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Abiotic stress is the major threat confronted by modern-day agriculture. Salinity is one of the major abiotic stresses that influence
geographical distribution, survival, and productivity of various crops across the globe. Plants perceive salt stress cues and
communicate specific signals, which lead to the initiation of defence response against it. Stress signalling involves the
transporters, which are critical for water transport and ion homeostasis. Various cytoplasmic components like calcium and
kinases are critical for any type of signalling within the cell which elicits molecular responses. Stress signalling instils regulatory
proteins and transcription factors (TFs), which induce stress-responsive genes. In this review, we discuss the role of ion
transporters, protein kinases, and TFs in plants to overcome the salt stress. Understanding stress responses by components
collectively will enhance our ability in understanding the underlying mechanism, which could be utilized for crop improvement

strategies for achieving food security.

1. Introduction

Plants frequently encounter unfavourable abiotic stresses like
extreme temperatures, drought, waterlogging, contamination
of soils by heavy metals (HMs), and high salt concentrations.
These factors have been recurrently reported to drastically
impact agricultural productivity which might be reduced
>50% for main crops [1]. Among the stresses, salinity is con-
sidered most deteriorating as it affects ~20% of irrigated agri-
cultural land and one-third of the agricultural productivity
around the globe [2]. The total area under salinization is con-
tinuously increasing as it is predicted that by the year 2050,
more than half of the land will be salinized [3]. Salinity
induces osmotic stress, ionic stress, oxidative stress, imbal-
ance of nutrients, and membrane disorder and reduces cell
division [4]. Water deficiency mediated by the increased

efflux of water from the root cells leads to osmotic stress.
Tonic stress arises due to disproportionate influx of Na* ions
via root cell which disturbs the Na*/K" and Na*/Ca** equi-
librium. This results in increased Na®, decreased K* and
Ca®* concentrations which causes destabilization of the cell
membranes, obstruction of enzymatic activities, and inhibi-
tion of normal functioning of the cell [5]. Consequently,
there is an overproduction of reactive oxygen species (ROS)
like O* (superoxide radical), H,0, (hydrogen peroxide),
0, (singlet oxygen), and OH" (hydroxyl ions) in the cytosol,
mitochondria, and chloroplast [6]. ROS production in excess
is destructive to the cell as it disrupts membranes, mutates
DNA, and degrades lipids, proteins, and photosynthetic pig-
ments [7]. It affects photosynthesis by hampering chloroplas-
tic functions and stomatal closure [8]. Plants gauge stress
cues and transmit specific stress signal to elicit cellular as well
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as molecular response as they possess an inbuilt mechanism
for adaptations at cellular, tissue, and organ levels. The adap-
tation includes osmoregulation/osmotic adjustment, ion
homeostasis, ion compartmentalization, stomatal regulation,
antioxidative defence mechanism, accumulation/exclusion of
toxic ions, and changes in morphology, anatomy, and the
hormonal profile [9]. Likewise, plants also regulate several
genes or their products either vital metabolic proteins or
other regulatory genes which confer stress tolerance. These
genes are categorized into 2 groups. The first group comprises
of genes regulating protein channels, membrane transporters
responsible for active/passive transport, detoxification of
enzymes, enzymes responsible for fatty acid metabolism, pro-
tease inhibitors, and enzymes responsible for overproduction
and accumulation of compatible solutes, LEA (late embryo-
genesis abundant) protein, osmotin, and chaperons. The sec-
ond group of genes is responsible for regulatory proteins
(transcription factors (TFs) protein kinases and protein phos-
phatases) which respond to the signals downstream and mod-
ulate the expression of related genes [10]. In this review, we
aim to discuss salt stress sensitivity, the role of ionic trans-
porters, and the related regulatory gene products that allow
the plants to alleviate salt stress at the cellular and/or molecu-
lar level. It focuses on protein kinases and TFs associated with
salt stress tolerance and illustrates their potential for crop
improvement.

2. Consequences of Salinity

Plants are grouped into halophytes and glycophytes, based
on their capability to thrive in saline environments. The for-
mer group has resistance mechanisms to withstand higher
salt concentrations, while the latter group lack such mecha-
nisms. The difference in behaviour between them is attrib-
uted to their variation in the photosynthetic electron
transport chain, assimilation of CO,, photosynthetic pigment
content, ROS generation, and sequestration [11]. Salinity pri-
marily generates osmotic, ionic, and oxidative stress, which
alters the morphological, physiological, and molecular
aspects of plants, thereby affecting their overall metabolism
and growth [12]. The osmotic stress causes water deficit by
increased water efflux due to increased Na™ influx resulting
in damage to photosynthetic apparatus by disrupting the thy-
lakoid membrane and Calvin-Benson cycle enzymes [13],
resulting in reduction of specific metabolites. The accumula-
tion of Na* and CI” ions causes reduction of specific metab-
olites which gives rise to nutrient deficiency [14]. This is
followed by an overproduction of ROS (oxidative burst)
[15, 16], which prompts damage to nucleic acids, proteins,
and lipids. In DNA, they cause mutations, deletions, inhibi-
tion of replication, transcription, and signal transduction.
In proteins, they cause susceptibility to proteolysis, variation
in amino acid profile, chain fragmentation, and accumula-
tion of cross-linked reaction products. In lipids, they initiate
spontaneous oxidative chain reactions on unsaturated fatty
acids. Thus, ROS destabilizes plasma membrane by inducing
lipid peroxidation and protein disintegration, resulting in its
impaired integrity [17].
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3. Salinity Perception and Response

Plants perceive innumerable environmental signals which
initiate response mechanisms. Plant cells communicate con-
stantly to coordinate activities in response to hypersaline
environment by employing various signalling cascades.
Plasma membrane acts as a physical barrier at the root-soil
boundary. It is impermeable to hydrophilic molecules like
ions, water, and macromolecules but permeable to small lipo-
philic molecules like steroid hormones. However, hydro-
philic macromolecules are transported through different
channels or carriers. Upon exposure to the saline environ-
ment, the initial reaction may relay within a few seconds or
may take hours. The nonselective cation channels (NSCCs),
glutamate receptors (GLRs), high-affinity K* transporters
(HKTs) and K' channels like Arabidopsis K* transporter
(AKT1), and high-affinity K" uptake transporter (HAK) of
root epidermal cells are responsible for Na™ influx, which fur-
ther inhibits inward rectifying K™ channels and activates K*
outward-rectifying channels (KOR) [18, 19]. Furthermore,
under saline conditions, aquaporins are also believed to
import Na* from soil which results in osmotic stress [20].
This stress is perceived by PM’s mechanosensitive receptor
proteins which communicate the signal by accumulating
c¢GMP leading to calcium (Ca®*) accumulation. Furthermore,
secondary messengers like diacylglycerol (DAG), inositol
phosphates (IPs), and ROS are also produced immediately
after perception. For relaying the response downstream and
modulating stress-responsive genes, different salt-responsive
pathways, viz., salt overly sensitive (SOS), protein kinase,
Ca®", ABA (abscisic acid), and other phytohormones, are
involved. The responsive genes are grouped into two catego-
ries as early and late induced genes. Early induced genes com-
prises TFs expressed rapidly as soon as the stress signal is
relayed while the late genes like stress-responsive genes are
activated slowly in hours after stress perception. For early
genes, the signalling components are already primed but the
late genes which have sustained expression encode and mod-
ulate the required proteins, e.g., RD (responsive to dehydra-
tion). These gene products augment the primary signal and
induce a second round of signalling, which may follow the
previous pathway or opt for a new signalling pathway. An
overview of the initial signalling responses is presented in
Figure 1.

Plants respond to salt stress by different mechanisms, and
ABA-signalling is considered its principal regulating path-
way [21]. Various other mechanisms like membrane system
adjustment, cell wall modifications, variations in cell divi-
sion, cell cycle, and alteration in metabolism operate in either
isolation or synchronization to overcome the adverse effects
of salinity. Ton homeostasis comes into play to limit the
excess accumulation of Na¥, maintaining the water flux,
and K" concentration [22]. Similarly, to sustain low osmotic
potential, plants synthesize and accumulate organic com-
pounds known as osmolytes or compatible solutes such as
polyols, nonreducing sugars, and nitrogen-containing com-
pounds. Osmolytes protect the important proteins by exclud-
ing the hydrophilic molecules from their hydration sphere so
that their interaction with water is reduced or inhibited.
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FIGURE 1: Schematic representation of Na* and K" transporters mediating Na" and K homeostasis in plant roots under salt stress. Na* ions
enter the cells via nonselective cation channels (NSCCs) and possibly via other cation transporters (symplast flow) and intercellular spaces
(apoplast flow). The SOS1 extrudes Na* at the root-soil interface and the xylem parenchyma cells. Likewise, HKT also retrieves Na* from
the xylem. SOSI, localized in the xylem parenchyma cells, mediate Na* efflux from xylem vessels under high salinity. Excessive Na* in
root is sequestered in the large central vacuole by tonoplast-localized NHX exchangers, V-ATPase, and V-PPase which also generate

electrochemical potential gradient for secondary active transport.

Therefore, their native structures are protected and thermo-
dynamically favoured. Another important key event in plants
is epigenetic regulation of stress-inducible genes which helps
in adaptation, wherein a particular gene is either constrained
or overexpressed by modification of DNA-associated pro-
teins or the DNA itself.

4. Ion Homeostasis

Plants regulate Na* concentration by exclusion, redistribu-
tion, elimination, succulence, and accumulation in the cyto-
plasm until its osmotic potential is lower than the soil.
Plasma membrane along with its channel proteins, antipor-

ters and symporters, plays a significant role in transport
and balancing of cytosolic ion concentration. The important
step in the initiation of ion homeostasis is holding back the
excess accumulation of Na*/K" and maintaining the water
flux [23]. Both glycophytes and halophytes cannot withstand
ion toxicity in their cytosol and thus transport excessive salts
to the vacuoles or sequester them into the older leaves and
tissues [22]. Under the saline condition, the Na* enters the
plant passively through root endodermis or by various chan-
nels NSCCS, GLRs, and HKTs [24]. Major transporters
involved in attaining Na™ homeostasis are the SOS1 antipor-
ter in the root for Na™ efflux to soil, NHX antiporters for Na"
sequestration into the vacuoles, and HKT transporters to
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FIGURE 2: Picture depicting different transporters and channels with functions responsible for ion homeostasis under salt stress. These
transporters and channels are found on plasma membrane (PM), tonoplast (TP), and endomembranes (EM). K™ homeostasis-related
transporters/channels include voltage-dependent K channel, two-pore K* channel (TPK), K* uptake permease/high-affinity K*/K*
transporter (KUP/HAK/KT), and cation/H" exchanger (CHX). Na™ homeostasis-related transporters/channels include Na/H"* exchanger
(NHX), salt overly sensitive 1 (SOS1), and high-affinity K" transporter (HKT). Ca’"-related transporters/channels include cyclic
nucleotide-gated channels (CNGCs), glutamate receptor-like channels (GLRs), two-pore channels (TPCs), mechanosensitive channels
(MCAs), and reduced hyperosmolality-induced Ca** increase channels (OSCAs).

retrieve Na* from the transpiration stream (Figure 1). Plants
possess different transporters which work in tandem to pro-
tect the plant from the adverse effect of Na* accumulation
(Figure 2).

4.1. Salt Overly Sensitive (SOS) Pathway. Roots are the pri-
mary site of salt stress perception, and the plasma membrane
consists SOS1 as the main transporter of Na® which is
involved in its extrusion [25]. SOS pathway comprises
SOS1, SOS2, and SOS3 genes which regulates Na* homeosta-
sis. The SOS3 encodes a small protein with Ca®* binding and
myristoylation sequence (MGXXXST/K) for its activity by
aiding the protein-protein and protein-lipid interactions.
In plants, SCaBP8/CBL10 (a paralog of SOS3) is equivalently
expressed in the shoots and is a Ca®*-binding and calcineurin
B-like (CBL) protein. SOS3 protein kinase senses the modu-
lated level of cytosolic calcium elicited by salt stress. It forms
a complex with serine/threonine-protein kinase encoded by
SOS2. The SOS2 comprises C-terminal regulatory domain
with FISL/NAF motif of 2lamino acid and the N-terminal
catalytic domain, which shares sequence homology with
SNF (sucrose nonfermenting) kinases [26]. Under normal
circumstances, FISL motif interacts with the catalytic domain
for autoinhibition. However, during stress condition, SOS2 is
activated by calcium-dependent SOS3 through its regulatory
domain (FISL motif) by relieving it from an autoinhibition
mode. [27]. Deletion of FISL motif from SOS2 activates it
constitutively to make its expression independent of SOS3
[28]. The SOS1 is activated by the SOS3-SOS2 complex, by
myristoylated N terminus motif of SOS3 [29]. SOS1 is a
Na*/H" exchanger which transports the Na* ions from root
epidermal cells into xylem parenchyma cells for transport
up to leaves [21] while meristematic root tip cells lack vacu-
oles and possess SOS1 in their epidermis for extruding Na*
into the soil [22]. Various studies under salt stress employing
wild types and mutants deficient in SOS1, SOS2, and SOS3
genes have demonstrated that all these are vital to improve
salt stress [30].

SOS2 also sequesters excess Na* ions into the vacuoles
through vacuolar ATPases by binding to their regulatory
units and influence the Na*/H" exchange [22]. Tonoplast

comprises two types of antiporters, viz., vacuolar-type
H*-ATPase (V-ATPase) and vacuolar pyrophosphatase
(V-PPase) [31]. Under stress conditions, V-ATPase is con-
sidered more responsible for the survival of plant by
sequestering Na* into vacuoles [32]. In Vigna unguiculata,
the V-ATPase activity has been reported to increase under
salinity, while it remains inactive under normal conditions
[33]. In Arabidopsis, salinity tolerance has been reported to
be independent of V-ATPase activity, as the loss of V-
ATPase function did not change the salinity tolerance. How-
ever, a direct relationship between H"-ATPase of transgolgi
network and salt stress response has been reported in plants
[34]. It has been also reported that the mutation of transgolgi
network-specific marker genes, viz., V-ATPase subunit VHA-
a (VHA-AI), SYNTAXIN OF PLANTS 61 (SYP61), RAB
GTPases A Group 2A (RABA2A), or SYNTAXIN OF PLANTS
43 (S§YP43), results in salt sensitivity in different plants [35].
Arabidopsis having tnol (tgn-localization syp41-interaction
protein) mutants has irregular localization of SYP61 and is
sensitive to salt stress [36].

Interestingly, the overexpression of V-PPase has been
reported to improve the salt tolerance in plants by facilitating
the vacuolar Na* sequestration [37]. The effect of H"-PPase
in crop plants (by overexpressing AtAVP1) in Hordeum vul-
gare has been reported, not only to increase salinity tolerance
under greenhouse gases but also to improve the grain yield
along with improved shoot biomass [38]

5. Sodium-Hydrogen Exchanger
Proteins (NHX)

Sodium-hydrogen exchanger proteins (NHXs) are the trans-
porters involved in cell expansion, ion homeostasis, and salt
tolerance which catalyze the electroneutral exchange of K*
or Na* for H" [39]. NHXs sequester Na* by ATP-dependent
transport under saline conditions [40]. There are eight NHXs
(AtNHX1-8) in Arabidopsis, which are categorized into three
groups: Group I (AtNHX1-4) present on vacuolar mem-
branes, Group II (AtNHX5-6) localized Golgi apparatus and
endosomes, and Group III (NHX7/SOS1 and NHXS8) on
plasma membrane [41]. Overexpression of AtNHXI and
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AtNHX2 in Arabidopsis and AtNHXI1 in tomato, rapeseed,
and soybean is reported to elicit a salt response and confer tol-
erance [5, 42-44]. Similarly, overexpression of heterologous
NHX from Pennisetum glaucum conferred tolerance in
tomato [45], and overexpression of NHX from halophyte
Suaeda salsa and Arabidopsis respectively increased salt toler-
ance in transgenic rice and cotton [46]. Furthermore,
OsNHX1, a homolog of AtNHX1, expresses in root hairs and
guard cells in aerial parts under salinity stress to confer toler-
ance by storing Na" in their vacuoles [47].

6. High-Affinity K" Transporters HKT

They are important Na™ carriers which are grouped into class
I HKT transporters specific for Na* in both monocots and
dicots and class IT HKT symporters having an affinity for
Na* and K* in monocots [48]. Moreover, HKTs show 26-
fold higher affinity towards the Na* than K" in saline condi-
tions [49]. It is an important long-distance Na* transporter
located in xylem parenchyma in the vascular bundles all over
the plant. HKT1 retrieves the Na* from the xylem into xylem
parenchyma inhibiting its delivery into the leaf [50]. To
adapt under salinity, some of the Na™ reaches leaf tissue from
xylem where it is translocated into the phloem, from where it
travels back to the roots to reduce its levels in shoots as
reported in corn, pepper, and barley [50]. In vivo electro-
physiological analyses of the root, stellar cells from Arabidop-
sis mutant and wild type showed that HKT1 mediates passive
Na" transport [51]. Similarly, OsHKT1;5 an ortholog of
HKT1;1 also has a role in sequestering Na* from xylem to
xylem parenchyma to protect the aerial parts of plant, and
TaHKT1;4 transformation resulted in improved tolerance
and yield [52]. AtHKT1;1 is also known to elicit the indirect
xylem loading of K* via outward-rectifying K" channels to
maintain high K*/Na" ratio in leaves to neutralize Na* stress
[53]. Mutation of AtHKT1;1 and OsHKT1;4 in Arabidopsis
and rice resulted in Na™ hypersensitivity due to Na™ accumu-
lation in leaves [54, 55].

7. K" Homeostasis

The most abundant cation K* plays various roles such as
osmotic homeostasis, protein translation, sugar transport,
and photosynthesis. Generally, the cytoplasmic concentra-
tion of Na* is maintained at less than 1 mM, while the K*
accumulates up to 100 mM. The ability of plant tissues to
retain potassium under stress have emerged as important
for salinity tolerance, but recent evidence suggests that
stress-induced K" efflux may be equally important in mediat-
ing growth and development under hostile conditions [56].
Cellular K" level is maintained by various channels and trans-
porters located at different interfaces including transporters at
the root-soil interface, xylem loading, and vacuolar mem-
branes. Various channels responsible at root-soil interface
are Arabidopsis shaker type (AKT), high-affinity potassium
transporter (KUP/HAK), cyclic nucleotide-gated channel
(CNGC), K" release channel, and guard cell outward-
rectifying K* channel (GORK). Xylem possesses selective K*
channel, viz., Stelar outward-rectifying channel (SKOR), non-

selective cation channels (NSCC) while as phloem possesses
AKT. K" accumulation in vacuoles is driven by H'-coupled
antiporters such as NHX, while the release is mediated by K*
channel called the tonoplast two-pore K'-type channel
(TPK1). Uptake and transport mechanism of K predomi-
nantly depend on the available concentration of K* in soil.
But, when the extracellular concentration of Na™ is high com-
pared to the concentration of K*, Na™ is preferred by the trans-
porters because of their similar charge resulting in reduced K*
uptake [24]. However, K* deficiency is secured by root hair
and epidermal cells where the signal is transduced to the cyto-
sol [4]. K" transporters facilitate high-affinity K" uptake than
K* channels for maintaining K* homeostasis. Conversely,
when the extracellular concentration of K* is more, K" chan-
nels facilitate low-affinity K" uptake for maintaining homeo-
stasis [57]. In root tissues, K™ either accumulates locally in
vacuoles or is transported to aerial parts through the xylem.
The excessive K* surpassing the nutritional requirements is
accumulated in the vacuoles generates turgor pressure and
aids in cell expansion. Under the initial stages of water deficit
in plant, K" subsidizes the osmotic adjustment till the compat-
ible solutes are made available. Accumulation of K" has been
proved to play a considerable part in salt tolerance by main-
taining the Na'/K" ratio, turgor pressure, and accumulation
of osmolytes. Exogenous application of K™ has proved to con-
fer increased salt stress tolerance in Lucerne, barley, wheat,
and canola [42].

8. Ubiquitous Ca®>* Transporters

Calcium (Ca*") is the ubiquitous secondary messenger which
coordinates different plant responses against various envi-
ronmental cues. Ca®* involves 5 different types of trans-
porters: cyclic nucleotide-gated channels (CNGCs) in PM
and tonoplast, glutamate receptor-like channels (GLRs) in
PM, two-pore channels (TPCs) in tonoplast, mechanosensi-
tive channels (MCAs), and reduced hyperosmolality-induced
Ca”" increase channels (OSCAs) in PM and endomembranes.
In response to salinity, the cytosolic concentration of Ca®*
increases, which is transported from distinct sites to the cyto-
plasm [58]. To decode an increased level of Ca**, cells possess
specific tools and mechanisms that include Ca** sensors and
target proteins. The sensor proteins possess a Ca**-binding
site in their helix-loop-helix region and are classified into
two categories as sensor responders and sensor relays. Sensor
responders such as Ca**-dependent protein kinases (CDPKs)
exhibit both Ca®" binding and kinase activity, while sensor
relays like calmodulin (CaM) and calmodulin-like proteins
(CML) do not contain kinase activity. However, after binding
with Ca®", they interact with other protein kinases to regulate
their activities [59]. This increased concentration of Ca>* acti-
vates CaM, CML, CDPK, and CBLs which play a pivotal role
in signal transduction. The CaM proteins activated by Ca®"
initiates the signalling cascade via the calcineurin pathway
involving the CDPK, which further modulate the calcium
transporters and regulate the ion transport [60, 61]. In rice,
an increased expression of OsCaml-1 under saline stress
showed better growth than its corresponding wild type [62,
63]. Overexpression of GmCaM4 (Glycine max calmodulin)



in Arabidopsis resulted in expression of AtMYB2-regulated
genes including genes for proline biosynthesis resulting in
proline accumulation which confers salt tolerance [64]. Cal-
cineurin B-like-interacting protein kinase (CIPK) forms a
complex with CBL, which further interacts with other proteins
like SOS1 and AKT]1 to regulate their function to help attain
ion homeostasis [65]. Studying the Ca** increase in relation
to salt stress led to the identification of monocation-induced
Ca®" increasesl (mocal) mutant, lacking the Ca®" increase
induced by Na’; however, it remained unaffected by other
multivalent cations, ROS, or osmotic stress [66].

9. Role of Protein Kinases in Response to
Salt Stress

Diverse protein kinases in plants play a significant role in
integrating different stress-signalling pathways which are
responsible for combating the adverse effects of salinity.
Mitogen-activated protein kinase (MAPK) cascade is one of
the prime pathways in sensing the osmotic stress caused by
salinity and transducing it downstream. MAPK pathway
comprises MAPKKK, MAPKK, and MAPK which are pres-
ent in the nucleus and cytoplasm and are linked to down-
stream targets and the receptors. The MAPK pathway
receptor activation takes place by its phosphorylation by
receptor itself, by interconnecting MAPKKKKSs, by linking
factors and/or by physical interaction with certain com-
pounds. The MAPKKs are dual-specificity kinases which
are phosphorylated at two serine/threonine residues of a
conserved S/T-X; .-S/T motif. These MAPKKs further
phosphorylate MAPKSs, a serine/threonine kinases at threo-
nine and tyrosine residues in the T-X-Y motif. These
MAPKs are responsible for phosphorylation of a variety of
substrates including regulatory proteins like TFs, kinases,
and cytoskeleton-associated proteins [67]. In response to
osmotic stress, the transcript level for these MAPKSs increases
which ultimately leads to accumulation of compatible solutes
for reestablishment of osmotic balance in cell and induces the
major stress genes like LEA/dehydrin for protection from
stress damage [25]. On the onset of salt stress, different
MAPKs mainly MPK4 and MPK6 are stimulated within
diverse periods, and MPK3 is activated by osmotic stress
[68, 69]. Similarly, various other MAPKs are activated in
response to osmotic stress known as SIMK (salt stress-
inducible MAPK), and a SIMK-like MAP kinase named SIPK
(salicylic acid-induced protein kinase) in alfalfa and tobacco
[70-72]. In osmotic stress conditions, MKK4 is reported to
accumulate ROS, regulate the activity of MPK3, and target
NCED3 (NINE-CIS-EPOXYCAROTENOID DIOXYGENASE
3) of ABA biosynthetic process [36]. Various reports sug-
gest MPK6, MKK1, and MKKK20 results in accumulation
of ROS for signal transduction purpose [73]. MPK6 is also
proved to directly mediate the phosphorylation of SOSI by
salt in plant sense response [74]. MAPK is linked to ROS
signalling via SERF1 (salt-responsive ERF1) transcription
factor [75].

Another group of kinases are ABA-associated sucrose
nonfermenting 1/SNF1-related protein kinase 2 (SnRK2)
which mediate in different processes of plant cellular signal-

International Journal of Genomics

ling. These SnRK2/OST1 kinases are activated by autophos-
phorylation and in turn phosphorylate its direct substrates
like downstream effector proteins [76]. The strongly acti-
vated ABA-SnRKs include SnRK2.2, SnRK2.3, and SnRK2.6/
OST1 while SnRK2.7 and SnRK2.8 are weakly activated [77].
ABA-activated SnRK2s induce SLAC1 (slow anion channel-
associatedl) in plasma membrane under salt stress, which
facilitate the water retention and reduce water loss due to
transpiration by mediating stomatal closure [78]. SnRK2-
mediated phosphorylation of RbohF (respiratory burst oxi-
dase homolog protein F) and NADPH oxidase of plasma
membrane results in generation of O*~, which is subsequently
converted into H,O, in apoplastic space. This H,0, acts as a
signalling molecule and facilitates different stomatal closure
with other ABA responses [79]. It is reported that SnRK2.8
directly interacts with transcription factor NTL6 of NAC
(NAM/ATAF1/2/CUC2) under the influence of ABA, which
controls the cellular functions of abiotic stress [73]. Another
study on Arabidopsis snrk2.2/2.3/2.6 triple-mutant with dwin-
dled ABA sensitivity identified the SnRK2 phosphorylation
targets including signal transduction proteins [80]. These pro-
gressive research reports the intricate cross talk of SnRK2
kinases with other stress-responsive processes in different
plant signalling pathways.

Calcium-dependent protein kinases (CDPKs/CPKs)
respond to elevated concentrations of calcium due to differ-
ent environmental cues. The CDPKs regulate the stomatal
movement for maintaining ion homeostasis. So far, 34
CDPKs have been identified in Arabidopsis, out of which 27
contain N-myristoylation motifs highlighting their role in
membrane-associated processes. Different CDPKs are
reported to play a pivot role in ion transport regulation. They
have been reported to link the membrane transport to ABA-
signalling under water deficit conditions in guard cells. In
Arabidopsis, AtCPK3 and AtCPK27 are reported to confer
salt tolerance [81, 82]. Besides regulating ion transport,
CDPKs have a role in ABA and salt stress responses via inter-
acting with diverse proteins and their phosphorylation.
OsCPK14 and OsCPK21 in rice are reported to interact with
and phosphorylate OsDi19-4 transcription factor and 14-3-3
protein (OsGF14e) respectively [83, 84]. Certain CDPKs also
modulate salt stress through osmotic adjustment like
OsCPK9 transcripts which were induced by salt treatments
[85] In rice, OsCPK10 protein modulate the catalase activity
to detox the H,O,, which further protects the cell membrane
integrity [86]. OsCPK12 also regulates ROS homeostasis by
inducing the ROS scavenger genes OsAPX2/OsAPX8 and
repressing NADPH oxidase gene OsRBOHI and confers salt
tolerance [87]. Similar group of calcium-dependent kinases
in plants include calcineurin B-like- (CBL-) interacting pro-
tein kinases (CIPKs). CBLs are a family of small proteins
(~200 amino acid), which perform the regulation of CIPKs.
CIPK network plays a vast and pivotal role in jon transport.
CIPK functions are well characterized by CIPK24 (SOS2)
along with CBL4 (SOS3), which together activates the
Na™/H" antiporter (SOS1) to improve salinity tolerance
[88]. Similarly, CBL1, CBL9, CIPK1, CIPK2, CIPK25,
CIPK26, and C(89)IPK31 are reported to mediate the
response against salt stress via ABA-signalling [89].
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10. Transcription Factors and Stress Response

Transcriptomic analysis of different plants suggests their
genetic and transcriptional dependent susceptibility and tol-
erance towards different stresses [90, 91]. Stress-responsive
transcription factors (TF) have attained extensive consider-
ation as they not only regulate gene expression but also play
a pivot role in regulating multiple abiotic stress responses like
salt sensory pathways [92, 93]. TFs regulate downstream
stress-responsive gene by binding to cis-regulatory elements
in their promoter region [94]. They serve as molecular
switches to the associated genes by binding to their cis-ele-
ment under different cellular conditions. The chief trait of
TF is to interact with different proteins in transcriptional
complexes and regulate the expression of a vast number of
genes. Nearly, 10% of genes in plants potentially code for
TF which are categorized based on their distinct structure
of DNA-binding domain [95]. The transcription factors
associated with salinity are summarized in Table 1.

10.1. NAC. NAC TFs are the largest plant-specific derived
from three proteins, viz., NAM, ATAF, and CUC, which pos-
sess a conserved DNA-binding domain, and these comprise
of diverse C-terminal transcriptional regulatory region as
well as N-terminal at C-terminal DNA-binding domain
[135]. Overexpression of NAC factors has been reported to
assist in achieving improved salt tolerance in many plants
like Arabidopsis, rice, chickpea, tomato, and chrysanthemum
by regulating stress-responsive genes and enhanced physio-
logical activities [100, 136-138]. It is reported that transgenic
plants overexpressing SNAC3 showed lower levels of H,0,,
malondialdehyde (MDA) and relative electrolyte leakage
compared to the wild type under saline stress [139]. NAC-
related genes in several plants such as Sorghum (SbNACS,
SbNAC17, SLNAC26, SDNAC46, SDNAC56, SDNAC58, and
SbNAC73) and wheat (TaNAC47) are induced by salt [140,
141]. Another wheat gene, TaNAC47, is known to induce
downstream genes like AtRD29A, AtRD29B, and AtP5CS1
in Arabidopsis which alleviate the stress by increasing the
osmolytes content. Similarly, overexpression of TaNAC29,
EcNAC67, and NAC57 from poplar enhanced salt tolerance
in transgenic Arabidopsis [138, 142, 143].

10.2. MYC/MYB. MYC (myelocytomatosis oncogene)/MYB
(myeloblastosis oncogene) families are a universal class of
protein with highly conserved DNA-binding domains
known as MYB domains, which comprises multiple imper-
fect repeats, and each unit repeat contains approximately
52 amino acids embrace helix-turn-helix (HTH) structure.
This HTH intercalates in the major groove of DNA [144].
MYB TFs have potential roles in many physiological processes
like in secondary metabolism, cell morphogenesis, meristem
formation and floral and seed development, cell cycle control,
hormone signalling, defence, and stress responses [105, 145,
146]. AtMYB2, AtMYC2, AtMYB73, AtMYB77, AtMYB41,
AtMYB44, AtMYB102, and OsMYB3R-2 are transcriptionally
regulated in salt stress, conferred salt tolerance in transgenic
plants [104, 147-152].

11. AP2/ERF

APETALA2/ethylene response element-binding factors
(AP2/ERF) TFs are characterized by specific DNA-binding
domain that binds to the GCC box of the DNA [153, 154].
This conserved domain is responsible for multiple functions
in plant development like cell proliferation, reproduction,
hormone, and stress responses [155]. The AP2/ERF TF
family is categorized in 4 subfamilies, viz., DREB (dehydra-
tion-responsive element-binding protein), ERF (ethylene
response element-binding factors), AP2 (Apetala 2), and
RAV (related to ABI3/VP1) [153, 155]. Among these four,
DREB and ERF have been comprehensively studied in
response to salt stress, and some members of the RAV sub-
family have also been reported to modulate salt stress [156].
The distinct DREB subfamily has a substantial part to play
in stress regulation [157]. The DREB1/CBF binds to the cis-
acting elements of stress-responsive genes with conserved
sequence (5'-TACCGACAT-3"), which constitute their
drought-responsive element (DRE) in the promoter region
[158]. DREBs are categorized into two subgroups DREBI
and DREB2 and are induced by dehydration and salt stress
[159]. Constitutive expression of DREB1/CBF3 conferred
salt tolerance to transgenic plants, like the overexpression
of Suaeda salsa SsCBF4, confers salt tolerance in transgenic
tobacco [160]. Apple MbDREBI and wild barley HsDREBIA
overexpressed in Arabidopsis and bahiagrass imparted salt
tolerance [161, 162]. DREB2-type proteins are believed to
function through a conserved regulatory mechanism in sev-
eral crops like wheat, maize, rice, and barley [163]. Many
DREB2A are induced by high salinity and dehydration like
rice  OsDREB2A, maize ZmDREB2A, and Arabidopsis
AtDREB2A [114, 118, 164]. Transgenic Arabidopsis with
overexpressing DREB2A-CA exhibits enhanced salt toler-
ance by modulating the expression of salt-responsive genes
[165]. Likewise, overexpression of PgDREB2A in transgenic
tobacco plants confers tolerance against ion toxicity and
osmotic stresses [166].

11.1. AREB/ABF TFs. The ABA-responsive element-binding
protein/ABA-binding factor (AREB or ABFs) belong to the
bZIP (basic leucine zipper) TF group. AREB/ABFs modulate
the expression of ABA-responsive genes by binding to their
ABA-binding responsive elements (ABREs). These ABREs
possess conserved G-box-like cis-acting element (PyACGT
GG/TC) in their promoter region [167]. AREB/ABF TFs
bind either to several ABREs simultaneously or to ABRE
along with the coupling element (CEs) like CEl, CE3,
DRE/CRT, and motif IIT [168]. The signalling pathways of
these require SnRK2s to regulate the ABA-responsive genes
under stress conditions. Under normal conditions and
absence of ABA, SnRK2 is dephosphorylated by phospha-
tases 2C (PP2Cs), and hence, their activity is inhibited. In
stress conditions, ABA inhibits the PP2Cs via ABA receptor
(PYR/PYL/RCAR) proteins by binding to their regulatory
components, viz., Pyrabactin resistancel/PYR1-like [169].
Thus, the SnRKs are activated, which phosphorylates these
AREB/ABF TFs. These TFs comprised 4 different conserved
domains for phosphorylation by different ABA-activated
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TaBLE 1: List of transcription factors associated with salinity.
Family DNA—blpdmg Cis-acting element Plant species Genes involved in salt response  Reference
domains
AtNAC2
. . AtNACO019
Arabidopsis AINACO55 [46, 96]
AtNACO072
OsNAC6
NAC recognition Oryza sativa SNACI [97-99]
NAC NAC domain sequence SNAC2
(TCNACACGCATGT) Cicer arietinum CarNAC5 [100]
Triticum aestivum TaNAC4 [101]
. ) GhNAC4
Gossypium hirsutum GhNACS [102]
Setaria italica SiNAC [103]
AtMYB2 AtMYB4
AtMYB6
AtMYB7
Arabidopsi 104-107
MYB MYB domain MYBR (TAACNA/G) ravidopsis AtMYB44 [ ]
AtMYB73
MYBI5
Glycine max GmMYB76 GmMYB92 [108]
Oryza sativa OsWRKY45 [109]
WRKY WRKYGQK domain ~ W-box (TTGACT/C) Nicotiana benthamiana NbWRKY [110]
Glycine max GmWRKY21 GmWRKY54 (108, 111]
4 GmWRKY13 GmMYBI77 :
. . DREB2A
Arabidopsis DREB2C [112,113]
OsDREB1A OsDREBIC
Oryza sativa OsDREBIF [114, 115]
OsDREB2A
HvDRFI
Hordeum vulgare HVDREBI [116, 117]
Zea mays ZmDREB2A [118]
DRE sequence, GCC box Pennisetum glaucum PgDREB2A [119]
ERF/DREB  AP2/ERF domain (AGCCGCC), and Setaria italica SiDREB2 [120]
(TACCGACAT) .
Capsicum annum CaDREBLP1 [121]
Artiplex hortensis AhDREBI1 [122]
. GmDREBbGmDREBc
Glycine max GmDREB2 [123, 124]
Dendronthema x DmDREBa [125]
moriforlium
Cicer arietinum CAP2 [126]
Salicornia brachiata SbDREB2A [127]
GLM (GTGAGTCAT), ABF2
ABRE (CCACGTGG), Arabidopsis ABF3 [128]
GCN4-like-motif ABF4
(GTGAGTCAT), GmbzIP44
bZIP bZIP domain C-box (GACGTQ), ) GmbZIP62
A-box (TACGTA), Glycine max GmbZIP7S [129]
G-box (CACGTG), GmbZIP132
PB-like(TGAAAA),
GLM (GTGAGTCAT Triticum aestivum Wlip19 [130]
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TasLE 1: Continued.
Family DNA—blpdmg Cis-acting element Plant species Genes involved in salt response  Reference
domains
) OsABI5

Oryza sativa OsbZIP23 [131, 132]

Zea mays ZmbZIP17 [133]

Solanum lycopersicum SIAREB [134]

Osmotic
stress

%

sensor

Ca related
proteins

Salt stress

&
S
& o
&

Maintain ion transport
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stress
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/ o

Salt tolerance, growth and adaptation

FIGURE 3: Mechanism of salinity tolerance in plants. The excess influx of sodium causes ion toxicity and water deficit, which results in the
closure of stomata and decreased availability of CO, for photosynthetic ETC. This water deficit eventually causes ion imbalance and
overproduction of ROS in chloroplast, mitochondria, peroxisomes, and apoplastic space. In response, the plants increase enzymatic/non
enzymatic antioxidants and osmolytes. Transporters like NHX sequester Na" inside the vacuole and SOS! extrudes Na™ outside the cell.
In this response, there is an increased expression of salt-responsive genes, transcription factors (TFs), and kinases inside the cell, which

help the plants to alleviate the stresses encountered by them.

SnRK2 commonly SRK2D/SnRK2.2, SRK2E/SnRK2.6, and
SRK2I/SnRK2.3. These phosphorylated TFs bind to the
ABRE cis-element and regulate the expression of stress-
responsive genes [91, 170].

12. Conclusion

Different signalling components together play an important
role in regulating abiotic stress response and play a critical
role in conferring stress endurance and tolerance to plants.
Usually, the abiotic stress mechanism and the signalling
pathways are studied in model plants which provide us with
insight into its working (Figure 3). High-throughput
sequencing and functional genomics tools have helped in
understanding the cross talk between the different compo-
nents involved in stress-related signalling. There is still insuf-
ficient information on abiotic stress-signalling components
and their interconnection in alleviating stress. Significant

work has been done in interpreting the role of signalling
components and their cross talk to achieve tolerance against
salinity. Various promising pathways have been elucidated,
they need to be envisaged as complex networks, and their
cross talk needs to be enlightened. Thus, comprehensive
research on the functional architecture of complex networks,
including their interactions and cross talk towards abiotic
stress, is required for practical exploitation of them in allevi-
ating the abiotic stress. Expression of many of these stress-
responsive genes is regulated by TFs in either an ABA-
dependent or ABA-independent manner and helps plants
to sustain single or multiplicative effects of different abiotic
stresses. Different studies on different species of plant have
shed light on the intricate and important role of TF in allevi-
ating the abiotic stress. A significant number of TF genes
have been identified and validated, but various stress-
responsive TF genes, which are proposed to have a consider-
able role in stress tolerance and connects different signalling
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components, deserve attention. The cumulative expression of

some TF genes may improve the stress tolerance at the cost of

growth, flowering, and yield which needs to be addressed. In

the future, the focus should be on the novel candidate genes

which confer the tolerance in halophytes. Last but not least,

focus must be shifted from commercial crops to the

nutrient-rich pseudocereals and millets which are promising

(1]

future crops with high nutritive value.

Abbreviations 2]

ABA: Abscisic acid

ABFs: ABA-binding factor

AKT1: Arabidopsis K* transporter 3]

AP2/ERF: APETALA2/ethylene response element-
binding factors

AREB: ABA-responsive element-binding protein

Ca™: Calcium [4]

CBL: Calcineurin B-like

CDPKs/CPKs: Calcium-dependent protein kinases

cGMP: Cyclic guanine monophosphate

CIPKs: CBL-interacting protein kinases

Cl— Chlorine (5]

CNGC: Cyclic nucleotide-gated channel

DAG: Diacylglycerol

DNA: Deoxyribonucleic acid

DREB: Dehydration-responsive element-binding [6]
protein

GLRs: Glutamate receptors

GORK: Guard cell outward-rectifying K* channel 7]

H,0,: Hydrogen peroxide

HAK: High-affinity K" uptake transporter

HKTs: High-affinity K* transporters

IPs: Inositol phosphates (8]

K" Potassium

KOR: K" outward-rectifying channels

MAPK: Mitogen-activated protein kinase

MDA: Malondialdehyde

MYB: Myeloblastosis oncogene [9]

MYC: Myelocytomatosis oncogene

Na*: Sodium [10]

NHX: Sodium-hydrogen exchanger proteins

NSCC: Nonselective cation channels

NSCCs: Nonselective cation channels

Oy Singlet oxygen (11]

0 Superoxide radical

OH™: Hydroxyl ions

PM: Plasma membrane

PP2Cs: Phosphatases 2C

RbohF: Respiratory burst oxidase homolog protein F (12]

ROS: Reactive oxygen species

SIMK: Salt stress-inducible MAPK

SIPK: Salicylic acid-induced protein kinase [13]

SKOR: Stelar outward-rectifying K™ channel

SLAC1: Slow anion channel-associated1

SnRK2: Sucrose nonfermenting 1/SNF1-related [14]
protein kinase 2

SOS: Salt overly sensitive

TFs: Transcription factors.
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