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Ancestral sequence reconstruction is a well-known problem inmolecular evolution.The problem presented in this study is inspired
by sequence reconstruction, but instead of leaf-associated sequences we consider only their lengths. We call this problem ancestral
gene length reconstruction. It is a problem of finding an optimal labeling whichminimizes the total length’s sum of the edges, where
both a tree and nonnegative integers associated with corresponding leaves of the tree are the input. In this paper we give a linear
algorithm to solve the problem on binary trees for the Manhattan cost function 𝑠(V, 𝑤) = |𝜋(V) − 𝜋(𝑤)|.

1. Introduction

Ancestral sequence reconstruction (ASR) is a well-recog-
nized problem in molecular evolution [1]. Let G be a (phy-
logenetic) tree with n leaf nodes, and 𝑘 strings over one
alphabet (gene sequences) assigned to 𝑘 leaves (𝑘 ≤ 𝑛).
ASR may be defined in the following way: assignment of
strings to inner nodes “in the best possible way.” There are
two main paradigms for ASR: maximum parsimony (MP)
and probabilistic-based reconstruction. The latter includes
maximum likelihood (ML) and Bayesian reconstructions.
MP reconstruction has a time complexity linear in the num-
ber of sequences analyzed. The problem of the parsimonious
reconstruction of ancestral states for the given tree with the
given states of its leaves (the most parsimonious assignment
of the labels of internal nodes for a fixed tree topology) is
a well-studied problem [2–4]. Efficient algorithms have also
been developed for different types of ML-based reconstruc-
tions (reviewed in [5]). ASR methods require as input both a
phylogenetic tree and a set of gene sequences associated with
corresponding leaves of the tree [6].

ASR is related to gene sequence evolution while the prob-
lem presented in this paper, being inspired byASR, deals with
gene length variation. Instead of considering leaf-associated

sequences we take into account only their lengths. Instead
of the reconstruction of ancestral sequences, we search for
the optimal reconstruction of ancestral gene lengths. The
problem may be called ancestral gene length reconstruction
(AGLR). AGLR is actually a problem of finding an optimal
labeling which minimizes the total “length” sum of the
edges, the minimum sum problem where both a tree and
nonnegative integers associated with corresponding leaves of
the tree are the input.

In the graph theory vertex labeling related problems
were intensively studied [8]. Typically, the problems can be
described as follows: for a given graph, find the optimalway of
labeling the vertices with distinct integers. The problems and
their solutions were described in [9–12]. In [13] we presented
the algorithms to solve the minimum sum problem where
both a tree and positive integers associated with all leaves of
the tree are the input (finding the optimal way of labeling
the vertices with positive integers). Here we would like to
formulate the minimum sum problem where both a tree and
positive integers associated with some of the leaves of the
tree are the input (finding the optimal way of labeling the
vertices with nonnegative integers). This problem reflects a
situation in which the genome tree is constructed by one or
another method for a set of genomes, the leaves of the tree
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are linked with the corresponding genomes of the set, and
the leaves are labeled by integers designating lengths of genes
of a chosen gene family. Some leaves would be labeled zero
because corresponding genomes have no genes of the chosen
gene family. Alternatively, it may be a case of a missing value
but in this study we do not consider this case: in the problem
definition that we bring here zero means “no value.”

In this paper we provide a linear algorithm to solve
max sum problem on binary trees for the Manhattan cost
function 𝑠(V, 𝑤) = |𝜋(V)−𝜋(𝑤)|.The algorithm uses dynamic
programming technique and the properties of theManhattan
distance.

2. Preliminaries

Let G be a tree with n leaf nodes, vertex set V(G), and edge
set E(G). 𝑁 = |𝑉(𝐺)|. Let us number the leaf nodes of
𝐺:1, 2, . . . , 𝑛. Let us number the root of 𝐺 : 𝑁. An integer
labeling 𝜋 of 𝐺 is a mapping 𝜋 from 𝐺 to a set of nonnegative
integers, where label 0 is an out-of-the ordinary labelmeaning
“absent value.” Let us denote integer labeling of the leaf nodes
of 𝐺(𝜋(1) = 𝑝

1
, . . . , 𝜋(𝑛) = 𝑝

𝑛
). Let us denote by 𝑔min and

𝑔max minimum and maximum positive integers labeling leaf
nodes: 𝑔min = min𝑝

𝑖
: 𝑝
𝑖

> 0; 𝑔max = max𝑝
𝑖
; 𝑚 =

𝑔max − 𝑔min + 1.
Let us introduce a cost function 𝜑 of the edge V𝑤 ∈ 𝐸(𝐺):

𝜑 (𝑥, 𝑦) =

{
{
{
{

{
{
{
{

{

0 if 𝑥 = 𝑦 else
𝐶
1

if 𝑥 = 0 else
𝐶
2

if 𝑦 = 0 else
𝜃 (𝑥, 𝑦) ,

(1)

where the nonnegative cost function 𝜃(𝑥, 𝑦) has the following
distance properties:

(i)

𝜃 (𝑥, 𝑦) ≥ 0 𝑥 = 𝑦 ←→ 𝜃 (𝑥, 𝑦) = 0/ ∗

function is equal to zero if

and only if its arguments are equal ∗ /

(2)

(ii)

𝜃 (𝑥, 𝑦) = 𝜃 (𝑦, 𝑥) / ∗ symmetry ∗ / (3)

(iii)

𝑥 > 𝑦 󳨀→ [(𝜃 (𝑥, 𝑦) < 𝜃 (𝑥, 𝑦 − 1)) ,

(𝜃 (𝑥, 𝑦) < 𝜃 (𝑥 + 1, 𝑦) )] ;

(4)

(iv)

𝑥 < 𝑦 󳨀→ [(𝜃 (𝑥, 𝑦) < 𝜃 (𝑥 − 1, 𝑦)) ,

(𝜃 (𝑥, 𝑦) < 𝜃 (𝑥, 𝑦 + 1))] .

(5)

𝐶
1

> 𝐶
2

> 𝑚 = 𝑔max − 𝑔min + 1. 𝐶
1
is a gain penalty, 𝐶

2

is a loss penalty, and 𝜃 is a length change penalty function.

Since the likelihoods of loss and gain events are likely to differ,
we may need to weight them differently. This is achieved by
introducing different penalties 𝐶

1
> 𝐶
2
; the loss penalty is

normally assigned a value close to 𝑔max − 𝑔min, whereas the
gain penalty should be larger due to biological considerations.
They suggest that, on average, gene lossmight be amore likely
event than gene gain. Therefore, different gain penalties were
used in our study similarly to as it was done in [14].

An example of a function 𝜃(𝑥, 𝑦) is |𝜋(V) − 𝜋(𝑤)|
𝜆. In

case of 𝜆 = 1 we obtain an absolute value of the difference
between labelings V and 𝑤: |𝜋(V) − 𝜋(𝑤)|. In case of 𝜆 = 2 we
obtain a square of the difference between labelings V and 𝑤:
(𝜋(V) − 𝜋(𝑤))

2.

2.1. An Arbitrary Tree and an Arbitrary Cost Function. Given
a tree𝐺, an integer labeling of the leaves of𝐺(𝑝

1
, . . . , 𝑝

𝑛
) = 1,

the gain penalty 𝐶
1
, the loss penalty 𝐶

2
, and a cost function

𝜃 ((1)–(5)), the minimum sum problem is to find a labeling
which minimizes the total cost:

𝑆 (𝐺) = min
𝜋

∑

∀{V𝑤}∈𝐸(𝐺)

𝜑 (𝜋 (V) , 𝜋 (𝑤)) over all 𝜋. (6)

2.2. A Binary Tree Problem . Given a binary tree𝐺, an integer
labeling of the leaves of 𝐺(𝑝

1
, . . . , 𝑝

𝑛
), the “gain” penalty 𝐶

1
,

and the “loss” penalty 𝐶
2
, the Manhattan minimum sum

problem is to find the labelings which minimize the sum 𝑆

over all 𝜋

𝑆 (𝐺) = ∑

∀{V𝑤}∈𝐸(𝐺)&𝜋(V) ̸= 0&𝜋(𝑤) ̸= 0
|𝜋 (V) − 𝜋 (𝑤)|

+ 𝑘
1
⋅ 𝐶
1
+ 𝑘
2
⋅ 𝐶
2
,

(7)

where 𝑘
1
is a number of edges of type (𝜋(V) = 0&𝜋(𝑤) > 0),

and 𝑘
2
is a number of edges of type (𝜋(V) > 0&𝜋(𝑤) = 0).

3. Problem Solutions

3.1. DP Algorithm (for the Problem (1)). Due to the prop-
erties ((2)–(5)) of the cost function 𝜃(𝑥, 𝑦) all labels of
the optimal labeling must be either equal to 0 or in the
interval [𝑔min, 𝑔max]. As a consequence of this, the dynamic
programming (DP) method is applicable for the problem. It
will be easier to explain the DPmethod on a binary tree using
𝜎
𝑘
(𝑖) notation. The quantity 𝜎

𝑘
(𝑖) will be interpreted as the

minimal cost, given that node 𝑘 is assigned integer 𝑖, to the
subtree with the node 𝑘 as a root of the subtree.

3.1.1. DP Algorithm for a Binary Tree

Up Phase. A procedure called DP up calculates the costs 𝜎
𝑘
(𝑖)

of all nodes 𝑉(𝐺) of the tree 𝐺, given a cost function 𝜑.
When we compute 𝜎

𝑁
(𝑖) for the root node (the index of

the root is 𝑁), then we simply choose the minimum of these
values:

𝑆 (𝐺) = min
𝑖

𝜎
𝑁

(𝑖) (8)
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Initiation. Given labeling of the leaf nodes of 𝐺(𝑝
1
, . . . , 𝑝

𝑛
} at

the tips of the tree the 𝜎
𝑖
(𝑗) are easy to compute. The cost is 0

if the observed integer 𝑝
𝑖
is integer 𝑗, and infinite otherwise.

𝜎
𝑖
(𝑗) = {

0 if 𝑗 = 𝑝
𝑖

∞ otherwise
} . (9)

Iteration. For the immediate common ancestor of the nodes 𝑙
and 𝑟, node 𝑎, we have

𝜎
𝑎
(0) = min(𝜎

𝑙
(0) , 𝐶

1
+ min
𝑗

𝜎
𝑙
(𝑗))

+ min(𝜎
𝑟
(0) , 𝐶

1
+ min
𝑘

𝜎
𝑟
(𝑘)) ,

𝜎
𝑎
(𝑖) = min(min

𝑗

[𝜃 (𝑖, 𝑗) + 𝜎
𝑙
(𝑗)] , 𝐶

2
+ 𝜎
𝑙
(0))

+ min(min
𝑘

[𝜃 (𝑖, 𝑘) + 𝜎
𝑟
(𝑘)] , 𝐶

2
+ 𝜎
𝑟
(0)) ,

∀𝑖, 𝑗, 𝑘 ∈ [𝑔min, 𝑔max] .

(10)

The interpretation of this equation is immediate. The
smallest possible cost given that node 𝑎 is assigned zero
is either the cost 𝜎

𝑙
(0) or the “gain” penalty 𝐶

1
plus the

minimum of 𝜎
𝑙
(𝑗), the least of the two plus the minima of

corresponding values associated with the right descendant
tree. The smallest possible cost given that node 𝑎 is assigned
𝑖 is a sum of two values: the first one is either the cost 𝜃(𝑥, 𝑦)

of the edge from node 𝑎 to node 𝑙, plus the cost 𝜎
𝑙
(𝑗) of the

left descendant subtree given that node 𝑙 is in state 𝑗, or the
“loss” penalty 𝐶

2
plus 𝑆

𝑙
(0); the second one is the cost 𝜃(𝑖, 𝑘)

of the edge from the node 𝑎 to the node 𝑟, plus the cost 𝜎
𝑟
(𝑘)

of the right descendant subtree given that node 𝑟 is in state 𝑘.
We select those values of 𝑗 and 𝑘 which minimize that sum.
Equation (10) is applied successively to each inner node in
the tree, doing a postorder tree traversal. Finally it computes
all the 𝜎

𝑁
(𝑖), and then (8) is used to find the minimum cost

for the whole tree. The complexity of the Up phase of the
algorithm is 𝑂(𝑁

∗
𝑚
∗
𝑚).

Traceback. The procedure calculates the labels 𝜋(𝑝) of all
nodes 𝑝 of the tree 𝐺.

Choose any integer 𝑖 which provides the minimum of the
𝜎
𝑁
(𝑖)—it is the root label. It may be either zero or a positive 𝑖.

Doing a preorder tree traversal, successively label each inner
node in the tree: for any inner node 𝑝, and given that a
parent label 𝑖 was reconstructed, the label 𝜋(𝑝) = 𝑗 is easily
reconstructed as well.

3.1.2. DP Algorithm for an Arbitrary Tree

Up-Phase. A procedure DP up calculates the costs 𝜎
𝑘
(𝑖) of all

nodes 𝑉(𝐺) of the tree.
Suppose that the 𝑘

𝑎
descendant nodes of the node 𝑎 are

called 𝑏
𝑗
. The following equation will therefore be similar to

(10) replacing the sum of 𝜎
𝑙
and 𝜎

𝑟
by the total sum of 𝜎

𝑗
1

,
while 𝑗

1
traverses all values of 𝑏

𝑗
:

𝜎
𝑎
(0) =

𝑘
𝑎

∑

𝑗
1

min [𝜎
𝑗
1
(0) , 𝐶

1
+ min
𝑗

𝜎
𝑗
1

(𝑗)] , (11)

𝜎
𝑎
(𝑖) =

𝑘
𝑎

∑

𝑗
1

min [min
𝑗

(𝜃 (𝑖, 𝑗) + 𝜎
𝑗
1

(𝑗)) , 𝐶
2
+ 𝜎
𝑗
1
(0)] ,

∀𝑖, 𝑗 ∈ [𝑔min, 𝑔max] .

(12)

This equation is applied successively to each node in the
tree, doing a postorder tree traversal. Finally it computes all
the 𝜎
𝑁
(𝑖), and then (8) is used to find the minimum cost for

the whole tree.

Down Phase. As Traceback above: Consider the following.

3.2. DP Algorithm for a Manhattan Sum for a Binary Tree
(Problem (2)). Manhattan distance 𝜃(𝜋(V), 𝜋(𝑤)) is an abso-
lute value of the difference between labelings V and𝑤 : |𝜋(V)−
𝜋(𝑤)|. This distance measure has the following property: if
siblings have positive labels, then all integers that lie between
these values may equally serve as optimal labels of a parent.

(i) If (𝜋(𝑙) ≤ 𝜋(𝑟)), then for all 𝑘𝜋(𝑙) ≤ 𝑘 ≤ 𝜋(𝑟) the score
𝜃(𝑘, 𝜋(𝑙))+𝜃(𝑘, 𝜋(𝑟)) = 𝑘−𝜋(𝑙)+𝜋(𝑟)−𝑘 = 𝜋(𝑟)−𝜋(𝑙).

(ii) If (𝜋(𝑙) ≤ 𝜋(𝑟)), then for all 𝑘 < 𝜋(𝑙) ≤ 𝜋(𝑟) the score
𝜃(𝑘, 𝜋(𝑙)) + 𝜃(𝑘, 𝜋(𝑟)) = 𝜋(𝑙) − 𝑘 + 𝜋(𝑟) − 𝑘 = 𝜋(𝑟) −

𝜋(𝑙) + 2(𝜋(𝑙) − 𝑘).
(iii) If (𝜋(𝑙) ≤ 𝜋(𝑟)), then for all 𝜋(𝑙) ≤ 𝜋(𝑟) < 𝑘 the score

𝜃(𝑘, 𝜋(𝑙)) + 𝜃(𝑘, 𝜋(𝑟)) = 𝑘 − 𝜋(𝑙) + 𝑘 − 𝜋(𝑟) = 𝜋(𝑟) −

𝜋(𝑙) + 2(𝑘 − 𝜋(𝑟)).

So, as it would be proven below, at the bottom-up stage of
the DP algorithm it would be sufficient to assign to each node
𝑎 in the tree 𝐺 four values: left(𝑎), right(𝑎), 𝑍(𝑎), and 𝑋(𝑎).
The meanings of the values are as follows: left and right are
bounds of an interval associated with the node 𝑎, 𝑍 is a cost
value 𝜎

𝑎
(0), and 𝑋 is a cost 𝜎

𝑎
(𝑖) for any integer 𝑖 from the

interval: left ≤ 𝑖 ≤ right.

Initiation. Given labeling of the leaf nodes of 𝐺(𝑝
1
, . . . , 𝑝

𝑛
) =

1 these four values are easy to compute for the leaf nodes:

for (𝑖 = 1; 𝑖 ≤ 𝑛; 𝑖 + +) if (𝑝[𝑖] == 0) {𝑍[𝑖] = 0;
left[𝑖] = 0; right[𝑖] = 0; 𝑋[𝑖] = 𝐶

1
+ 𝐶
2
} else {𝑍[𝑖] =

𝐶
1
+ 𝐶
2
; left[𝑖] = 𝑝[𝑖]; right[𝑖] = 𝑝[𝑖]; 𝑋[𝑖] = 0}.

3.2.1. Examples. Let us consider the simplest trees with two,
three, and four labeled leaves.The simplest tree configuration
is presented in Figure 1. There is only one node to label—the
root node.

(i) Figure 1(a): no genes are assigned to the leaves → no
gene is assigned to the root.

(ii) Figure 1(b): the left leaf has no gene, and the right leaf
has a gene with the length equal to 136 → the root
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0, 0, 0, 60

0

· · ·· · ·

(a)

136, 136, 50, 30

136

136· · ·

(b)

125, 136, 100, 11

136 125

125 . . . 136

(c)

Figure 1: Assignment of bottom-up stage values (left, right, 𝑍, and 𝑋) in 2-leaf trees. The “gain” penalty 𝐶
1
= 50; the “loss” penalty 𝐶

2
= 30.

Optimal labels are in red.

125, 136, 100, 11

125

125 136

125

l r

125, 136, 61, 41
a

· · ·

(a)

125, 125, 50, 30

125

136

136

125

125, 136, 80, 41

· · ·

(b)

125, 141, 100, 16

136

125 141

136

136

136, 136, 116, 16

(c)

Figure 2: Assignment of bottom-up stage values (left, right, 𝑍, and 𝑋) in 3-leaf trees. The “gain” penalty 𝐶
1
= 50; the “loss” penalty 𝐶

2
= 30.

Optimal labels are in red.

is labeled by 136; the score is equal to the loss penalty
𝐶
2
= 30.

(iii) Figure 1(c): any label 125 ≤ 𝑘 ≤ 136 is good to label
the root; the score is equal to 136 − 125 = 11.

The next simplest tree topology—three-leaf trees—is
presented in Figure 2. There are two nodes to label, the inner
node and the root.

(i) Figure 2(a): the inner node is labeled analogically to
the root in Figure 1(c): any 𝑘 125 ≤ 𝑘 ≤ 136 is equally
good to label the inner node; the root node is labeled
analogically to the root in Figure 1(b): (𝑍(root) = 𝐶

1
+

(136 − 125)) > (𝑋(root) = 𝐶
2
+ 11) → the root is

labeled by any 𝑘 125 ≤ 𝑘 ≤ 136, that is, by 125.
(ii) Figure 2(b): labeling is similar to that of Figure 1(a).
(iii) Figure 2(c): the inner node is labeled analogically to

Figure 2(a): any label 125 ≤ 𝑘 ≤ 136 is good to label
it; the score is equal to 136−125 = 11.The root should
be labeled by 136 because 125 < 136 < 141.

Determination of the optimal labeling of the four-leaf
trees is very similar to the examples described above. Figure 3

illustrates labeling of the tree where all four leaves have
nonzero labels: ((125, 141), (136, 150)). Labeling of the inner
nodes is as above (Figure 2(c)): [125, 141] and [136, 150]. All
integers of the intersection between these two close intervals
are optimal values to label the root: [125, 141] ∩ [136, 150] =

[136, 141]. In Figure 3 we present the value 136 as a chosen
suitable label.

Examples of the trees with very distinct subtrees are
presented in Figures 4 and 5. In Figure 4 we present a tree
obtained by merging two very different subtrees. The left 4-
leaf subtree has very obvious intuitive labeling of internal
nodes: all nodes should be labeled by zero.The right subtree is
identical to the tree presented in Figure 2(c).Merging of these
two subtrees produces bottom-up stage values (left, right, 𝑍,
and𝑋) to the new root equal to [125, 136, 111, 91]. In spite of
assignins the interval [125, 136] to the root only the value 136
provides the optimal solution. (We would like to express our
gratitude to the anonymous reviewer for bringing our atten-
tion to this situation.) We formulate this rule below describ-
ing traceback stage of the algorithm. Figure 4 is chosen to
illustrate labeling of nodes similar to the root of the tree.

After considering these few simple examples, we describe
the algorithm.



BioMed Research International 5

125, 141, 100, 16 136, 150, 100, 14

136

150136141125

136

136

136, 141, 130, 30

Figure 3: Assignment of bottom-up stage values (left, right, 𝑍, and
𝑋) in a 4-leaf tree with all four leaves labeled by positive integers.
The “gain” penalty 𝐶

1
= 50; the “loss” penalty 𝐶

2
= 30. Optimal

labels are in red.

125, 125, 50, 110

136136125

136

136

125

136

0

0
0

136, 136, 111, 11

125, 136, 111, 91

· · ·· · ·· · ·

Figure 4: Labeling of a “peculiar” tree. The left subtree has three
zero and one nonzero leaf, while the right subtree has three nonzero
leaves. The “gain” penalty 𝐶

1
= 50; the ”loss” penalty 𝐶

2
= 30.

Optimal labels are in red.

3.2.2. Bottom-Up Stage

Initiation. Given labeling of the leaf nodes of 𝐺(𝑝
1
, . . . , 𝑝

𝑛
) at

the tips of the tree the 𝜎
𝑖
(𝑗) are easy to compute. The cost is 0

if the observed integer 𝑝
𝑖
is integer 𝑗, and

𝐶
1
+ 𝐶
2

otherwise. (13)

Iteration.Doing a postorder tree traversal assign successively
to each node in the tree the abovementioned four values
left(𝑎), right(𝑎),𝑍(𝑎), and𝑋(𝑎). An interval [left(𝑎), right(𝑎)]
is assigned according to the following rule: if anyone of two
children intervals is not defined, then assign the interval
of the other child; otherwise, a parent interval is either an
intersection of the intervals of its children or an interval that
lies between these intervals if their intersection is empty. 𝑍 is
a cost value 𝜎

𝑎
(0), where for the Manhattan distance we can

rewrite (10) as

𝑍 (𝑎) = 𝜎
𝑎
(0) = min (𝜎

𝑙
(0) , 𝐶

1
+ 𝜎
𝑙
(𝑗))

+ min (𝜎
𝑟
(0) , 𝐶

1
+ 𝜎
𝑟
(𝑗)) ,

𝑋 (𝑎) = 𝜎
𝑎
(𝑖) = min(min

𝑗

[𝜃 (𝑖, 𝑗) + 𝜎
𝑙
(𝑗)] , 𝐶

2
+ 𝜎
𝑙
(0))

+ min(min
𝑘

[𝜃 (𝑖, 𝑘) + 𝜎
𝑟
(𝑘)] , 𝐶

2
+ 𝜎
𝑟
(0))

= min(min
𝑗

[
󵄨
󵄨
󵄨
󵄨
𝑖 − 𝑗

󵄨
󵄨
󵄨
󵄨
+ 𝜎
𝑙
(𝑗)] , 𝐶

2
+ 𝜎
𝑙
(0))

+ min(min
𝑗

[
󵄨
󵄨
󵄨
󵄨
𝑖 − 𝑗

󵄨
󵄨
󵄨
󵄨
+ 𝜎
𝑟
(𝑗)] , 𝐶

2
+ 𝜎
𝑟
(0)) .

(14)

3.2.3. Pseudocode. For more details see Pseudocode 1.

3.2.4. Traceback Stage

Interval Correction Rule. Following the bottom-up stage four
values left(𝑎), right(𝑎), 𝑍(𝑎), and 𝑋(𝑎) are assigned to every
internal node 𝑎 of the tree. An interval (left(𝑎), right(𝑎))
should be diminished if one of the edges connecting the node
𝑎 with its son becomes of type (𝑘, 0), 𝑘 > 0. Let us denote
sons of the node 𝑎 by 𝑙(𝑎) and 𝑟(𝑎). Correction conditionΩ(𝑎)

would be formulated as

Ω (𝑎) = (𝑋 (𝑎) ≤ 𝑍 (𝑎)) and

((𝑋 (𝑙 (𝑎)) > 𝑍 (𝑙 (𝑎))) 𝑉 (𝑋 (𝑟 (𝑎)) > 𝑍 (𝑟 (𝑎)))) .

(15)

If Ω(𝑎) is TRUE, then the bounds of the corrected interval
would be obtained by intersection of the interval associated
with the node with the corrected interval associated with the
corresponding son:

if 𝑋(𝑙 (𝑎)) > 𝑍 (𝑙 (𝑎)) , then [left󸀠 (𝑎) , right󸀠 (𝑎)]

= [left (𝑎) , right (𝑎)]

∩ [left (𝑟 (𝑎)) , right (𝑟 (𝑎))]

else [left󸀠 (𝑎) , right󸀠 (𝑎)]

= [left (𝑎) , right (𝑎)]

∩ [left (𝑙 (𝑎)) , right (𝑙 (𝑎))] ;

(16)

Otherwise, the bounds of the corrected interval would not be
changed from the original ones:

[left󸀠 (𝑎) , right󸀠 (𝑎)] = [left (𝑎) , right (𝑎)] . (17)

Initiation. Labeling of the root: if𝑋(𝑁) ≤ 𝑍(𝑁), then correct
the root interval according to (15)–(17), and then choose an
integer from the corrected interval assigned to the root node
otherwise choose 0—it is the root label 𝜋(𝑁).

Iteration. Doing a preorder tree traversal, successively label
each node in the tree either by an integer from the corrected
interval assigned to this nodewhich is the nearest to its parent
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/∗ Assignment values left[𝑎] and right [𝑎] ∗/
FL = FALSE;
if (left[l] == 0) { left[a] = left[r]; right[a] = right[r]} else
if (left[r] == 0) { left[a] = left[l]; right[a] = right[l]} else
if (left[l] ≤ left[r]) {
if (right[l] < left[r]) {

left[a] = right[l]; right[a] = left[r]; FL = TRUE;
} else {

left[a] = left[r]; right[a] = min(right[l], right[r]);
}

} else {

if (right[r] < left[l]) {
left[a] = right[r]; right[a] = left[l]; FL = TRUE;

} else {

left[a] = left[l]; right[a] = min(right[l], right[r]);
}

}

/∗ Assignment values 𝑍[𝑎] and 𝑋[𝑎]: 𝑍 is a cost of 𝜎
𝑎
(0), 𝑋 is a cost of 𝜎

𝑎
(𝑖) for all i:

left ≤ 𝑖 ≤ right ∗/
if (FL) diff = right[𝑎] − left[𝑎]; else diff = 0;
𝑍(𝑎) = min(𝑍(𝑙), 𝐶

1
+𝑋(𝑙)) + min(𝑍(𝑟),𝐶

1
+𝑋(𝑟))

𝑋(𝑎) = min(diff + 𝑋(𝑙) + 𝑋(𝑟), 𝑋(𝑟) + 𝐶
2
+ 𝑍(𝑙)), 𝑋(𝑙) + 𝐶

2
+ 𝑍(𝑟), 2𝐶

2
+ 𝑍(𝑙) + 𝑍(𝑟))

Pseudocode 1

Table 1: List of archaeal genomes for Figure 4.

No. Name Kingdom Group
0 Aeropyrum pernix K1 A C
1 Archaeoglobus fulgidus DSM 4304 A E
8 Caldivirga maquilingensis IC-167 A C
29 Haloarcula marismortui ATCC 43049 A E
30 Halobacterium salinarum R1 A E
31 Halobacterium sp. NRC-1 A E
32 Haloquadratum walsbyi DSM 16790 A E
35 Hyperthermus butylicus DSM 5456 A C
36 Ignicoccus hospitalis KIN4/I A C
37 Metallosphaera sedula DSM 5348 A C
38 Methanobrevibacter smithii ATCC 35061 A E
39 Methanococcoides burtonii DSM 6242 A E
40 Methanococcus aeolicusNankai-3 A E
41 Methanococcus maripaludis C5 A E
42 Methanococcus maripaludis C6 A E
43 Methanococcus maripaludis C7 A E
44 Methanococcus maripaludis S2 A E
45 Methanosaeta thermophila PT A E
46 Methanosarcina acetivorans C2A A E
47 Methanosarcina barkeri str. fusaro A E
48 Methanosarcina mazei Go1 A E
49 Methanosphaera stadtmanae DSM 3091 A E
50 Methanospirillum hungatei JF-1 A E
Notations of the groups: E: Euryarchaeota, C: Crenarchaeota.

label (itmay be either the value equal to the parent label or the
boundary value of the interval assigned with the node) or by
0.

The proof of the correctness of a simpler algorithm (with-
out zero-labeled leaves) is published in [15]. In the Appendix
there are several lemmas, from which the correctness of the
algorithm presented here results.

3.2.5. Example. In Figure 5 of [7] the consensus trees
obtained from 100 genome trees were presented. The trees
were produced on the basis of 80% randomly chosen COGs,
and the right tree was produced on the basis of 15%-
jackknifing (the explanations in the text of [7]). This tree
possesses phylogenetic reasonableness.

(a) The representatives of both prokaryotic Kingdoms:
Eubacteria and Archaea are clustered separately. In
otherwords, Archaeal organisms (genomes 0, 1, 8, 29–
32, and 35–50) form a monophyletic group.

(b) Euryarchaeota and Crenarchaeota form monophy-
letic groups.

A part of this tree was selected to illustrate the algorithm.
We took the upper part of the tree related exclusively to
Archaea (see A/B marked arrow in Figure 4(b) from [7]) and
placed the root at the point dividing all Archaeal genomes
into Euryarchaeota and Crenarchaeota (see E/C marked
arrow in Figure 4(b) from [7]). Thus, Figure 5 is a part of
Figure 4(b) from [7] labeled according to COG0835. This
COG was randomly selected as suitable for purposes of
illustration. Table 1 presents a list of Archaeal genomes from
the whole set of genomes that were used for a genome tree
construction (Figure 4(b) from [7]). Table 2 presents the
lengths of the Archaeal proteins of this COG.

To assign labels to the leaves of the tree of Figure 5 two
preprocessing steps were done: (1) taking off outliers, the
lengths 328 of the 𝐻. marismortui protein and 344 of theM.
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Figure 5: Archaeal part of Figure 4(b) from [7] labeled accordingly to COG0835.

hungatei protein are obvious outliers; (2) taking the median
value of paralog’s lengths of the genomes 30, 31, 46, 48, and 50.
Figure 5 presents results of application of the bottom-up and
traceback stages of the algorithm to this tree: a quartet that
was assigned to a node𝑎 at the bottomupstage is shownunder
the edge linking the node 𝑎 and its parent node, a label that
was assigned to the node 𝑎 at the traceback stage, is shown
over the same edge.

As we can see the root is labeled by zero. There are two
gene-birth events and one gene-death event. One gene was
born with the length of 155 and another gene birth is labeled
by 146. Genome number 32 (Haloquadratum walsbyi) has no
protein from COG0835, while other Haloarchaea (genomes
29–31) do have. Thus, the edge connecting with leaf labeled
by 32 is marked with a gene-loss symbol.

4. Discussion

In [15] the algorithms to find the optimal labeling of the
vertices of the tree under Wagner parsimony were presented.
A simple extension of the problem could be finding the
optimal labeling of the vertices of the tree with nonnegative
integers. This more realistic approach requests special con-
sideration of zero labeling. Wedges of type (𝑘, 0), 𝑘 > 0,
should be scored differently fromwedges of type (0, 𝑘), 𝑘 > 0,
because the (𝑘, 0) notes gene loss, while (0, 𝑘) notes gene
gain. These events should be scored differently. Interestingly,
this differentiated scoring in addition to tree labeling resulted

in reconstruction of “parsimonious” evolutionary scenario.
Reconstruction of a gene evolution along a species tree is
an interesting and principal problem. Lyubetsky and his
coworkers contributed a lot to formulation and solving this
problem. In their studies [16–22] the authors tackled mainly
two important and sophisticated phylogenetic problems.The
obtained results are partially reviewed in the first section of
[22] which also provides an extended biological background
and relevant references. Reconstruction of a gene evolution
along a species tree (to build the evolutionary scenario),
following the approach of Lyubetsky et al., is to find an
optimal mapping of a gene tree into a species tree. (An
example of a different approach was presented in [14].) The
second problem is to construct a supertree from the given set
of gene trees.

As it was mentioned in [22], the first problem, stated as a
tree-into-tree mapping, is solved in polynomial (often linear,
and at maximum cubic) time even for the case of time slices
and horizontal gene transfers. The algorithms presented in
our study are polynomial as well.

Choosing 𝐶
1
(a gain penalty), 𝐶

2
(a loss penalty), and

𝜃 (a label change penalty) is crucial for reconstruction
of trustworthy evolutionary scenario. However, it is very
difficult task and we cannot claim categorically that choosing
“correct” parameters of the model will result in truly reliable
reconstruction. We do plan to make a comparison between
results obtained by abovementioned methods of Lyubetsky
and ours (work in progress).
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Table 2: Protein lengths of the chemotaxis signal transduction
proteins. Archaeal part of COG0835.

Number COG Length Genome name
1 835 160 Archaeoglobus fulgidus DSM 4304
29 835 144 Haloarcula marismortui ATCC 43049
29 835 328 Haloarcula marismortui ATCC 43049
30 835 132 Halobacterium salinarum R1
30 835 178 Halobacterium salinarum R1
31 835 132 Halobacterium sp. NRC-1
31 835 178 Halobacterium sp. NRC-1
39 835 159 Methanococcoides burtonii DSM 6242
41 835 146 Methanococcus maripaludis C5
42 835 146 Methanococcus maripaludis C6
43 835 146 Methanococcus maripaludis C7
44 835 147 Methanococcus maripaludis S2
46 835 182 Methanosarcina acetivorans C2A
46 835 184 Methanosarcina acetivorans C2A
47 835 173 Methanosarcina barkeri str. fusaro
48 835 159 Methanosarcina mazei Go1
48 835 189 Methanosarcina mazei Go1
50 835 124 Methanospirillum hungatei JF-1
50 835 167 Methanospirillum hungatei JF-1
50 835 169 Methanospirillumhungatei JF-1
50 835 169 Methanospirillum hungatei JF-1
50 835 174 Methanospirillumhungatei JF-1
50 835 176 Methanospirillum hungatei JF-1
50 835 183 Methanospirillum hungatei JF-1
50 835 187 Methanospirillum hungatei JF-1
50 835 189 Methanospirillum hungatei JF-1
50 835 190 Methanospirillum hungatei JF-1
50 835 198 Methanospirillum hungatei JF-1
50 835 200 Methanospirillum hungatei JF-1
50 835 344 Methanospirillum hungatei JF-1
50 835 779 Methanospirillum hungatei JF-1

To prepare input for the algorithm, as it was done above
for 3.2.5, the original data is to be transformed to the follow-
ing format: to each (genome, COG) pair one standardized
protein length should be assigned (aswe described in [7]). For
a given COG, each organism is represented by a calculated
length—amedian length of all paralogous proteins. A natural
extension would be to formulate the labeling problem taking
into account existence of paralogs.

We may define a 𝑘-tuple integer labeling Π of 𝐺 as a
mapping Π from 𝐺 to a set of 𝑘-tuples composed of integers
Π(V) = {𝜋

1
(V), 𝜋
2
(V), . . . , 𝜋

𝑘(V)(V)}, where 𝜋
𝑖
(V) ≤ 𝜋

𝑖+1
(V)

for all 1 ≤ 𝑖 < 𝑘(V). The simplest extension would
be to introduce the case with identical sizes of 𝑘-tuples
composed of nonnegative integers. A uniform 𝑘-tuple integer
labeling Π

𝑐
of 𝐺 is characterized by a constant 𝑘(V) for all

V. The stretch of the edge V𝑤 in a Π
𝑐
(𝐺) is a simple sum

𝑐V𝑤 = ∑
𝑘

𝑖=1
𝜑(𝜋
𝑖
(V), 𝜋
𝑖
(𝑤)) ⋅ 𝜑(𝑥, 𝑦) is defined as in (1).

Given a uniform 𝑘-tuple integer labeling of the leaves of
G the minimum sum problem is to find a labeling which

minimizes the total sum of the stretches of the edges. Some
𝜋i(k) = 0. The minimum sum problem is that of minimizing
s(G) = ∑

∀{V𝑤}∈𝐸(𝐺) 𝑐V𝑤 over all Π
𝑐
for given 𝑘. By some

modifications of the algorithms presented in this paper the
minimizing 𝑘-tuple labeling can be found.Thismodel again is
a gain-lossmodel.More sophisticated extensionmust provide
more realistic definition of distance between two 𝑘-tuples
composed of positive integers by introducing duplication
events.

Appendix

Lemma A.1 (root optimal label). Suppose that the root node
is called 𝑟𝑡 and suppose that its children are called 𝑙 and 𝑟. The
claim is

(1) if (𝜋(𝑙) = 𝜋(𝑟) = 0), then 𝜋(𝑟𝑡) = 0 else
(2) if (𝜋(𝑙) = 0), then 𝜋(𝑟𝑡) = 𝜋(𝑟) else
(3) if (𝜋(𝑟) = 0), then 𝜋(𝑟𝑡) = 𝜋(𝑙) else
(4) if (𝜋(𝑙) ≤ 𝜋(𝑟)), then 𝜋(𝑙) ≤ 𝜋(𝑟𝑡) ≤ 𝜋(𝑟) else
(5) 𝜋(𝑙) ≥ 𝜋(𝑟𝑡) ≥ 𝜋(𝑟).

Proof. If we consider a subtree with the node 𝑘 as a root then
𝜎
𝑘
(𝑖)designates theminimal cost, given that node 𝑘has a label

𝑖:
𝑆 (𝐺) = min

𝑖

𝜎
𝑁

(𝑖)

= min
𝑖

[𝜑 (𝜋 (𝑟𝑡) , 𝜋 (𝑙))

+𝜑 (𝜋 (𝑟𝑡) , 𝜋 (𝑟)) + 𝜎
𝑙
(𝜋 (𝑙)) + 𝜎

𝑟
(𝜋 (𝑟))] .

(A.1)

Proof of the subclaims (1)–(3) is trivial. Case (4) is
𝑆 (𝐺) = min

𝑖

𝜎
𝑁

(𝑖)

= min
𝑖

[ |𝜋 (𝑟𝑡) − 𝜋 (𝑙)| + |𝜋 (𝑟𝑡) − 𝜋 (𝑟)|

+𝜎
𝑙
(𝜋 (𝑙)) + 𝜎

𝑟
(𝜋 (𝑟))] .

(A.2)

Let us introduce a new numbering 𝜋
󸀠 by changing only the

root label: 𝜋󸀠(𝑟𝑡) = 𝜋(𝑙). It is easy to see that 𝑆
𝜋
󸀠(𝐺) < 𝑆

𝜋
(𝐺).

It means that for optimal integer labeling 𝜋 the following is
correct: 𝜋(𝑟𝑡) ≥ 𝜋(𝑙). Likewise, we prove that for optimal
integer labeling 𝜋(𝑟𝑡) ≤ 𝜋(𝑟). Let us denote 𝑘 = 𝜋(𝑟𝑡) : 𝜋(𝑙) ≤

𝑘 ≤ 𝜋(𝑟):
∀𝑘 (𝜋 (𝑙) ≤ 𝑘 ≤ 𝜋 (𝑟)) 𝑆

𝜋
(𝐺)

= 𝑘 − 𝜋 (𝑙) + 𝑆
𝜋
(𝑙) + 𝜋 (𝑟) − 𝑘 + 𝑆

𝜋
(𝑟) , q.e.d.

(A.3)

Lemma A.2 (leaf parent optimal interval). Every node of the
optimal integer labeling that all its children are leaf nodes has
either a zero label or a label between labels of its children.

Suppose that the root node is called a and suppose that its
children are called 𝑙 and 𝑟. The claim is

(1) if (𝜋(𝑙) = 𝜋(𝑟) = 0), then 𝜋(𝑎) = 0 else
(2) if (𝜋(𝑙) = 0), then 𝜋(𝑎) = 𝜋(𝑟) else



BioMed Research International 9

(3) if (𝜋(𝑟) = 0), then 𝜋(𝑎) = 𝜋(𝑙) else

(4) if (𝜋(𝑙) ≤ 𝜋(𝑟)), then 𝜋(𝑙) ≤ 𝜋(𝑎) ≤ 𝜋(𝑟) else

(5) 𝜋(𝑙) ≥ 𝜋(𝑎) ≥ 𝜋(𝑟).

Proof. Figure 1 illustrates this lemma. Proof of the subclaims
(1)–(3) is trivial. In case of condition (4) let us prove that for
optimal integer labeling𝜋(𝑎) ≥ 𝜋(𝑙). Suppose𝜋(𝑎) < 𝜋(𝑙). Let
us denote (𝜋(𝑙) − 𝜋(𝑎)) = 𝛿; 𝜋(𝑟) − 𝜋(𝑙) = 𝛾. Let us introduce
a new numbering 𝜋

󸀠 by changing only the label of the node 𝑎:
𝜋
󸀠
(𝑎) = 𝜋(𝑙). It is to show that 𝑆

𝜋
󸀠(𝐺) < 𝑆

𝜋
(𝐺). Indeed,

𝑆
𝜋
󸀠 (𝐺) = 𝑆

𝜋
(𝐺) −

󵄨
󵄨
󵄨
󵄨
𝜋 (𝑘) − 𝜋 (𝑗)

󵄨
󵄨
󵄨
󵄨

− (𝑝
𝑖
− 𝜋 (𝑘)) − (𝑝

𝑖+1
− 𝜋 (𝑘))

+

󵄨
󵄨
󵄨
󵄨
󵄨
𝜋
󸀠
(𝑘) − 𝜋 (𝑗)

󵄨
󵄨
󵄨
󵄨
󵄨
+ (𝑝
𝑖
− 𝜋
󸀠
(𝑘)) + (𝑝

𝑖+1
− 𝜋
󸀠
(𝑘))

= 𝑆
𝜋
(𝐺) + (

󵄨
󵄨
󵄨
󵄨
𝑝
𝑖
− 𝛿 − 𝜋 (𝑗)

󵄨
󵄨
󵄨
󵄨
−

󵄨
󵄨
󵄨
󵄨
𝑝
𝑖
− 𝜋 (𝑗)

󵄨
󵄨
󵄨
󵄨
)

− (𝑝
𝑖
− 𝜋 (𝑘)) − (𝑝

𝑖+1
− 𝜋 (𝑘)) + (𝑝

𝑖
− 𝑝
𝑖
)

+ (𝑝
𝑖+1

− 𝑝
𝑖
) = 𝑆
𝜋
(𝐺)

+ (
󵄨
󵄨
󵄨
󵄨
𝑝
𝑖
− 𝛿 − 𝜋 (𝑗)

󵄨
󵄨
󵄨
󵄨
−

󵄨
󵄨
󵄨
󵄨
𝑝
𝑖
− 𝜋 (𝑗)

󵄨
󵄨
󵄨
󵄨
)

− 𝛿 − (𝛿 + 𝛾) − 𝛾 = 𝑆
𝜋
(𝐺) − 𝛿.

(A.4)

Likewise, we prove that for optimal integer labeling
𝜋(𝑘) ≤ 𝑝

𝑖+1
. Q.e.d. 𝑝

𝑖
≤ 𝜋(𝑘) ≤ 𝑝

𝑖+1
.

Lemma A.3 (parent optimal interval—(I)). An optimal label
of a parent either is equal to zero or lies between extreme values
of optimal labels of its children. If an optimal integer labeling
𝜋 provides the labels of two siblings 𝑖

1
and 𝑖
2
satisfying the

conditions 𝑎
1

≤ 𝜋(𝑖
1
) ≤ 𝑏

1
& 𝑎
2

≤ 𝜋(𝑖
2
) ≤ 𝑏

2
, then the

label of their parent 𝑘 satisfies min(𝑎
1
, 𝑏
1
, 𝑎
2
, 𝑏
2
) ≤ 𝜋(𝑘) ≤

max(𝑎
1
, 𝑏
1
, 𝑎
2
, 𝑏
2
). Proof is as for Lemma A.1.

LemmaA.4 (parent optimal interval—(II)). An optimal label
of a parent in case of the empty intersection of the optimal
intervals of its children lies between these intervals.

If an optimal integer labeling 𝜋 provides the labels of two
siblings 𝑖

1
and 𝑖
2
satisfying the conditions (𝑎

1
≤ 𝜋(𝑖
1
) ≤ 𝑏
1
) &

(𝑎
2
≤ 𝜋(𝑖
2
) ≤ 𝑏
2
) then if (𝑏

1
≤ 𝑎
2
) then 𝑏

1
≤ 𝜋(𝑘) ≤ 𝑎

2
else if

(𝑏
2
≤ 𝑎
1
) then 𝑏

2
≤ 𝜋(𝑘) ≤ 𝑎

1
.

Proof. (1) 𝑏
1

≤ 𝑎
2
. Let us assume 𝜋(𝑘) < 𝑏

1
; 𝜋(𝑘) = 𝑏

1
− 𝛼.

Then we introduce a new labeling 𝜋
󸀠 by changing labels for

three nodes: 𝜋󸀠(𝑘) = 𝑏
1
; 𝜋󸀠(𝑖
1
) = 𝑏
1
; 𝜋󸀠(𝑖
2
) = 𝑎
2
:

𝑆
𝜋
(𝐺) − 𝑆

𝜋
󸀠 (𝐺)

= (
󵄨
󵄨
󵄨
󵄨
𝜋 (𝑗) − 𝜋 (𝑘)

󵄨
󵄨
󵄨
󵄨
−

󵄨
󵄨
󵄨
󵄨
󵄨
𝜋 (𝑗) − 𝜋

󸀠
(𝑘)

󵄨
󵄨
󵄨
󵄨
󵄨
)

+ (
󵄨
󵄨
󵄨
󵄨
𝜋 (𝑘) − 𝜋 (𝑖

1
)
󵄨
󵄨
󵄨
󵄨
−

󵄨
󵄨
󵄨
󵄨
󵄨
𝜋
󸀠
(𝑘) − 𝜋

󸀠
(𝑖
1
)

󵄨
󵄨
󵄨
󵄨
󵄨
)

+ (
󵄨
󵄨
󵄨
󵄨
𝜋 (𝑘) − 𝜋 (𝑖

2
)
󵄨
󵄨
󵄨
󵄨
−

󵄨
󵄨
󵄨
󵄨
󵄨
𝜋
󸀠
(𝑘) − 𝜋

󸀠
(𝑖
2
)

󵄨
󵄨
󵄨
󵄨
󵄨
) ,

(
󵄨
󵄨
󵄨
󵄨
𝜋 (𝑗) − 𝜋 (𝑘)

󵄨
󵄨
󵄨
󵄨
−

󵄨
󵄨
󵄨
󵄨
󵄨
𝜋 (𝑗) − 𝜋

󸀠
(𝑘)

󵄨
󵄨
󵄨
󵄨
󵄨
)

=
󵄨
󵄨
󵄨
󵄨
𝜋 (𝑗) − 𝑏

1
+ 𝛼

󵄨
󵄨
󵄨
󵄨
−

󵄨
󵄨
󵄨
󵄨
𝜋 (𝑗) − 𝑏

1

󵄨
󵄨
󵄨
󵄨
= 𝛼,

(
󵄨
󵄨
󵄨
󵄨
𝜋 (𝑘) − 𝜋 (𝑖

1
)
󵄨
󵄨
󵄨
󵄨
−

󵄨
󵄨
󵄨
󵄨
󵄨
𝜋
󸀠
(𝑘) − 𝜋

󸀠
(𝑖
1
)

󵄨
󵄨
󵄨
󵄨
󵄨
)

= ((𝜋 (𝑘) − 𝜋 (𝑖
1
)) − (𝜋

󸀠
(𝑘) − 𝜋

󸀠
(𝑖
1
)))

= 𝑏
1
− 𝛼 − 𝜋 (𝑖

1
) − 𝑏
1
+ 𝑏
1

= 𝑏
1
− 𝛼 − 𝜋 (𝑖

1
) ,

(
󵄨
󵄨
󵄨
󵄨
𝜋 (𝑘) − 𝜋 (𝑖

2
)
󵄨
󵄨
󵄨
󵄨
−

󵄨
󵄨
󵄨
󵄨
󵄨
𝜋
󸀠
(𝑘) − 𝜋

󸀠
(𝑖
2
)

󵄨
󵄨
󵄨
󵄨
󵄨
)

= 𝜋 (𝑖
2
) − 𝑏
1
+ 𝛼 − 𝑎

2
+ 𝑏
1
,

𝑆
𝜋
(𝐺) − 𝑆

𝜋
󸀠 (𝐺) = 𝛼 + 𝑏

1
− 𝛼 − 𝜋 (𝑖

1
)

+ 𝜋 (𝑖
2
) + 𝛼 − 𝑎

2
= (𝑏
1
− 𝜋 (𝑖
1
))

+ 𝛼 + (𝜋 (𝑖
2
) − 𝑎
2
) > 0.

(A.5)

From assumption 𝜋(𝑘) < 𝑏
1
follows that 𝜋 is not an optimal

labeling. Similarly, we can prove that from assumption𝜋(𝑘) >

𝑎
2
follows that 𝜋 is not an optimal labeling.
(2) 𝑏
2
≤ 𝑎
1
. Similarly to (1) let us assume 𝜋(𝑘) < 𝑏

2
; 𝜋(𝑘) =

𝑏
2
−𝛼.Thenwe introduce a new labeling𝜋

󸀠 by changing labels
for three nodes: 𝜋󸀠(𝑘) = 𝑏

2
; 𝜋󸀠(𝑖
1
) = 𝑎
1
; 𝜋󸀠(𝑖
2
) = 𝑏
2
. 𝑆
𝜋
(𝐺) −

𝑆
𝜋
󸀠(𝐺) > 0, so we have a contradictionwith the statement that

𝜋(𝐺) is an optimal labeling.

Lemma A.5 (parent optimal interval—(III)). An optimal
interval of a parent is either an intersection of the optimal
intervals of its children or an interval that lies between these
intervals in case that their intersection is empty.

If an optimal integer labeling 𝜋 provides the labels of two
siblings 𝑖

1
and 𝑖
2
satisfying the conditions 𝑎

1
≤ 𝜋(𝑖
1
) ≤ 𝑏
1
&

𝑎
2

≤ 𝜋(𝑖
2
) ≤ 𝑏

2
, then the label of their parent 𝑘 satisfies the

following condition:

if ([𝑎
1
, 𝑏
1
] ∩ [𝑎
2
, 𝑏
2
]) ̸= 0 then 𝜋(𝑘) ∈ [𝑎

1
, 𝑏
1
] ∩ [𝑎
2
, 𝑏
2
])

else
if 𝑏
1
< 𝑎
2
then 𝜋(𝑘) ∈ [𝑏

1
, 𝑎
2
] else 𝜋(𝑘) ∈ [𝑏

2
, 𝑎
1
].

For example, if 𝑎
1
≤ 𝑎
2
≤ 𝑏
1
≤ 𝑏
2
, then Lemma A.5 states that

𝜋(𝑘) satisfies the following condition 𝑎
2

≤ 𝜋(𝑘) ≤ 𝑏
1
. Proof is

similar to proof in Lemma A.4.
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