARDS, although gastric
aspiration, massive transfusions, trauma, and other factors contribute.1 The diversity
of causes and the stereotyped physiologic and pathologic responses have made
modeling human ALI and ARDS difficult, but new themes are evolving from experi-
mental studies, some of which are reviewed in this article.
Most of what is known about the pathology of ALI and ARDS comes from the studies

of patients who have died, although a limited number of patients have undergone open
lung biopsy (Fig. 1). The pathologic changes include an early phase of diffuse alveolar
damage, with an increase in endothelial permeability, evidence of intravascular
thrombi, severe epithelial injury with denudation of alveolar wall basementmembranes,
accumulation of protein and fibrin-rich alveolar infiltrates in the airspaces, and abun-
dant alveolar neutrophilic infiltrates. If patients survive, these changes progress for
days to a repair phase, characterized by hyaline membrane formation, transition
from neutrophilic to mononuclear infiltrates, and the appearance of intra-alveolar and
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Fig. 1. ALI in humans. Photomicrographs of the lungs of 2 different patients with ALI,
stained with hematoxylin and eosin. (A, B) Acute phase. Alveolar spaces are filled with
a mixed neutrophilic and monocytic infiltrate and alveolar wall capillaries are congested.
Alveolar hemorrhage is visible. (C, D) Later phase. Fibroproliferative response with collagen
deposition in alveolar walls (arrows). Alveolar walls are lined with cuboidal epithelial cells
that are proliferating type II pneumocytes. (From Matute-Bello G, Frevert CW, Martin TR.
Animal models of acute lung injury. Am J Physiol Lung Cell Mol Physiol 2008;295:L381;
with permission.)
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interstitial fibrosis. Patients who survive often have persistent hypoxemia and restric-
tive ventilatory defects, but both of these abnormalities improve with time after hospital
discharge. Neuromuscular weakness, rather than respiratory insufficiency, is the most
important cause of long-term disability in survivors of ALI and ARDS.2,3

The causative factors that precipitate ALI can be grouped broadly into direct and
indirect factors. Direct factors include bacterial and viral infections in the lungs and
aspiration of gastric contents, all of which cause direct injury to the airway and alveolar
epithelium and other structures in the airspaces. Indirect factors include systemic
infections, which cause the sepsis syndrome, blood transfusions, and the effects of
systemic medications and illicit drugs. This dual paradigm is plausible, even though
clinical studies do not show major differences in outcomes in patients with direct
versus indirect ALI.
A major overall theme emerging from clinical studies is that humans are inherently

variable in their responses to the stimuli that cause ALI. Although investigators plan-
ning clinical trials strive to enroll uniform patient populations, clinicians recognize
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that patients with seemingly similar stimuli, for example pneumococcal bacteremia,
vary a great deal in the clinical severity of their disease. Studies of how normal people
respond to the common bacterial stimulus, gram-negative lipopolysaccharide (LPS),
show differences of more than 2 orders of magnitude in cytokine responses in whole
blood.4 Studies of normal humans who were high or low responders to bacterial prod-
ucts identified a polymorphism in the Toll-like receptor (TLR)1 that marked high cyto-
kine responses to gram-positive bacterial peptidoglycan.5 This polymorphism was
more common in critically ill patients with gram-positive sepsis who died. Thus,
studying variability in innate immune responses in the normal population can provide
important insights about disease susceptibility in critically ill patients.
MODELING ARDS: THE ROLE OF ANIMAL MODELS

Modeling the acute and chronic pathologic changes of ALI to understand the cellular
and molecular pathogenesis has been a significant challenge from the time that ARDS
was first described in humans.6,7 Many different animal models have been used and
each has advantages and disadvantages.8 The ideal animal model would include an
acute inflammatory response with an increase in microvascular and alveolar epithelial
permeability, neutrophil influx into the alveolar spaces, and protein and fibrin-rich alve-
olar exudates in the acute phase. This response would be followed by an organization
phase with an increase in alveolar mononuclear cells and interstitial lymphocytes, and
a repair phase with proliferating type II pneumocytes and fibroblasts, and accumula-
tion of interstitial and alveolar fibrin. These changes would be accompanied by acute
hypoxemia and a decrease in lung compliance, along with measurable changes in
systemic organ function. Ideally, the animal would be treated with mechanical ventila-
tion to simulate the primary treatment applied to patients with ALI. These changes
would evolve for several days, and surviving animals would be amenable to longer-
term outcome studies to assess persistent changes in lung function and systemic
organ function, particularly in the neuromuscular system.
Only large animal models permit studies in ventilated animals over time, such as

ventilated and tracheostomized primates, dogs, sheep, or pigs. Such models are
extremely expensive, because of the need to create an animal intensive care unit,
and molecular reagents for large animals are limited. Short-term studies in mice,
rats, and rabbits have been useful in studying individual pathways, but the ability to
generalize results to humans is limited.8 Nevertheless, if the characteristics of the
animal model are well known and the results are interpreted with appropriate caution,
animal studies can provide focused evaluations of key physiologic and molecular
pathways, and can be used to develop new hypotheses to test in humans.
Aside from size, important physiologic and immunologic differences exist among

animal species (Table 1). Pulmonary intravascular macrophages (PIMs) are prominent
in the pulmonary microcirculation of sheep, pigs, goats, cattle, and horses. In these
animals, intravascular particles, including microbes, are more likely to localize in the
pulmonary microcirculation and stimulate local intravascular inflammatory responses.
Dogs, rodents, rabbits, nonhuman primates, and humans have few PIMs, and intra-
vascular particles localize to macrophages in liver and spleen.9 Depletion of PIMs in
sheep reduced lung injury from intravenous LPS.10 The nitric oxide (NO) pathway
promotes vasodilation and microbial killing, and important species differences exist
in NO production.11 Inducible nitric oxide synthase is prominent in rodents, and NO
production is an important microbial killing mechanism in murine macrophages.
Human macrophages produce far less NO unless they are suitably activated, typically
by interferon-g.12–14 Nevertheless, the NO products, nitrate and nitrite, and evidence



Table 1
Unique characteristics of animal species relevant to modeling lung injury

Animal

Identity with
Human
TLR4 HVR (%)

Pulmonary
Intravascular
Macrophages LPS Sensitivity

Nitric Oxide
Production

Human 100 No Intermediate 1

NHP 95 No Intermediate 1

Pig ND Yes High 11

Dog ND No Low 11

Sheep ND Yes High 11

Rabbit 57 No Intermediate 11

Rat 48 No Low 111

Mouse 48 No Low 111

Abbreviations: HVR, hypervariable region of TLR4; ND, not determined; NH, nonhuman primate.
From Matute-Bello G, Frevert CW, Martin TR. Animal models of acute lung injury. Am J Physiol

Lung Cell Mol Physiol 2008;295:L381; with permission.
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of nitration of intracellular proteins are detectable in the bronchoalveolar lavage fluid
and alveolar macrophages of humans with ALI,15 suggesting that NO-dependent reac-
tions are important in ALI. Bacterial recognition pathways via TLRs also differ among
species,16 and divergent forms of TLR4 recognize different LPS structures,17 which
could contribute to the known variation in LPS sensitivity among different species.

EMERGING THEMES FROM ANIMAL MODELS AND EXPERIMENTAL STUDIES
Interactions Between Stretch and Innate Immunity

One important theme in clinical and experimental ALI is that activation of innate immu-
nity adversely affects the lung’s response to mechanical stretch. Patients with normal
lungs, such as those with neuromuscular diseases, can be ventilated with large tidal
volumes exceeding 10 mL/kg without causing injury. Experimental studies show
that, at normal tidal volumes, the alveolar walls in rodent lungs fold and unfold,
whereas alveolar walls do not begin to stretch until lung volumes exceed about
40% of total lung capacity.18 In contrast, the effective alveolar volume of injured lungs
is much lower than normal, owing to large areas of alveolar filling and collapse. In this
case, the use of normal tidal volumes results in stretching of the walls of the open alve-
olar units. Experimental studies in a variety of systems show that activation of innate
immunity pathways through TLR4 and other TLRs triggers acute inflammation and an
increase in alveolar epithelial permeability. When human alveolar macrophages are
exposed to cyclic pressure, cotreatment with LPS causes a marked accentuation of
cytokine responses.19 Pretreatment of rats with intravenous LPS accentuated cyto-
kine and inflammatory responses when the lungs were ventilated ex vivo.20 Mechan-
ical ventilation and intravenous LPS have synergistic effects on lung inflammation at
moderate tidal volumes via activation of complex transcriptional pathways.21–23 In
addition to direct pulmonary effects, mechanical ventilation and intravenous LPS
interact to cause systemic organ dysfunction, which is relevant for the pathogenesis
of multiorgan failure.24 This seems to occur in part by enhancement of GADD45-
mediated signaling pathways in the lungs.22 The GADD45-g isoform activates
a MAPK kinase kinase (MEKK4), leading to activation of p38 MAP kinase and Jun
kinase (JNK), resulting in enhanced cytokine production. Mechanical stretch also
causes upregulation of CD14 in rabbit lungs, and increased sensitivity of alveolar
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macrophages to LPS ex vivo.25 Because CD14 is a key coreceptor for LPS with TLR4,
increased expression of CD14 provides a mechanism for synergy between LPS and
larger tidal volume ventilation. In studies of ventilated mice, Smith and colleagues26

have found that this synergism between innate immunity and mechanical stretch
seems to be acquired with age, because it does not occur in 3-week-old mice but
is reproducibly present in 12-week-old mice.
Other activators of innate immunity are also present in the lungs of patients with ALI.

A series of studies have shown that endogenous products generated by injury and
inflammatory responses cause sterile inflammation when bacterial products are
absent.27 These products, termed alarmins or danger-associated molecular patterns
(DAMPs), include matrix molecules, hyaluronan, the nuclear protein HMGB1, oxidized
phospholipids, and other factors that are present in normal lungs and released into the
airspaces as a result of injury or inflammation.28–31 These endogenous products acti-
vate TLR4 and other TLRs, initiating inflammation in the same manner as LPS and
other bacterial products. By implication, these endogenous molecules should also
synergize with mechanical stretch to intensify injury in the lungs. One of the primary
suggestions from this line of research is that interrupting the synergistic interactions
between innate immunity and mechanical stretch in the lungs would be a strategy
to limit the onset or severity of ALI in humans.

The Fate of the Alveolar Epithelium in ALI

Death of the alveolar epithelium in ALI can occur by either necrosis or apoptosis. The
classic studies of Bachofen and Weibel32 examining lungs of patients who died with
ALI showed evidence of widespread alveolar epithelial injury, in addition to alveolar
hyaline membranes, microvascular injury, and thrombosis. Experimental studies
have shown that high distending pressures caused by mechanical ventilation lead
directly to disruption and necrosis of the alveolar epithelium in rats.33,34 In addition,
type III bacterial exotoxins, such as pseudomonas ExoU and ExoS, cause direct lysis
of the alveolar epithelium and other cells by attacking the cell membrane.35,36 Disrup-
tion of the alveolar epithelium by mechanical stretch can be treated by reducing the
ventilator tidal volume, and is likely to explain, in part, the major success of the initial
ARDS network trial of low-tidal-volume ventilation in ALI.37 Because necrosis cannot
be regulated by manipulating cellular pathways, strategies to minimize necrosis must
aim at prevention by lowering tidal volume and eradicating bacterial infection.
Apoptosis is a regulated form of cell death that has an essential role in development

and repair. An important theme from experimental studies is that cell death pathways
are activated in the lungs of patients with ALI and are likely to contribute to alveolar
epithelial death.38 Apoptosis is mediated by a family of death receptors, principally
the tumor necrosis factor (TNF) receptors (TNFR1 and TNFR2) and the Fas receptor.
TNFa is not abundant in bronchoalveolar lavage (BAL) fluid of patients with ALI, and
the concentrations of the soluble TNF receptors far exceeds the concentrations of
free TNFa, suggesting that TNF activity that exists is localized to lung tissues.39,40

The Fas receptor is present on the alveolar and airway epithelium,41 and biologically
active soluble Fas ligand (sFasL) is detectable in the airspaces of patients with
ALI.42,43 In experimental studies, activation of the Fas receptor in the lungs of mice
causes alveolar epithelial apoptosis, and increased epithelial permeability and alveolar
hemorrhage in rabbits.44,45 In mice and rabbits, activation of Fas also causes inflam-
mation, with production of interleukin (IL)-8 and other acute inflammatory cytokines.
Repeated activation of Fas in mice causes acute inflammation, an acute increase in
alveolar epithelial permeability, and delayed fibrosis, which is dependent on macro-
phage metalloelastase, MMP-12.46 Studies with chimeric animals have shown that
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Fas on nonmyeloid cells of the lungs is required for apoptosis and inflammation to
occur in response to Fas activation.47

The sFasL molecule is released from cell membranes via the action of membrane
MMP-7.48,49 Like TNFa, sFasL multimerizes in aqueous solution and the multimeric
form clusters Fas receptors in the cell membrane. Clustered Fas molecules recruit
caspase-8 molecules to the intracellular portions of the Fas molecules to form the
death-inducing complex (DISC). Caspase-8 clusters are autocatalytic, yielding
cleaved caspase-8, which initiates caspase cascades that lead to fragmentation of
nuclear DNA and cellular apoptosis. The biologic activity of sFasL depends on the
structure of the N-terminal sequence of the molecule, and the state of aggregation.50

Oxidation of key methionine residues promotes aggregation of sFasL in solution and
enhances biologic activity. Free MMP-7 cleaves the stalk region and reduces biologic
activity, so that the intensity of the oxidizing environment and the concentration of
soluble MMP-7 regulate the biologic activity of sFasL in vivo.50 Mice lacking an active
Fas receptor (lpr mice) have reduced lung inflammation when undergoing large-
volume mechanical ventilation. Inactivation of Fas signaling in normal mice using
siRNA technology reduced secondary lung injury in response to hemorrhagic shock
and cecal ligation and puncture, suggesting that the Fas pathway in the lungs
connects systemic responses with alveolar inflammation and epithelial injury.51,52

These and other data support the theme that Fas-mediated alveoli epithelial
apoptosis is likely to be important in the acute lung injury process in humans, which
in turn suggests that a strategy to inhibit apoptosis in the lungs might be useful in
limiting the severity of ALI in humans. Apoptosis is also important in the resolution
of injury,53 and tissue repair processes are initiated at the onset of ALI in humans,54,55

so any strategy modulating cellular apoptosis would have to be focused on the early
phase of ALI to avoid interfering with normal repair in the lungs.

TGFb as a Key Mediator of ALI

Transforming growth factor b (TGFb) is a pleuripotent cytokine that has a key role in
tissue homeostasis. A latent form of TGFb is activated when bound by the integrin
a-v-b 6 in lungs and skin.56 Mice lacking the a-v-b 6 integrin were protected from
lung injury following intratracheal bleomycin, and mice treated with an anti-TGFb
construct were protected from lung injury caused by bleomycin or LPS. TGFb
enhanced epithelial permeability in vitro in part by depleting intracellular glutathione.57

A subsequent study showed that TGFb1 reduced expression of the epithelial sodium
channel (ENaC), and reduced sodium and water transport across rat and human type
II alveolar epithelial cells and reduced amiloride sensitive sodium transport in intact rat
lungs at a low dose that did not affect alveolar epithelial permeability.58 These animal
studies suggest that TGFb activation in the lungs of patients with ALI could be a mech-
anism that contributes to epithelial injury and impairs sodium and water transport out
of the alveolar spaces. Strategies to inhibit TGFb transiently might be considered in
humans with ALI.

Networks and Complexity

Animal models of ALI and ARDS have been used primarily to study single pathways
involved in lung injury, but treatments designed to inhibit single pathways have
been unsuccessful in patients with sepsis, as well as ALI. Advances in proteomics
and genomics technologies have enabled investigators to appreciate the complexity
of ALI in humans as well as in animal models. In humans, analysis of proteins in human
BAL fluid shows the complexity of protein networks at the onset of ALI and the
changes that occur over time.59 Key nodes in these networks identify central proteins,
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which could provide targets for new treatments. In addition, proteomics analysis iden-
tified the unsuspected importance of the nonprotein, b-estradiol, as a node in major
protein networks. Gene array technology illustrated the complexity of mRNA networks
in a canine model of ventilator-induced lung injury.60 Genes involved in inflammation
and immune responses, cell proliferation, adhesion, signaling, and apoptosis were
activated in the lungs, and major regional differences were noted between dependent
and nondependent areas. This approach provided additional support for the role of
apoptosis pathways in ALI. Genomic approaches have also been used to study the
complexity of transcriptional responses in mice treated with mechanical ventilation
with or without systemic LPS.23 Integrating gene expression profiling with gene
ontology and promoter analysis enabled the construction of a regulatory map of
important processes in the lungs of ventilated animals in the presence or absence
of LPS as a simultaneous activator of innate immunity (Fig. 2). Differentially expressed
biologic modules included those related to defense responses, immune responses,
and oxidoreductase activity. The gene regulatory network included transcription
factors such as IFN-stimulated response element IRF-7 and Sp1 (Table 2). Studies
such as these highlight the complexity of the lung responses in experimental animals
with ALI, and set the stage for strategies that address multiple pathways simulta-
neously or sequentially in critically ill humans.

New Understanding of Specific Risk Factors for ALI

Animal models have provided a new understanding of several risk factors for ALI,
including the pathogenesis of ALI following gastric aspiration and the transfusion of
blood products, and the roles of chronic alcohol use and fever. Aspiration of gastric
contents exposes the airway and alveolar environment to a complex mixture of
acid, particulates, and oropharyngeal bacteria and bacterial products. The classic
model of acid aspiration in animals involves intratracheal instillation of acid, typically
pH 1.5. This acid causes ALI and inflammation with production of IL-8 and other proin-
flammatory cytokines. However, humans are routinely treated with H-2 antagonists
and/or proton pump inhibitors, so that the pH of gastric acid is typically much higher
in patients, and less acidic solutions do not injure the lungs of animals. Bregeon and
colleagues61 sampled gastric juice from critically ill patients and studied proinflamma-
tory activity using a validated target cell assay. The gastric juice from critically ill
patients had more proinflammatory activity than was detected in gastric juice of venti-
lated control patients. The samples with high proinflammatory activity in vitro caused
intense lung inflammation in the lungs of ventilated rabbits, which was dependent on
IL-1b activity in the gastric juice and independent of pH and particulate matter. This
finding helps to explain the intense, and often transient, inflammatory responses asso-
ciated with gastric aspiration in patients who are treated with antacid regimens.
Transfusions of red blood cells, platelets, and other high volume plasma blood prod-

ucts are known to be associated with transfusion reactions, which can lead to severe
transfusion-associated lung injury (TRALI).62 Animal models show that a priming
event, such as administration of intravenous or intratracheal LPS, is usually required
for lung injury, consistent with the observation that TRALI is more common in humans
with critical illness. Interactions between antibodies, leukocytes, and platelets are
typically involved, and lipid mediators in plasma also have been implicated. In one
model, passive infusion of anti–MHC-1 antibodies led to TRALI that was dependent
on the Fc-g receptor, neutrophils, and platelets.63,64 Mice raised in a barrier facility
were less susceptible, and pretreating the mice with either intravenous or intratracheal
LPS restored susceptibility. Studies with chimeric mice showed that the functional
TLR4 on leukocytes was required for this effect, which increases trapping of



Fig. 2. Important processes and transcription factors identified during ALI in mice treated with intratracheal LPS and mechanical ventilation. Overrep-
resented biologic modules among upregulated (red ovals) and downregulated (blue ovals) genes are organized based on their gene ontology anno-
tations and are assigned to 1 of 3 groups: molecular function, cellular components, and biologic processes. Putative transcription factors regulating
genes within these modules are shown in the periphery. (From Gharib SA, Liles WC, Matute-Bello G, et al. Computational identification of key biologic
modules and transcription factors in acute lung injury. Am J Respir Crit Care Med 2006;173:657; with permission.)
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polymorphonuclear leukocytes in the lungmicrocirculation and superoxide production
in response to stimuli. Thus, there seems to be a key role for activation of innate immu-
nity via TLR4, and perhaps other TLRs, in enhancing susceptibility to TRALI.
Animal and clinical studies have contributed to understanding the mechanisms by

which chronic alcohol ingestion increases susceptibility to lung injury.65,66 Rats fed
a high-alcohol diet (36%of total calories) develop glutathione depletion in the epithelial
lining fluid of the lungs and reduced sodium andwater transport in vivo.67 Glutathione is
a major intracellular pathway for capturing oxidant species, and glutathione depletion
renders the lungs and other tissues susceptible to oxidative injury. Glutathione is
depleted in type II pneumocytes from rats fed high-alcohol diets, and type II mono-
layers have increased permeability to high-molecular-weight solutes.68,69 These
experimental observations parallel findings in clinically stable people who ingest
alcohol on a chronic basis, who have reduced concentrations of glutathione in the alve-
olar epithelial lining fluid and have increased susceptibility to lung injury.70

Fever is a beneficial host response to bacterial and other infections, but many
patients with ALI who are treated with antibiotic regimens do not have overt bacterial
infection in the lungs.71 Fever improves outcome in mice with peritonitis and in other
models of infection,72 but fever also worsens the response of the lungs to hyperoxia
and localized klebsiella infections, in part by enhancing neutrophil recruitment.73,74

Lipke and colleagues75 found that fever has dramatic effects on innate immunity in
the lungs, because the induction of fever in mice treated with low doses of LPS to stim-
ulate TLR4 causes a dramatic increase inmortality, which is associated with the induc-
tion of apoptosis pathways in the lungs. These findings will drive better clinical studies
of the effects of fever in patients who do not have major microbial infections.

Stem Cells in Lung Injury

One of themost interesting themes from animal studies is thatmesenchymal stem cells
can modulate ALI. Mesenchymal stem cells (MSC) are a population of progenitor cells
with the ability to self-renew in an undifferentiated state and differentiate into mesen-
chymal tissues, such as bone, fat, smooth muscle, or collagen.76 MSC have been
known to exist in the mononuclear cell fraction of bone marrow, as defined by density
gradient centrifugation.77 The International Society for Cellular Therapy has proposed
the following criteria to define multipotent stromal mesenchymal cells: (1) adhesion to
plastic; (2) expression of CD105, CD73, and CD90, and lack of expression of CD45,
CD34, CD14 or CD11b, CD79a or CD19, and HLA-DR surfacemolecules; and (3) ability
to differentiate into osteoblasts, adipocytes, and chondroblasts in vitro.78

Initial studies investigating the role of bone marrow–derived MSC (BM-MSC) in
pulmonary fibrosis focused on the hypothesis that BM-MSC could be protective by
regenerating injured lung tissue. In a seminal study, Ortiz and colleagues79 found
that bleomycin-induced lung injury was decreased in C57BL/6 mice receiving intrave-
nous injections of BM-MSC purified from bleomycin-resistant BALB/c mice,
compared with mice receiving no BM-MSC. The protective effect occurred only
when the BM-MSC were given immediately after the bleomycin challenge, but not
when the cells were administered 7 days after bleomycin. Subsequent studies sug-
gested that bleomycin induces mobilization of BM-MSC from the bone marrow, and
possible migration into the lungs.80,81 Some of these studies suggest that the BM-
MSC engraft in the lungs and can differentiate into a variety of cell types.81 However,
subsequent studies have shown that, although engraftment can occur, it is rare and
the physiologic significance remains uncertain.82–84 Despite significant engraftment,
MSC administration in a variety of injury models is associated with a decrease in
the expression of several inflammatory cytokines, showing that the BM-MSC are



Table 2
Enriched putative transcription factors among differentially expressed genes during mechanical ventilation (MV), LPS, and MVDLPS relative to untreated
animals

MV vs Control LPS vs Control MVDLPS vs Control

Transcription Factor P Value Transcription Factor P Value Transcription Factor P Value

Overrepresented Putative Transcription Factors Among Differentially Upregulated Genes

ETF 4.62�10�17 ISRE 8.03�10�16 ETF 1.29�10�11

E2F 5.36�10�12 cRel 8.51�10�11 ISRE 2.48�10�8

Nrf1 1.12�10�9 IRF 3.69�10�10 NF�B 2.43�10�7

CREB 3.64�10�8 NFkB 1.26�10�9 cRel 3.84�10�7

HIF1 1.35�10�6 ICSBP 1.08�10�7 CREB 8.01�10�7

— — PU.1 4.91�10�6 IRF-7 1.92�10�6

— — — — ATF 2.05�10�6

Overrepresented Putative Transcription Factors Among Differentially Downregulated Genes

Sp1 3.01�10�6 Sp1 8.38�10�17 Sp1 5.16�10�26

NF-Y 8.17�10�5 E2F 1.96�10�14 E2F 1.18�10�21

— — NF-Y 1.96�10�7 EGR 1.30�10�9

— — AP2 2.31�10�6 ZF5 1.78�10�9

— — — — AP2 2.99�10�9

— — — — NF-Y 4.16�10�9

From Gharib SA, Liles WC, Matute-Bello G, et al. Computational identification of key biologic modules and transcription factors in acute lung injury. Am J Respir
Crit Care Med 2006;173:656; with permission.

M
a
rtin

&
M
a
tu
te
-B
e
llo

7
4
4



Models and Hypotheses for ALI 745
able to modulate the inflammatory response. Gupta and colleagues85 confirmed the
immunomodulatory properties of BM-MSC in vivo by finding that direct intratracheal
instillation of BM-MSC attenuates LPS-induced lung injury by mechanisms involving
a paracrine effect unrelated to tissue regeneration. Later studies by Ortiz and
colleagues86 suggested that the protective effect of BM-MSC on bleomycin-
induced lung injury is largely related to the ability of BM-MSC to release the IL-1b
receptor antagonist (IL-1RA). Since then, several studies have shown that BM-
MSCs can attenuate injury in different experimental animal models.87 Thus, BM-
MSCs attenuate lung injury by immunomodulation, and most studies published thus
far suggest a protective role. The role of MSC in lung inflammation and fibrosis is
the subject of a separate review.88

Resolution of ALI

Human studies have shown that repair processes are initiated almost as soon as ALI
begins. Markers of collagen production, reflecting activation of repair processes, are
detectable at theonset ofALI.54,55Agreat deal ofworkhasbeendevoted todetermining
how neutrophils and their products are cleared from inflamed lungs. Isolated neutro-
phils rapidly undergo apoptosis in vitro, but the lung fluids of patients with ALI delay
neutrophil apoptosis by a mechanism involving G-CSF and GM-CSF in lung fluids.89

Apoptotic neutrophils are rapidly ingested bymacrophages in the airspaces, via recog-
nitionof phosphatidyl serine, calreticulin, andother structures expressedon the surface
of apoptotic leukocytes.90–92 Neutrophil myeloperoxidase and other debris are identifi-
able in alveolar macrophages recovered from the BAL fluid of patients with ALI.89 The
mechanisms that control the uptake and clearance of leukocytes and other cells under-
going necrosis or other nonapoptotic cell death are less well understood.
A new theme from animal studies is that lymphocytes also have an important role in

the resolution of ALI. Studies with Rag-1�/� mice, which lack mature B and T cells,
showed that resolution of LPS-induced lung inflammation was markedly delayed.93

Mortality was higher in the Rag-1�/� mice, and they remained clinically ill for a longer
period of time than similarly treated C57BL/6 mice. Reconstitution of the Rag-1�/�

mice with regulatory T cells expressing the IL-1a receptor and the FoxP3 transcription
factor (Tregs), improved the resolution of lung injury. Tregs increased with time after
the onset of LPS-induced lung inflammation in normal mice, and transfer of Tregs
into Rag-1�/� mice increased lung levels of TGFb and enhanced neutrophil apoptosis.
Following these animal studies, the investigators found that Tregs were detectable by
flow cytometry in lung lavage fluids of patients with ALI. Manipulation of regulatory T
cells might offer an approach to enhancing the repair of ALI.

Viruses and ALI

A consistent theme from animal studies is that the clinical manifestations of viral infec-
tions in the lungs reflect the primary sites of infection in the lungs. Adenoviruses infect
primarily the airway epithelium via receptors on the basolateral surface of airway
epithelial cells. This feature made replication-deficient adenoviral vectors attractive
for gene therapy in the lungs. Adenoviral infections are characterized by bronchopneu-
monia, which can be severe, leading to acute respiratory failure. Studies in nonhuman
primates showed that the severe acute respiratory syndrome (SARS) virus attacks
alveolar type II cells, and SARS is associated with diffuse lung injury reflecting alveolar
epithelial damage.94,95 By contrast, the hantavirus is found in lung microvascular
endothelial cells and causes widespread lung edema soon after onset of the infection.
An additional theme from animal studies is that viral infections also enhance the

sensitivity of the lungs to mechanical ventilation. Bem and colleagues96 found that
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mice infected with mouse pneumovirus to simulate respiratory syncytial virus (RSV)
infection in children and then subjected to mechanical ventilation had much more
severe lung inflammatory and injury responses than mice infected with pneumovirus
alone, or mice treated with mechanical ventilation alone. The infected mice had
increased cytokine production, increased alveolar epithelial permeability, and activa-
tion of apoptosis pathways. This suggests that the key treatment of children with
severe RSV infection, mechanical ventilation, can worsen the response of the lungs
to the underlying viral infection. Viruses stimulate innate immunity by interacting
with TLR3 on the surface of macrophages and other cells. These and other findings
support the conclusion that activation of innate immunity via several different TLRs
has a synergistic effect with mechanical ventilation on lung injury.

Lung Injury in Children

Oneof the themes fromclinical studies is that ALI is less frequent and less severe in chil-
dren than adults even thoughmortality in unselected children with ALI is approximately
20%.1,97 Children have lungs that are still developing, and children typically have fewer
comorbidities than adults with ALI. Nevertheless, a new theme from animal studies is
that the interactions between the mechanical ventilator and the lungs of children might
be different than in adults. Smith and colleagues26 compared the pulmonary responses
of juvenile (3 weeks old, 5–7 g) and adult (16 weeks old, 25–30 g) mice in a model in
which themicewere treatedwith intratracheal LPS, then subjected tomechanical venti-
lation for 2or 4hours. Theadultmicehadasynergistic increase in lung inflammationand
protein permeability, as compared with animals treated with LPS alone, or mechanical
ventilation alone. In contrast, a synergistic interaction between LPS treatment and
mechanical ventilation was not found in the juvenile mice. This finding suggests that
the adverse interactions between innate immunity and mechanical stretch increase
with age. Microarray studies showed that there were major differences in clusters of
genesactivated in the juvenile andadult lungs in response to LPSandmechanical venti-
lation and suggested pathways that might be responsible for the different responses of
juveniles and adults. Alvira and colleagues98 treated neonatal and adult micewith intra-
peritoneal LPS and found that lung inflammation and apoptosis occurred in adult but
not neonatal mice. This finding was associated with persistent activation of NF-kB
p65/p50 heterodimers in the neonates, whereas in the adults there was initial activation
of NF-kB p65/p50 followed by sustained activation of NF-kB p50/p50 homodimers.
Developmental differences in NF-kB activation could influence the severity or outcome
of pulmonary infections, or the pulmonary response to mechanical ventilation. These
studies comparing infant and adult animals could provide a much better perspective
on the mechanisms that account for protection from ALI in children and increased
susceptibility in adults.
SUMMARY

ALI is an important clinical problem that affects more than 200,000 people per year in
the United States. Animal models have been useful in studying individual pathways
involved in pathogenesis and new ideas for treatment. No single animal model mimics
all of the clinical features of ALI in humans, and each animal model has unique
features that affect responses to treatment. Nevertheless, many themes have
emerged from animal models that provide valuable insight about lung injury in
humans. Studies of innate immunity have shown that innate immunity is triggered
not only by microbial products but also by endogenous byproducts of tissue damage
and inflammation that can drive inflammation even in the absence of microbial
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products in tissue. Variability in host innate immune responses accounts for a great
deal of variability in the clinical manifestations of ALI. Innate immunity andmechanical
stretch have important synergistic interactions in adults that accentuate ALI. These
synergistic interactions seem to be acquired with age and are much less pronounced
in juvenile animals. Apoptosis pathways are important in clearance of bacteria from
the lungs, and also in causing injury and death to alveolar epithelial cells, enhancing
permeability edema. Animal models have highlighted the complexity of ALI in
humans, by showing the multiplicity of pathways activated by microbial products,
mechanical stretch, and the combination. Analysis of protein networks has identified
unexpected components that link key protein pathways in the lungs. New light has
been shed on clinical risk factors for ALI, such as gastric aspiration, blood product
transfusion, alcohol excess, and fever. Stem cell biology has been extended to ALI
with the finding of unexpected paracrine effects of MSC in reducing the severity of
ALI. New ideas about the resolution of ALI have derived from studies of the clearance
of apoptotic cells in the lungs, and the role of regulatory lymphocytes in recovery from
lung inflammation and injury. Progress is being made, but strong links between the
laboratory and the critical care bedside are still needed to translate new ideas from
laboratory studies into clinical treatments that will lessen the severity and improve
the outcome from ALI.
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