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Abstract
Meta-analyses suggest that the published literature represents only a small minority of the total data collected in biomedical
research, with most becoming ‘dark data’ unreported in the literature. Dark data is due to publication bias toward novel results
that confirm investigator hypotheses and omission of data that do not. Publication bias contributes to scientific irreproducibility
and failures in bench-to-bedside translation. Sharing dark data by making it Findable, Accessible, Interoperable, and Reusable
(FAIR) may reduce the burden of irreproducible science by increasing transparency and support data-driven discoveries beyond
the lifecycle of the original study. We illustrate feasibility of dark data sharing by recovering original raw data from the
Multicenter Animal Spinal Cord Injury Study (MASCIS), an NIH-funded multi-site preclinical drug trial conducted in the
1990s that tested efficacy of several therapies after a spinal cord injury (SCI). The original drug treatments did not produce clear
positive results and MASCIS data were stored in boxes for more than two decades. The goal of the present study was to
independently confirm published machine learning findings that perioperative blood pressure is a major predictor of SCI
neuromotor outcome (Nielson et al., 2015). We recovered, digitized, and curated the data from 1125 rats from MASCIS.
Analyses indicated that high perioperative blood pressure at the time of SCI is associated with poorer health and worse
neuromotor outcomes in more severe SCI, whereas low perioperative blood pressure is associated with poorer health and worse
neuromotor outcome in moderate SCI. These findings confirm and expand prior results that a narrow window of blood-pressure
control optimizes outcome, and demonstrate the value of recovering dark data for assessing reproducibility of findings with
implications for precision therapeutic approaches.
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Introduction

The current system of biomedical research has generated enor-
mous gains in knowledge, helping improve health outcomes
over the past century. However, meta-analyses focusing on

the practice of science have identified shortcomings in schol-
arly communications that limit the full potential of biomedical
research. Estimates suggest that only 50% of completed clin-
ical and preclinical studies are reported in the published liter-
ature (Chan et al., 2014). In addition, up to 85% of all

* Jessica L. Nielson
jnielson@umn.edu

* Adam R. Ferguson
adam.ferguson@ucsf.edu

1 Department of Neurological Surgery, Weill Institute for
Neurosciences, Brain and Spinal Injury Center, University of
California San Francisco, San Francisco, CA, USA

2 W.M. Keck Center for Collaborative Neuroscience, Rutgers
University, New Brunswick, NJ, USA

3 Department of Neurology, University of Texas, Austin, TX, USA
4 Department of Psychology, University of Texas, Austin, TX, USA
5 Department of Psychiatry and Behavioral Sciences, University of

Minnesota, Minneapolis, MN, USA
6 Institute for Health Informatics, University of Minnesota,

Minneapolis, MN, USA
7 San Francisco Veterans Affairs Health Care System, San

Francisco, CA, USA

https://doi.org/10.1007/s12021-021-09512-z

/ Published online: 2 March 2021

Neuroinformatics (2022) 20:39–52

http://crossmark.crossref.org/dialog/?doi=10.1007/s12021-021-09512-z&domain=pdf
http://orcid.org/0000-0001-7102-1608
mailto:jnielson@umn.edu
mailto:adam.ferguson@ucsf.edu


biomedical research investment in data collection fails to yield
publications, equating to a loss of over $200 billion in research
investment worldwide per year (Chalmers & Glasziou, 2009;
Røttingen et al., 2013). A consequence of failure to publish is
“dark data”, where large quantities of research data remain
locked away in hard-drives and file cabinets in formats diffi-
cult to access by the public or other interested parties (CMAJ,
2014). Furthermore, the published literature often reflects
summaries of methods, protocols, and experimental results
(e.g., p values, means, standard errors, graphs), which are
not as informative as granular subject-level data used to derive
these statistics (Chan et al., 2014). Making dark data accessi-
ble would improve the return on research investment by
granting more people access to re-analyze and explore scien-
tific data (Ferguson et al., 2014).

To improve value of biomedical research investment,
Mueck (2013) and Wilkinson, et al. (2016) proposed making
raw biomedical research data Findable, Accessible,
Interoperable, and Reusable (FAIR). The FAIR data steward-
ship principles have been endorsed by the US National
Institutes of Health (NIH) andmajor publishers. Amajor source
of dark data are small granular data sets collected by laborato-
ries over the course of day-to-day research, so called “long-tail
data” (Ferguson et al., 2014). Long-tail data contain useful in-
formation such as non-targeted endpoints of experiments, alter-
native measures, and pilot data. In addition, long-tail data in-
clude results from failed experiments and ancillary records to
published studies that were never published or disseminated. In
animal research, such dark data often are recorded in veterinary
care logs that are not considered primary endpoints in biomed-
ical experiments. Recent efforts to collect and analyze dark data
using advanced machine learning have yielded new findings
with clinical implications (Hawryluk et al., 2015; Hawryluk
et al., 2020; Nielson et al., 2015; Readdy et al., 2016).
Specifically, by applying modern machine intelligence tools
to archived data we discovered thatmean arterial blood pressure
(MAP) in the perioperative phase of SCI is a robust predictor of
neuromotor recovery (Nielson et al., 2015).

This initial MAP finding relied on data recovered from one
center from the multicenter animal spinal cord injury study
(MASCIS), a preclinical drug trial conducted in the 1990s to
compliment the National Acute SCI Study (NASCIS) human
clinical trials comparing several experimental therapies
against the anti-inflammatory glucocorticoid methylpredniso-
lone in thoracic SCI.MASCIS had an enormous impact on the
spinal cord injury (SCI) field. The consortium developed and
validated the NYU-Impactor device to model contusive SCI
(Constantini & Young, 1994), and standardized a locomotor
outcome scale for rats (Basso et al., 1995; Basso et al., 1996).
Both the NYU-Impactor and BBB locomotor scale remain
widely used throughout preclinical SCI research (Young,
2002). However, the results of the treatment effects in
MASCIS were never published.

The goals of the present project were to recover these dark
data and make them FAIR, and to perform a multicenter
replication/cross-validation of the previous single-center,
machine-learning discovery that MAP predicted neuromotor
outcome (Nielson et al., 2015). MASCIS data from the Ohio
State University was previously used as our hypothesis gen-
eration dataset, where the finding about the negative impact of
perioperative hypertension on SCI outcomes was discovered
using a novel form of machine intelligence called topological
data analysis (TDA) (Nielson et al., 2015). In the present study
we used data from the remaining 7 sites as external cross-
validation data to test the reproducibility of this hypothesis
using traditional, confirmatory analytics.

Our teamworked with original MASCIS consortiummem-
bers to recover additional multicenter preclinical data collect-
ed across the study sites. After assembling a larger, and more
representativeMASCIS dataset from recovered paper records,
we tested whether the Nielson et al. (2015) finding could be
independently replicated using recovered data from the other
MASCIS sites. Concurrent with this publication, we are re-
leasing the recovered MASCIS data as a citable dataset
(doi:https://doi.org/10.34945/F5QG66) through the newly
formed Open Data Commons for SCI (http://ODC-SCI.org),
a public data sharing infrastructure (Callahan et al., 2017;
Fouad et al., 2020). This serves our two adjacent purposes:
providing meaningful scientific contributions to the field by
cross-validating a clinically relevant finding, and converting
MASCIS dark data and the millions of dollars spent on their
acquisition (NIH R01 NS032000) into FAIR data that can
continue to fuel new discoveries for SCI research into the
future (Wilkinson et al., 2016).

Methods

MASCIS Data Between 1993 and 1997, the NIH funded a
consortium of eight laboratories (Wise Young, contact PI) to
validate and standardize the MASCIS/NYU Impactor device
used to give rats contusive SCI (Constantini & Young, 1994),
and test promising treatments in a rat model for thoracic SCI.
There were three studies in MASCIS. In 1994, the MP94
study assessed the effects of methylprednisolone (MP) on
graded rat SCI across 3 injury severities (12.5, 25 and
50 mm weight drop contusions). The second study, in 1995
(YM95), assessed the effects of thyrotropin releasing hormone
analogue YM14673 on the same SCI models. Both MP and
YM14673 had been shown to improve recovery following a
SCI (Behrmann et al., 1994; Constantini & Young, 1994;
Faden, 1989). The third study (MY96) compared MP94 and
YM95 protocols from the preceding years that the consortium
determined were most successful. All centers executed the
same methods and protocols, and all was approved by each
institution’s respective Institutional Animal Care and Use
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Committee. The centers were: Ohio State University (Center
1), University of California - San Francisco (Center 3), Alfred
I. DuPont Institute, Georgetown University Medical Center,
Medical University of South Carolina, New York University,
University of Florida - Gainesville, and Washington
University School of Medicine (note we were not given ex-
plicit permission to re-identify these centers, but this informa-
tion is available upon request). The protocols established for
MP94 remained relatively unchanged until MY96. A notable
exception was the exclusion of the 50 mm injury severity,
which was too severe to reliably measure recovery. Because
we were not able to recover data enough data fromYM95, our
current study focused on the data collected in MP94 and
MY96.

MASCIS Animals Briefly, adult rats (age 77 ± 2 days) were
randomly assigned to a graded contusion severity condition
of either a 12.5, 25, or 50mmweight drop for MP94, and only
12.5 and 25 mm for MY96 at thoracic level 9–10 (T9–10).
Animals were assigned at random to a treatment group
(MP94, Supplemental Table 1; MY96, Supplemental
Table 2). All groups included equal number of males and
females, and animal assigned to different contusion severity
conditions. Perioperative systolic and diastolic blood pressure
was monitored after the animal was anesthetized during the
contusion surgery using an arterial catheter. The perioperative
blood pressure values were recorded three different times dur-
ing the procedure: within 20 min before to the moment of the
SCI; at the moment of injury which was distinguished by a
sharp spike in the blood pressure recording; and within the
20 min after the injury. Rats assigned to the acute survival
condition were euthanized 48 h post SCI, and those in the
chronic survival condition were evaluated using the Basso-
Beattie-Bresnahan (BBB) locomotor scale (Basso et al.,
1995; Basso et al., 1996) 2 days post SCI, and once per week
for 6 weeks. All data collection were performed under insti-
tutionally approved animal care and use committee protocols
at the constituent sites, adhering to federal standards.

Legacy Data Retrieval Our team worked with the original
MASCIS team to track down the multicenter preclinical data
collected by MASCIS across all sites. We learned that during
the trials, copies of all data sheets from all centers, including
surgery records, outcome measures, notes, etc., were sent to
NYU (the primary center for MASCIS) to be analyzed. The
treatment protocols in the study did not return significant find-
ings, and the results of the treatment effects were never pub-
lished. Shortly after MASCIS was concluded in 1997, the PI
moved from New York University to Rutgers University and
all data sheets, hard disks, computers, reports, protocols, and
study materials were boxed up into 3 full sized moving trucks
and stored in a commercial storage unit in Piscataway, New
Jersey in a large storage unit (Neff, 2018). Our team of data

archeologists gained access to the storage unit to search for
MASCIS data from all study sites over two afternoons. We
retrieved a few floppy disks that putatively contain records
from the study, but we only had partial success in retrieving
these data due to a combination of format obsolescence and
‘bit rot’ that occurs as magnetic media ages. In addition, we
retrieved thousands of paper records which were scanned and
converted to PDFs (Neff, 2018). The paper records were man-
ually curated and organized into spreadsheet files, as had been
done with the first iteration of Ohio State University data
curated in the VISION-SCI repository (Nielson et al., 2014).
Based on the results reported in the current paper (Fig. 1) we
can surmise that the storage unit contains additional records
buried within it or that data are lost to bit rot given the dis-
crepancies in the intended sample size and the recovered sam-
ple size. That said, we have little reason to presume that the
recovered data are not a representative sample of the popula-
tion level effects.

Data Entry and Curation After studying original documents,
protocols, and data sheets, we created a digital data template to
digitize the data we recovered.When appropriate, we matched
data fields from the hard copy data sheets to common data
elements (CDEs) used by SCI data repositories (Nielson
et al., 2014). Unique data fields were created for variables that
were not CDEs.

As the data was digitized and the dataset populated, the
goal was to enter the data as it was originally collected and
written. However, some curation took place during data entry
by fixing simple errors made by the original data creators.
This level of curation required little field expertise, and in-
volved transforming data to its intended form. For example,
if the original protocol requested an animal’s temperature to
be written in Celsius and the original data creator wrote the
temperature in Fahrenheit, we converted those value back to
Celsius. Another example was transforming values from mil-
ligrams (mg) to micrograms (μg) when the protocol and data
sheet were intended for the data to be entered as micrograms.
We also correct grammatical and spelling errors made by the
original data creator when appropriate (e.g., then vs. than
grammatical errors).

Though rarely employed, occasionally we omitted data if it
could not be accurately recovered, and this required some
domain expertise. Some information was lost or became illeg-
ible over the years, or when records were scanned for digiti-
zation. In these cases, it was inappropriate to guess the original
data, and our team opted to leave those data points empty and
considered them ‘missing’ in subsequent analysis. For exam-
ple, if an animal’s weekly BBB scores read 2, 9, 11, 10, 12, 3,
11, the score second to last score was unexpected. While it is
possible the second to last score was 3, it was also possible
information was lost. It was inappropriate to fill in the expect-
ed value or guess the original score, but also inappropriate to
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disregard the legible value because it could be an outlier. In
these situations we opted to consider the data missing in at-
tempt to maintain data integrity and harnessed formal missing
values analysis and robust methods to make statistical infer-
ences in the face of missingness (see statistical analysis).

After we digitized all of paper records, we began our post
data entry curation by looking at the mean, median, mode,
minimum, and max values to identify errors in our database.
For example, if the average temperature for a data field was
36.2 degrees Celsius and themode is 35.9 degrees Celsius, but
the max is value was 381 and the minimum was 3.72, the
curator could fix those mistakes by assuming those were mis-
takes made during the digitizing phase when the dataset was
being populated. When dealing with variables that required
field expertise or when the curator was unsure if there was a
mistake (e.g., anesthesia drug dose), the curator checked the
values on the original data record. When that was not an op-
tion, or when our teamwas unsure about the quality of the data
point after checking original records, we opted to leave the
data point empty and consider the data point missing.

VISION-SCI Data Previously attempts to recover MASCIS data
were included in the Visualized Syndromic Information and
Outcomes for Neurotrauma-SCI (VISION-SCI) database
funded by the National Institute of Neurological Disorders
and Stroke (NINDS) to create a data repository by collecting

retrospective data from animal models of SCI (Ferguson et al.,
2011, 2013; Nielson et al., 2014). VISION-SCI retrieved
subject-level data of approximatively 3000 mice, rats, and
monkeys from 13 different laboratories from studies unpub-
lished and published between 1993 and 2013. Part of the data
incorporated into VISION-SCI came the Ohio State site in the
Multicenter Animal Spinal Cord Injury Study (MASCIS) and
was reported in Nielson et al., 2014. For the purposes of the
current paper, these prior data from Nielson et al., 2014–2015
were excluded from analysis to reflect an independent repli-
cation of the results with subjects from non-OSU sites.

Statistical AnalysesOur analysis was performed on the dataset
we created from the paper records recovered. After digitizing
and curating the records, data was analyzed using SPSS v25
(IBM Chicago, IL) and the statistical programing language R
v3.6.0 (R Foundation for Statistical Computing, Vienna,
Austria) with R Studio integrated development environment
(R Core Team, 2019; RStudio Team, 2018). Missing values
analysis was run using SPSS, and the null hypothesis that
values were missing completely at random (MCAR) was test-
ed using Little’s MCAR test.

Our MASCIS dataset included weekly values for BBB and
weight. Some animals had multiple scores per week, and an
aggregated score was calculated in those cases. We were in-
terested in the effects of time measured in days post SCI,

Fig. 1 This flow chart describes the number of rats used in each of the
three MASCIS studies, the number of rats for which data was recovered
from eachMASCIS study represented by solid or dashed lines, and where
that data can be retrieved. An unknown number of rats were used in
YM95. Data from Center 1 (OSU) were used in Beattie et al., 1997,
Young 2002; Ferguson et al., 2004, and Nielson et al., 2015. The current

paper describes data recovered from Centers 2–8, collectively titled
MASCIS 2020. Note that Center 2 did not contribute data in MY96,
and Center 8 only contributed data in MY96. The compiled dataset can
be retrieved in odc-sci.org and is titled “ODC-SCI MASCIS”. Upon
request or with permission, some centers can be unmasked
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perioperative blood pressure, sex, and contusion drop height,
on BBB locomotor recovery and weight gain. Using systolic
and diastolic blood pressure values collected during SCI sur-
gery, we estimated the perioperative mean arterial blood pres-
sure values (MAP = (SBP + 2*DBP) / 3). Weight gain was
calculated as the percent of change in weight (Δ%weight)
from baseline weight (e.g., a 30 g weight gain by a 300 g
animal is 10% gain; Δ%weight = [weight / baseline weight]
– 1 * 100). Locomotor recovery was the change in BBB score
(ΔBBB) calculated by subtracting the subject’s initial BBB
score, recorded in the first 3 days post SCI, from the final
BBB score before the subject expired or was perfused. A
previous study has demonstrated BBB score does not signif-
icantly improve 22 days post SCI (Hook et al., 2004), so the
final BBB score for a subject was used to calculate the change
in BBB as long as locomotor evaluation took place 25 days
post SCI.

We tested 4 separate Linear Mixed Models (LMM).
Models were generated using lmer function in the R package
lme4 (Bates et al., 2014), and the lmerTest package generated
the Type III Analysis of Variance Table with Satterthwaite’s
method (Kuznetsova et al., 2017). In the first pair of LMMs,
we assessed BBB locomotor recovery after SCI as the out-
come variable. Pre-injury blood pressure (MAP) collected
within 20 min of SCI was a fixed factor the first LMM, and
blood pressure (MAP) at time of injury (distinguished by a
sharp spike in the blood pressure recording) was a fixed factor
in the second LMM. In addition to pre-injury or at-injury
blood pressure, time (days post SCI) and contusion severity
(drop height) were fixed factors. Center and subject with a
random slope by time were the random factor. For the third
and fourth LMMs, we assessed weight gain after SCI as the
outcome variable, as weight after injury is frequently used as a
general measure of health and wellbeing. Pre-injury blood
pressure (MAP) was a fixed factor the third LMM, and at-
injury blood pressure (MAP) was a fixed factor in the fourth
LMM. In addition to pre-injury or at-injury blood pressure,
time (days post SCI) and contusion severity (drop height)
were fixed factors. Center, sex, and subject with a random
slope by time were the random factor. To explore interactions
effects from the LMMs, we applied general linear models
(GLM) using the lm function in R. Eta squared values were
generated using the sjstats package in R (Lüdecke, 2020) or
computed by custom code.

Results

Data Provenance and Descriptive Statistics on
Recovered Data

According to the original MASCIS protocol, 1200 rats were
planned for inclusion in 1994, including experiments to

validate treatment protocols, anesthesia, and outcome mea-
sures (Supplemental Table 1)(Fig. 1). We recovered records
from n = 252 rats with 2 days post SCI survival (Acute proto-
col), and n = 489 rats with 6 weeks post SCI survival (Chronic
protocol). Records were recovered for an additional n = 31
animals, but we were unable to determine with certainty the
intended survival time. In sum, we recovered records for 772
rats from MP94. The MASCIS 1996 protocol designated n =
504 rats for inclusion, and we recovered data for n = 353 of
them (Supplemental Table 2). Prior work reported on 132 rats
fromMP94 and 72 fromMY96, from the OSU cohort (Center
1) was described and accounted for in Nielson et al. (2015).
We have excluded these data from analyses in the current
work, but are making these dark data FAIR and releasing them
as a companion to the current paper (doi:https://doi.org/10.
34945/F5QG66). Assuming all planned animals were
included in the experiments and excluding animals from
OSU, our recovery rate for MASCIS 1994 was 72.28% of
animals, and 81.71% of animals for MASCIS 1996 (Fig. 1).
There are 296 rats unaccounted for from MP94, 79 from
MY96, and hundreds fromYM95. During the data archeology
expedition, we were not able to search all boxes in the storage
unit, and the unaccounted for records may still be in storage.
Moreover, some centers may not have sent copies of all their
records to NYU before the study ended (e.g., in MASCIS
1996 internal progress reports, Center 4 contributed 11 of 72
records from the planned subject count, and Center 8 contrib-
uted 0 of 72 planned subject counts), which may partially
explain why the number of animals per center in our dataset
is not evenly distributed.

Of the 1125 rats in our recovered dataset from MASCIS
1994 and MASCIS 1996, none have data records that were
complete both within a test date and across all possible repeat-
ed measures (time-points). It is not always clear when post-
operative records ended because perfusion dates were not al-
ways recorded in the perfusion logs we scanned. However, we
were able to estimate our overall data recovery rate based on
surgical records, which describes the subject’s surgery and
condition for the first 48 h post injury. Surgery record sheets
had 64 primary variables (Supplemental Table 3). Of the 1125
rats, n = 1121 had surgery records with at least 1 of the 64
variables completed. Our overall data recovery rate for sur-
gery records was 60.44% (Fig. 2). This value might under-
estimate recoverable data. Some rats died within 48 h of inju-
ry, while others were excluded from the study for reasons
noted in their surgery sheets including anesthesia dosage, or
surgery complications. For these reasons, we suspect portions
of some surgery records were blank on purpose. We are con-
fident that n = 500 survived postoperative complications be-
cause we recovered at least one data point collected at least
48 h post SCI from perfusion or post-operative care records.
For those n = 500 rats, our surgery related data recovery rate
was slightly better at 64.63%. Our objective is not to revisit
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data collection practices, nor compare data collection between
centers. However, a data-driven missing values analysis dem-
onstrated that values were not missing completely at random
(Little’s MCAR test, p < 0.01).

Although we recovered substantial information from
MASCIS, including original protocol and internal progress
reports, we were not able to decipher the drug treatment
blinding codes, and thus we cannot report on the results of
the drug treatment protocol at the current time. Treatments
were spread evenly between centers, animal sex, and contu-
sion severity. According to the MASCIS progress reports,
none of the MASCIS 1994 treatments resulted in better out-
comes compared to control, and some treatments may have
resulted in worse recovery and possibly death. The methyl-
prednisolone 1 treatment in MASCIS 1996 resulted in better
BBB recovery compared to saline. Moreover, according to
unpublished MASCIS progress reports submitted to NIH,
the independent variable that had the largest effect size on
outcome was center. This opens the possibility that nuisance
variables associated with specific centers drive the majority of
the variance in outcome, potentially occluding drug effects.
Our prior work strongly suggests that uncontrolled variance in
operative blood pressure may be one such variable (Nielson
et al., 2015).

Confirmatory Hypothesis Testing of the Blood
Pressure-Locomotor Recovery Association

We used LMMs to test the relationship between perioperative
(20 min pre-injury and at-injury) blood pressure and BBB
recovery, marshaling all available data recovered for each

analysis while mitigating missing values (Nielson et al.,
2020).

The first LMM targeted pre-injury MAP as a predictor of
BBB locomotor scores using 2327 observations from 441
unique rats across 6 Centers in the (Table 1; Fig. 3a). We
found significant main effects for contusion severity and time
on BBB scores. Animals with more severe contusions had
worse BBB scores, and BBB scores improved as recovery
time increased. There was also a significant three-way inter-
action between the pre-injury MAP, time post SCI, and con-
tusion severity on BBB scores. This indicates that pre-injury
blood pressure correlated with recovery of function, but this
effect had different directionality depending on injury
severity.

In the second LMM targeted at-injury MAP as a predictor
of BBB locomotor outcome scores using 1081 observations
among 197 unique rats across 4 Centers (Table 2). There were
significant main effect for contusion severity and time on
BBB scores. Locomotor scores improved as recovery time
increased, and scores decreased as contusion severity in-
creased. There was a significant two-way interaction between
at-injury MAP and contusion severity, and a three-way inter-
action between at-injury MAP, time post SCI, and contusion
severity on BBB scores.

Post hoc analyses were required to understand the precise
nature of the significant blood pressure-recovery interactions
uncovered by LMM analyses. We used a GLM to assess the
effect of pre-injury MAP and contusion severity on ΔBBB
from baseline to the time of the rat’s expiration (Table 3).
As shown in Fig. 3b, for moderate SCI (12.5, 25 mm
weight-drop), higher pre-injury MAP associated with better

Fig. 2 This heatmap
demonstrates data recovered from
the surgery record sheets ofMP94
andMY96. Each row represents a
unique rat (n = 1125), and each
column represents a unique
variable from the surgery records
(n = 64), and each individual
square a data point
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outcome, whereas for severe SCI (50 mm) higher MAP asso-
ciated with worse outcomes. This indicates that pre-injury
blood pressure affected recovery of function, and this relation-
ship had different directionality depending on injury severity,
with more severe SCI demonstrating a more profound nega-
tive influence of high blood pressure. The same form of effect
was observed with at-injury MAP, suggesting that periopera-
tive blood pressure is a robust predictor of BBB.

The third LMM targeted the pre-injury MAP on weight
gain using 2336 unique observations among 414 rats across
5 Centers (Table 4; Fig. 3c). There were significant main
effect for pre-injury MAP and time on Δ%weight, and

significant two-way interactions between pre-injury MAP
and time and pre-injury MAP and contusion severity on
Δ%weight. Lastly, we found a significant three-way interac-
tion between contusion severity, time post injury, and pre-
injury MAP on Δ%weight gain.

The fourth LMM included 1349 unique observations be-
tween 276 rats across 3 Centers (Table 5). In this model, we
found a significant main effect of time on Δ%weight, and a
significant three-way interaction between at-injuryMAP, con-
tusion severity, and time on Δ%weight.

Post hoc GLM was required to further understand the ef-
fects on Δ%weight. This analysis revealed a marginally

Table 1 Linear Mixed Model Output of BBB with Pre-Injury Blood Pressure as Fixed Factor

Variables NumDf DenDf F-Value p value η2

Pre-Injury Blood Pressure 1 506.38 1.5174 0.2186 0.002

Contusion Severity 2 435.62 8.6503 0.0002 0.038

Days Post SCI 1 788.47 147.1760 <0.0001 0.157

Pre-Injury Blood Pressure x Contusion Severity 2 430.87 0.0242 0.9761 <0.001

Pre-Injury Blood Pressure x Days Post SCI 1 771.89 0.5725 0.4495 <0.001

Pre-Injury Blood Pressure x Contusion Severity x Days Post SCI 2 743.54 9.7646 <0.0001 0.025

Fig. 3 Change in BBB score (a) and weight gain (c) over time are shown with SEM bars for each time point. The linear relations between pre-injury
blood pressure and ΔBBB (b) and Δ%weight (d) depicted, and the shaded areas represents the 95% confidence interval
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significant interaction effect between pre-injury MAP and
contusion severity (Table 6). For animals in the low and me-
dium contusion severity conditions, higher blood pressure was
associated with more weight recovery. The inverse was true
for the high contusion severity group, where higher blood
pressure was associated with less weight recovery (Fig. 3d).
The analysis of weight change also showed that males recov-
ered and gained more weight compared to females, but there
were no significant interaction effects that included the sex of
the animal, suggesting the interaction between perioperative
blood pressure and contusion severity is not significantly dif-
ferent between males and females.

We did not find meaningful results when we included post-
injuryMAP as fixed factors in our LMMs (results not shown),
and this analysis is confounded by known effects of injury
severity on subsequent autonomic derangements (i.e., poten-
tial for associations reflecting ‘reverse causality’ with SCI
severity) (Nout et al., 2012). Altogether, the results suggest
that perioperative hypertension is associated with poorer
health and worse locomotor recovery in more severe SCI
whereas perioperative hypotension is associated with poorer
health and worse recovery in moderate SCI.

Discussion

In the current confirmatory study, we recovered legacy data
from 1125 rats to independently replicate the results from
Nielson et al. (2015). Our results suggest an interaction effect
between perioperative blood pressure and contusion severity,
where rats withmore severe injuries and higher blood pressure

had less recovery, while rats with milder injuries and higher
blood pressure showed better recovery. To our knowledge,
this is the first time such an interaction between blood pres-
sure, injury severity, and recovery has been demonstrated in
cases of SCI. In achieving our goal of cross validating a prior
finding of high clinical import, we recovered value from the
initial millions of dollars of investment by the NIH made over
two decades ago in the original MASCIS trials, and demon-
strated a practical application FAIR data principles (Table 7).

In addition, the results have direct implications for clinical
care in acute SCI. Managing MAP in acute SCI may be crit-
ically important for preventing secondary injuries and neuro-
logical deficits. In the published guidelines for acute medical
and surgical management of SCI, the American Association
of Neurological Surgeons (AANS) and Congress of
Neurological Surgeons (CNS) supported maintenance of
MAP above 85 and 90 mmHg for patients during the first
week after admission (Hadley et al., 2002; Walters et al.,
2013; Yue et al., 2017). The rationale is that low blood pres-
sure reduces blood flow and patients that are kept at a higher
MAP after SCI show better recovery (Casha & Christie, 2011;
Catapano et al., 2016; Dakson et al., 2017; Hawryluk et al.,
2015; Sabit et al., 2018). Nielson et al. (2015) were the first to
note that hypertension, in addition to hypotension, impairs
recovery.

One of the important implications of our findings pertains
to precision medicine. Kepler et al. (2015) reported that pa-
tients with pre-existing hypertension had worse recovery com-
pared to controls. They proposed that blood pressure goals for
those patients may have to be set even higher than those rec-
ommended by AANS and CNS, and further studies are

Table 2 Linear Mixed Model
Output of BBB with Blood
Pressure at SCI as Fixed Factor

Variables NumDf DenDf F-Value p value η2

At-Injury Blood Pressure 1 398.70 0.1556 0.6935 <0.001

Contusion Severity 2 208.55 8.9549 0.0002 0.079

Days Post SCI 1 119.22 39.2645 <0.0001 0.247

At-Injury Blood Pressure x Contusion Severity 2 220.07 3.9490 0.0207 0.034

At-Injury Blood Pressure x Days Post SCI 1 118.61 0.0972 0.7557 <0.001

At-Injury Blood Pressure x Contusion Severity x Days
Post SCI

2 125.52 9.8191 0.0001 0.135

Table 3 General Linear Model
Comparing ΔBBBAcrossGroups Variables Df F-Value p value η2

Pre-Injury Blood Pressure 1 1.4429 0.2309 0.0050

Contusion Severity 2 19.6133 <0.0001 0.1420

Pre-Injury Blood Pressure x Contusion Severity 2 3.1911 0.0430 0.0230

Residual 230
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needed to identify the role of hypertension, blood flow to the
spinal cord, and recovery (Kepler et al., 2015). We agree that
such studies are needed, due to the lack of consensus in clin-
ical protocol guidelines for maximum blood pressure for pa-
tients after SCI. The Center for Disease Control and
Prevention estimates one in three Americans are hypertensive
(Center for Disease Control and Prevention, 2020), and data is
needed to identify MAP goals that would maintain tissue
function without impairing the neurological recovery for that
population. Recent retrospective clinical studies of high-
resolution physiological monitoring further supports MAP
should be maintained above 85–90 mmHg up to seven days
upon the patient’s admission to a hospital, and the proportion
of time below 85 mmHg correlated with impaired recovery
(Hawryluk et al., 2015; Sabit et al., 2018;Walters et al., 2013).
Physiologically, the rational is that spinal cord perfusion pres-
sure depends on systemic MAP remaining high enough to
sustain tissue oxygenation in the injury penumbra in the face
of vertebral fracture and cord compression (Squair et al., 2019;
Yue et al., 2020). This SCI clinical guideline mirrors the logic
of intracranial pressure monitoring in traumatic brain injury
and other fields of cranial neurosurgery where prevention of
hypotension using fluids and vasopressors is used to maintain
intracranial pressure and decompressive hemicraniectomy is
used to prevent pressure overshoot (Chesnut et al., 2020; Shah
et al., 2019). However, the concept of hypertension as a driver
of poor outcome is less well established. In the wake of
Nielson et al., 2015 several clinical groups have begun explor-
ing hypertension as a potential negative prognosticator of

outcome. The first of these was recently published, in the form
of a case series providing preliminary clinical support for the
hypothesis (Ehsanian et al., 2020). Physiologically, it would
stand to reason that hypertension may result in ‘hemorrhagic
conversion’, and exacerbate bleeding into the spinal cord and
resulting in tissue damage. In the animal literature it is well
established that SCI compromises the blood-spinal-cord bar-
rier and that peripheral blood components contribute to sec-
ondary cell death, including infiltration of circulating immune
cells, circulating cytokines and other factors (Crowe et al.,
1997; Ferguson et al., 2008; Kigerl et al., 2009).

The major limitation in our analysis is that it is correlation-
al, and not causal. In addition, our conclusions come from
incomplete retrospective data. Not all of the original data
was recovered, and some may be permanently lost due format
obsolescence and bit rot of magnetic media. Not included in
the data recovered were the drug treatment codes. The rats
were treated with various drugs, and we remain blinded to
their treatment condition. According to the MASCIS progress
reports, all but one treatment condition did not show a signif-
icant recovery associated with treatment. However, this does
not rule out the possibility that specific dose-response and
timing features for methylprednisolone and other tested drugs
may have impacted the results. In addition, variation in animal
care may also have introduced confounds. For example,
MASCIS used the anesthetic pentobarbital, which is known
to produce blood pressure complications (Nout et al., 2012).
Some centers closely monitored blood oxygenation and per-
formed resuscitation as needed, whereas other centers were

Table 4 Linear Mixed Model
Output of Weight Gain with Pre-
Injury Blood Pressure as Fixed
Factor

Variables NumDf DenDf F-Value p value η2

Pre-Injury Blood Pressure 1 393.72 5.4686 0.0199 0.013

Contusion Severity 2 406.60 2.0256 0.1332 0.009

Days Post SCI 1 272.51 8.8732 0.0032 0.031

Pre-Injury Blood Pressure x Contusion Severity 2 405.77 2.9243 0.0548 0.014

Pre-Injury Blood Pressure x Days Post SCI 1 268.60 21.4986 <0.0001 0.074

Pre-Injury Blood Pressure x Contusion Severity x Days
Post SCI

2 263.72 11.6871 <0.0001 0.081

Table 5 Linear Mixed Model
Output of Weight Gain with
Blood Pressure at SCI as Fixed
Factor

Variables NumDf DenDf F-Value p value η2

At-Injury Blood Pressure 1 284.93 0.5197 0.4716 0.002

Contusion Severity 2 255.31 1.1172 0.3288 0.008

Days Post SCI 1 118.83 24.0393 <0.0001 0.168

At-Injury Blood Pressure x Contusion Severity 2 248.99 1.0228 0.3611 0.008

At-Injury Blood Pressure x Days Post SCI 1 117.75 2.3158 0.1307 0.019

At-Injury Blood Pressure x Contusion Severity by Days
Post SCI

2 129.89 20.2185 <0.0001 0.237
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Table 6 General Linear Model
Comparing Δ%weight Across
Groups

Variables Df F-Value p value η2

Pre-Injury Blood Pressure 1 10.0654 0.0017 0.025

Contusion Severity 2 16.5195 <0.0001 0.083

Sex 1 132.8158 <0.0001 0.335

Pre-Injury Blood Pressure x Contusion 2 2.7582 0.0657 0.014

Pre-Injury Blood Pressure x Sex 1 0.0989 0.7535 <0.001

Contusion x Sex 2 0.2040 0.8156 0.001

Pre-Injury Blood Pressure x Contusion x Sex 2 0.6046 0.5472 0.003

Residual 213

Table 7 FAIR data principles checklist for BPM replication in MASCIS

Principle Definition Compliance

F – FINDABLE To be Findable:
F1. (meta)data are assigned a globally unique and persistent identifier
F2. data are described with rich metadata (defined by R1 below)
F3. metadata clearly and explicitly include the identifier of the data it describes
F4. (meta)data are registered or indexed in a searchable resource

Original MASCIS data
F1 – yes
F2 – no
F3 – yes
F4 – no
MASCIS data entered into

VISION-SCI/ODC-SCI
F1 – yes
F2 – yes
F3 – yes
F4 – yes

A – ACCESSIBLE To be Accessible:
A1. (meta)data are retrievable by their identifier using a standardized

communications protocol
A1.1 the protocol is open, free, and universally implementable
A1.2 the protocol allows for an authentication and authorization

procedure, where necessary
A2. metadata are accessible, even when the data are no longer available

Original MASCIS data
A1 – maybe
A1.1 – no
A1.2 – N/A (unknown)
A2 – maybe (in the protocols/grants?)
MASCIS data entered into

VISION-SCI/ODC-SCI
A1 – yes
A1.1 – yes
A1.2 – yes
A2 – yes

I –
INTEROPERA-
BLE

To be Interoperable:
I1. (meta)data use a formal, accessible, shared, and broadly applicable language for

knowledge representation.
I2. (meta)data use vocabularies that follow FAIR principles
I3. (meta)data include qualified references to other (meta)data

Original MASCIS data
I1 – no
I2 – no
I3 – no
MASCIS data entered into

VISION-SCI/ODC-SCI
I1 – yes
I2 – yes
I3 – yes

R - REUSABLE To be Reusable:
R1. meta(data) are richly described with a plurality of accurate and relevant attributes
R1.1. (meta)data are released with a clear and accessible data usage license
R1.2. (meta)data are associated with detailed provenance
R1.3. (meta)data meet domain-relevant community standards

Original MASCIS data
R1 – no
R1.1 – no
R1.2 – yes
R1.3 – yes
MASCIS data entered into

VISION-SCI/ODC-SCI
R1 – yes
R1.1 – yes
R1.2 – yes
R1.3 – yes
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less focused on these anesthetic complications. In addition,
post-operative care protocols evolved over time, especially
with respect to bladder care and antibiotic use to control mor-
tality due to urinary tract infections. One of the centers dis-
covered the fluoroquinolone Baytril was highly effective at
reducing post-SCI mortality, and this was later adopted by
the other centers. Accordingly, analyses by the original
MASCIS consortium determined the independent variable
that affected outcomes most was center, and data recovered
was not evenly distributed across centers. This suggests that
there is substantial variability in healthcare records, even in a
well-controlled and protocolized randomized control trial
(RCT) in animal subjects which have greater standardization
of housing, diet, health care and study conditions than a hu-
man RCT. The fact that large center effects persist even under
these idealized conditions may be due to the fact that random-
ization is performed and monitored in a small number of
indexed variables and may not apply to non-indexed variables
such as high blood pressure in MASCIS. Whether center-to-
center variability is less in animals versus human RCTs, or
controlled trials versus observational is an interesting open
question that FAIR data sharing may help resolve in the fu-
ture. Making individual participant data FAIR could enable
translational cross-walk meta-analysis between humans and
animals, if privacy and security concerns that arise from mul-
tidimensional clinical data can be appropriately mitigated
(Rocher et al., 2019). Although we statistically controlled for
the effect center in the present paper, and confirmed blood
pressure effects, this post-hoc statistical approach is less pow-
erful than a balanced prospective study for inferring causal
relationships. We therefore recommend a prospective study
assessing the impact of hypertension on recovery after SCI
of different severities, where center and treatment differences
can be more directly controlled for.

Neurological trauma and related disorders are incredibly com-
plicated to treat. Due to the complexity and heterogeneity of SCI
and central nervous system (CNS) disorders, our viewpoint is
that researchers would benefit by approaching these diseases as
‘big-data’ problem, specifically involving big data variety
(Ferguson et al., 2011; Hawkins et al., 2019; Huie et al., 2018).
SCI may result in motor control and mobility impairments; im-
paired breathing and respiratory deficits; loss of bladder function;
bowel and sexual dysfunctions; pathological pain; and/or loss of
autonomy. To capture the multivariate syndromic outcomes of
CNS disorders, researchers often collect multiple outcome mea-
sures for each individual subject. However, outcomes are often
only assessed a few factors at a time. Complex and contemporary
analytical methods, including thosemore easily associatedwith –
omics, which permit researchers to explore the multi-
dimensionality of diseases rather than testing a few factors at a
time are becoming increasingly more accessible and common in
biomedicine (Parikshak et al., 2015), and as was the case with
Nielson et al. (2015) these methods will continue drive future

biomedical research. Accelerating the transition from a univariate
to a multivariate view of diseases should be a target for biomed-
icine, and making data FAIR through data sharing and data ar-
cheology are crucial and achievable steps in making that transi-
tion (Callahan et al., 2017; Ferguson et al., 2011, 2013; Fouad
et al., 2020).

While there are reservations about data sharing among classi-
cally trained biology researchers, the –omics science disciplines
have successfully navigated those concerns for decades (Kaye
et al., 2009; Lander, 1996). Genomic and other –omic published
studies always provide the accession number to National Center
for Biotechnology Information (NCBI) datasets used for their
analyses, where all datasets are publicly available for download.
In addition, many authors make their codes and scripts publicly
available on platforms like GitHub (GitHub Inc., San Francisco,
CA) for anybody to replicate and validate their analysis. While
this may be a novel concept for some, members of neurotrauma
disciplines have established pathways for data sharing (Fisher
et al., 2009; Fouad et al., 2020; Huerta et al.,s 1993; Lemmon
et al., 2014; Marmarou et al., 2007).

Despite limitations, our study shows that even legacy data
from 25 years ago may yield important findings, and this helps
support emerging standards that all NIH funded research should
follow FAIR data stewardship principles (Mueck, 2013;
Wilkinson et al., 2016). The first attempt to gather subject-level
data from neurotrauma studies was VISION-SCI (Nielson et al.,
2014), but to our knowledge the present work represents the first
targeted attempt of data retrieval of animal subject level data at
this scale. The MASCIS consortium was a large and expensive
group with a budget that exceeded $1 million annually between
1994 and 1996, and used over 2000 animals for their experi-
ments. Our inability to recover the original treatment conditions
for rats from MASCIS is not unusual given the regulatory stan-
dards under which these data were collected. For the majority of
grant funded research, historically, NIH mandated that data be
maintained for 3–5 years post-study completion (NIH Office of
Extramural Research, 2019). Having retrieved data for over 1000
animals at an estimated data recovery rate above 60%, our expe-
rience retrieving part of that dataset was overall successful be-
cause we increased the retained value from the original invest-
ment. Additionally, we are adding these data to our prior recov-
ered data fromOSU in our public release of theMASCIS data as
part of this paper yielding a total of 1459 animals data records
made FAIR through data archeology.

While data archeology may increase the initial investment in
some circumstances, such as those presented here from the
MASCIS study, we strongly recommend and endorse pursuing
a policy of applying FAIR data principles for neuroscience as
data are collected, and specifically making raw subject level data
accessible to the greater scientific community. Efforts to incor-
porate this into study designs at the onset of data collectionwould
ensure FAIR data access moving forward. While it is unclear
whether data archeology is as laborious as prospective data
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collection, the scientific community risks losing data if is not
collected and disseminated adherent to FAIR principles as we
demonstrated in this project. The NIH and NINDSCDEs greatly
facilitate the opportunities of researchers sharing data among
collaborators or colleagues, and new platforms to facilitating data
sharing already exist or will soon be available for many disci-
plines in biomedical research (Hawkins et al., 2019).

The present work extends the concept of meta-analysis to raw
source data, which opens new possibilities to develop higher
evidence for preclinical studies (currently classed as level 4–5
evidence) (Biering-Sørensen, 2005). At the current time it re-
mains unclear to what extent systematic reviews and meta-
analyses can be relied upon to be correct reflections of raw data
(Gøtzsche et al., 2007) as they are based primarily on statistics
reported in papers. In addition, reviews suggest that over 80% of
published manuscripts in a biomedical science journal contains a
least one statistical error (Simundic & Nikolac, 2009), and there
are no indications that statistical rigor is increasing in biomedical
research (Ercan, 2015; Ercan et al., 2017). Thus, there is much to
be gained by granting the next generation of scientist’s access to
FAIR datasets derived by data archeology, data recovery, and
application of modern data stewardship and analytic tools of the
sort applied here.
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