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ABSTRACT
The past decade has witnessed the gradual and steady progress of adoptive T cell therapy in treating 
various types of cancer. In combination with gemcitabine and carboplatin chemotherapy, we previously 
conducted a clinical trial, NCT00690872, to treat Epstein-Barr virus (EBV)-positive nasopharyngeal carci-
noma (NPC) patients with autologous EBV-expanded cytotoxic T lymphocytes (CTLs). While achieving 
a 2-year overall survival rate of 62.9%, this trial failed to induce an anti-tumor response in a sizable fraction 
of patients. Thus, the identification of benchmarks capable of evaluating CTL products and predicting 
clinical immunotherapeutic efficacy remains an urgent need. We conducted T cell receptor (TCR) reper-
toire sequencing to assess EBV-expanded infusion-ready CTL products. To depict the overall repertoire 
landscape, we evaluated the individual repertoire diversity by Shannon entropy, and, compared the inter- 
patient CDR3 similarity to estimate T cells expanded by common antigens. With a recently developed 
bioinformatics algorithm, termed Motif Analysis, we made a machine-learning prediction of structural 
regions within the CDR3 of TCRβ that associate with CTL therapy prognosis. We found that long term 
survivors, defined as patients surviving longer than two years, had a higher CTL repertoire diversity with 
reduced inter-patient similarity. Furthermore, TCR Motif Analysis identified 11 structural motifs distin-
guishing long term survivors from short term survivors. Specifically, two motifs with a high area under the 
curve (AUC) values were identified as potential predictive benchmarks for efficacious CTL production. 
Together, these results reveal that the presence of diverse TCR sequences containing a common core 
motif set is associated with a favorable response to CTL immunotherapy against EBV-positive NPC.
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Introduction

In Southern China and Southeast Asia, nasopharyngeal carci-
noma (NPC) is highly prevalent with an incidence of 30 to 
50 per 100,000 people. Although a high cure rate has been 
achieved for localized NPC lesions using conventional chemor-
adiation therapy, the prognosis for patients with relapsed and 
metastatic disease remains poor.1 NPC onset and progression 
are etiologically linked to Epstein–Barr virus (EBV) infection. 
Due to the expression of targetable tumor-associated viral 
antigens, NPC is suitable for T cell-based immunotherapies. 
Indeed, adoptive immunotherapy using EBV-specific cytotoxic 
T lymphocytes (EBV-CTLs) has shown clinical efficacy.2 By 
combining EBV-CTL adoptive transfer with chemotherapy, in 
a phase II clinical trial, our group has yielded a remarkable 
objective response rate of 71.4% and a 2-year overall survival 
rate of 62.9% in patients with advanced NPC, compared to the 
2-year overall survival rate of 29.5% in standard 
chemotherapy.3 Despite these encouraging results, clinical out-
comes remained variable such that 28.6% of patients were 
unresponsive to EBV-CTL immunotherapy. Therefore, 

benchmarks capable of evaluating CTL products and identify-
ing favorable patients potentially benefiting from EBV-CTLs 
adoptive transfer are urgently needed to further improve EBV- 
CTL immunotherapy. 

For EBV-CTL therapy, or any other T cell-mediated immu-
notherapies, efficacy is determined by both the efficiency of 
tumor antigen presentation and in situ T cell activation.4 On 
the antigen presentation side, tumors heavily loaded with homo-
geneously distributed immunogenic antigens are most suscepti-
ble to T cell-mediated killing.4,5 High human leukocyte antigen 
(HLA) expression supports a higher probability of tumor anti-
gen presentation to reduce the chance of immune evasion.5 On 
the T cell activation side, the tumor microenvironment plays 
a pivotal role by restricting the capacity of T cell proliferation 
and cytolytic function.4 Besides these extrinsic factors, intrinsic 
T cell activation, proliferation, and cytokine secretion are con-
trolled by a T cell’s differentiation state,4,6 and most importantly, 
its antigen binding structure, the T cell receptor (TCR).7,8

The TCR is responsible for recognizing peptide antigens 
presented by the major histocompatibility complex 
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(MHC).9,10 The TCR:pMHC interaction mediates the activity 
and specificity of the T-cell response to a given antigen.11 In 
humans, TCRs are expressed on the surface of T cells as 
a disulfide-linked heterodimer composed of α and β chain.12 

TCR repertoire diversity is generated during early development 
in the thymus by somatic recombination of the TCRα and 
TCRβ loci.13,14 During this rearrangement process, TCR vari-
able (V), diversity (D in the TCRβ) and joining (J) gene seg-
ments are reorganized and assembled by random and non- 
templated ligation.14 The huge number of possible combina-
tions generates a highly diverse set of antigen receptor 
sequences. Most importantly, the highly polymorphic protein 
domain called complementarity determining region 3 (CDR3), 
the principal antigen recognition site,15 is created when TCR 
genomic loci undergo somatic recombination between gene 
segments;16 this CDR3 region determines the specificity and 
affinity of antigen recognition.11,15 Therefore, direct analysis of 
CDR3 clonotypes might provide an improved understanding 
of the T-cell-mediated antitumor response.

To support this, recent advances in high-throughput 
sequencing offer unprecedented analytic power to monitor 
dynamic changes in the global TCR repertoire, thereby making 
precision analysis of T cell clonotypes feasible. Current TCR 
sequencing analyses provide unbiased measurements of clono-
type composition, clonotype size, overall clonotype diversity, 
and inter-repertoire similarity measurements which can serve 
as direct readouts of a T cell clone’s proliferation and contrac-
tion to reflect its immunotherapeutic efficacy.17,18 

Furthermore, utilizing machine learning algorithms, CDR3 
regions sharing similar binding motifs toward a common anti-
gen can be unbiasedly clustered. Using a certain CDR3 set as an 
anchor, we screened the entire TCR repertoire to distinguish 
TCRs with the same epitope specificities even without apparent 
global sequence similarity.19,20 Here, we applied these tools to 
assess repertoire features of EBV-expanded CTLs produced 
during clinical trial NCT00690872, hypothesizing that certain 
TCR repertoire features might inform the prediction of respon-
siveness to CTL immunotherapy in patients with NPC.

Materials and methods

Study design

In the NCT00690872 clinical cohort, a total of 38 patients with 
histologically proven, EBV-associated metastatic or locally 
recurrent NPC were enrolled. In the first-line treatment, four 
cycles of gemcitabine and carboplatin (GC) chemotherapy 
were administered, followed by six doses of EBV-CTL infusion, 
ranging from 0.1 to 12 × 108 cells.3EBV-CTLs were expanded 
from autologous peripheral blood mononuclear cells (PBMCs) 
using autologous EBV-transformed lymphoblastoid cell lines 
(LCLs) as antigen-presenting cells. Each CTL product was 
tested for immunophenotype, EBV antigen specificity and 
HLA background. EBV-specific activation was confirmed by 
IFN-γ ELISPOT assay stimulated with LCLs, or HLA-restricted 
synthesized pool of peptides derived from EBV antigens 
(BZLF1, BRLF1, BMRF1, EBNA1, EBNA3A, EBNA3B, 
EBNA3C, LMP1, and LMP2). Due to rapid disease progression 
or death during chemotherapy, 3 patients have no chance to get 

CTL infusion. Of 35 patients receiving CTL therapy, 2 patients 
had no CTLs remaining for TCR sequencing. Therefore, 33 
CTL pools were used for deep TCRβ sequencing (Figure S1). 
This bed-side to bench-side translational research was covered 
by SingHealth Centralized Institutional Review Board approval 
(CIRB reference number: 2019/2409). Patient informed con-
sents were obtained before the trial.

After sequencing, data were mining through comparisons 
between long term survivors (LTS) and short term survivors 
(STS). Patients, surviving longer than two years, were categorized 
as LTS, based on overall survival (OS) differences between the GC- 
CTL-treated patient cohort and patients receiving chemotherapy 
alone in the same center. The latter cohorts were treated with 
paclitaxel-gemcitabine-carboplatin (PGC)21 and PGC-5- fluor-
ouracil (PGC-5-FU)22 respectively. These three clinical trials 
enrolled similar patients with locally recurrent or metastatic 
NPC. Their one-year OS rates are 81.3, 75.0, 77.1%, two-year OS 
rates are 29.5, 42.9,62.9%, and three-year OS rates are 16.4, 25.0, 
37.1% for PGC, PGC-5-FU and GC-CTL respectively. Compared 
to the chemotherapy alone regimens, the GC-CTL therapy showed 
progress in improving the two-year OS rate and three-year OS 
rate. Particularly, the OS rate improvement is significant in com-
parison with GCP regimen (Table S1). Thereby, the two-year is 
a natural cutoff to group our patients into LTS or STS.

TCR library construction and TCRβ sequencing

Frozen CTLs were thawed, and RNA was isolated using an 
RNAqueous™-Micro Total RNA Isolation Kit (Life Technologies, 
USA). A total of 500 ng RNA of each sample was reverse tran-
scribed into complementary DNA (cDNA) with a universal con-
stant region primer for TCRβ (ATCTCTGCT 
TCTGATGGCTCA) using a qScript Flex cDNA Kit (Quantabio, 
USA). Multiplex PCR was then conducted to amplify the entire 
CDR3 region using a Multiplex PCR Assay Kit (TaKaRa, Japan) 
with forward primers specific to V segments and a reverse primer 
targeting the C region.23 PCR products were loaded onto a 2.5% 
agarose gel (Sigma, USA). After 90 min of electrophoresis at 130 V, 
bands centered at 300 bp were extracted (TaKaRa MiniBEST 
Agarose Gel DNA Extraction Kit Ver.3.0). Real-time fluorescence 
quantitative PCR was used to quantify the absolute concentration 
of the purified fragment (VAHTS Library Quantification Kit for 
Illumina). Based on their concentrations, all libraries were pooled 
and subjected to sequencing using the HiSeq X Ten platform 
under a 150 bp paired-end strategy. About 1.5 GB data were 
generated for each sample, which contains about five millions of 
reads to ensure enough depth.

Raw data processing

Raw data was cleaned by filtering out low-quality reads, adaptor 
sequences, and short length reads. Clean reads were assembled and 
aligned to reference V, D, J, and C genes of T-cell receptors using 
MiXCR software.24 Specifically, a two-round assembly, including 
a first-round partial assembly and a second-round full assembly, 
was conducted to capture more clonotypes, referred to a specific 
CDR3 sequence. High-quality reads were firstly assembled into 
core clonotypes, which were then extended based on unique V and 
J genes against germline sequences. The final assembly was 
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performed with error correction algorithms to merge similar 
clonotypes and their abundance. Out of frame sequences were 
excluded from further analysis. Numbers of distinct TCR clono-
types and accumulative clone frequencies (both amino acid and 
nucleotide sequences) were calculated after normalization using 
in-house R scripts.

Diversity analysis

TCR repertoire diversity was evaluated based on the Shannon 
entropy index, which was produced using the tcR package 
under the R environment.25 Entropy function was used on 
clonotype frequencies to assess their diversity within each 
sample. This analysis was based on amino acid sequences 
from either the CDR3 region or the entire TCR region. 
Shannon entropy (H) was calculated using 

H xð Þ ¼ �
XN� 1

i¼0
pilog2pi 

where pi is the frequency of i TCR clonotype, and N represents 
the total number of TCR clonotypes for sample x.

Similarity analysis

The similarity of TCR repertoires from intra-group pairwise 
patients was quantified by calculating the Jaccard index, as 
previously reported.26 Jaccard index values range from 0 to 1, 
indicating distinct to completely identical. These analyses were 
based on amino acid sequences from either the CDR3 region or 
the full-length TCR, as indicated.

Motif analysis

TCR clonotypes were included to generate all possible amino 
acid motifs with varying lengths using the R tcR package. Two 
separate pools of CDR3 sequences were created initially for 
each of these motifs from LTS and STS. To account for differ-
ent sequence depths across samples, we normalized the num-
ber of CDR3s containing each motif by the total number of 
CDR3s containing all motifs in each sample. The motif fre-
quency ratios between LTS and STS were correlated with 
patients’ clinical response. A higher ratio represents more 
abundant motifs in LTS compared with STS, enabling the 
identification of a set of candidate motifs distinguishing LTS 
and STS groups. The importance of each motif was evaluated 
using both Mean Decrease Accuracy and Mean Decrease Gini 
in the random forest. A standard receiver operating character-
istic (ROC) approach was applied to evaluate the predictive 
power of each motif. These analyses were performed using 
R randomForest27 and ROC packages.

Statistical analysis

The significance of diversity, similarity, and Motif Analysis 
comparisons between groups were measured by Wilcoxon 
signed-rank test, Pearson chi-square test, and Fisher exact 
test. Correlations between patient clinical response and 
entropy were quantified by Pearson correlation. 

Unsupervised hierarchical clustering was performed using the 
Manhattan distance or Ward.D2 method. Circular dendro-
grams were graphed with the R factoextra package. Figures 
were plotted using ggplot2 and ggpubr packages. All statistics 
were conducted under the R statistic environment.

Results

Characteristics of patients and their EBV-CTLs from 
Clinical trial NCT00690872

In the NCT00690872 clinical cohort,3 patients were enrolled 
with metastatic or locally recurrent NPC. The HLA back-
ground, infused CTL number and overall survival time of 
each patient are summarized in Table S2. Of 33 CTL products 
available for TCRβ sequencing, 31 samples generated high- 
quality sequencing data. Thereby, TCR repertoire data from 
18 LTS and 13 STS were subjected to further bioinformatic 
analyses (Table S2 and Figure S1). Total reads from these 31 
CTL pools ranged from two to seven million, which are suffi-
cient to detect low-frequency clonotypes (Table S3).

Long term survivors exhibit higher TCR repertoire diversity

Two possible mechanisms could underlie the observed clinical 
benefits of EBV-CTL immunotherapy. First, the clinical bene-
fits might be associated with a few selected T cell clones, which 
are efficiently expanded to dominate the anti-tumor response. 
This would predict that clinical efficacy is associated with low 
CTL TCR repertoire diversity. Alternatively, rather than dom-
inancy developed against a narrow range of tumor antigens, 
numerous clonotypes could be expanded by EBV stimulation 
to achieve a relatively even clonal size, which would target 
a broader spectrum of tumor cells with heterogeneous EBV 
antigen presentation. This scenario would predict that 
a favorable clinical response is associated with high CTL reper-
toire diversity.

A variety of statistical indices have been utilized to measure 
TCR repertoire diversity, including Simpson diversity, Hill 
numbers, and Shannon entropy. In comparison to the others, 
Shannon entropy is most balanced to summarize clonotype 
richness and evenness and employed as the surrogate para-
meter for clonal expansion and selection.23,28,29 The antigen- 
recognizing residues of a TCR are separated into three 
CDRs:30,31 CDR1 and CDR2 contact conserved helical residues 
of the MHC and are encoded in germline V regions; and 
hypervariable CDR3 loops generated during VDJ recombina-
tion engage presented peptides within the groove of the MHC 
structure and therefore define the specificity of a given TCR.32 

Therefore, we measured the diversity of both CDR3 sequences 
and, to include the MHC interaction, the full-length TCR. At 
the individual level, although lacking statistical significance, we 
observed a weak positive correlation between TCR diversity 
and overall patient survival (Figure S2). However, after divid-
ing patients into STS and LTS groups, in both CDR3 and full- 
length measurements, CTLs infused to LTS contained mark-
edly higher TCR diversities (Figure 1a, 1b).

TCR activation and expansion require the engagement of 
both peptide antigen and MHC molecules, termed HLA in 
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humans.33 The HLA locus is the most polymorphic region of 
the human genome, encoding more than 6,000 HLA 
allomorphs.34 Structural biology studies have shown 
a pairwise interaction between HLAs and TCRs through com-
plementary amino acid residues.35 Consequently, any differ-
ences in HLA diversity between LTS and STS groups should 
impact TCR diversity during CTL production. To exclude this 

confounding factor, we subdivided patients according to their 
major HLA haplotypes. We previously determined that EBV- 
CTLs generated from PBMCs were dominantly CD8+ positive;3 

therefore, we only assessed the diversity of type-I MHC: HLA- 
A, -B, -C molecules were included for analysis here, with HLA- 
DP, -DQ and – DR excluded. Although sample sizes limited the 
statistical significance for some subgroups, for almost all HLA 

Figure 1. Long term survivors to EBV-specific adoptive T cell therapy have higher TCR repertoire diversity without HLA bias. a. Comparison of Shannon entropy 
between LTS and STS for CDR3 regions. b. Comparison of Shannon entropy for full-length TCRs. c-h. Shannon entropy comparisons in subgroups. LTS and STS are 
subgrouped according to their HLA alleles or types. Each dot represents the Shannon entropy value of each patient’s CTL repertoire. P values were calculated using 
nonparametric Wilcoxon signed-rank test; *, p < .05. LTS, long term survivors; STS, short term survivors.
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types, TCR repertoire diversities were higher in the LTS group 
(Figure 1c-h), indicating a lack of HLA bias for the observed 
CTL repertoire diversity. Together, these findings suggest that 
during CTL production, the generation of diversified EBV- 
specific T cell clones may favor anti-NPC efficacy.

Long term survivors share lower inter-patient similarity

Although diversity analysis suggests that there may not be 
dominant EBV antigens governing the anti-tumor response 
of CTLs, it is unclear whether in LTS CTLs were raised against 
a common set of “effective” antigens. Using Jaccard index 
analysis,26 we quantified the intra-group and inter-patient 
similarity of the TCR repertoire. Compared to the STS group, 
the inter-patient CTL CDR3 similarity in the LTS group was 
lower (Figure 2a, 2b), and, when this analysis was extended to 
the full TCR, the same pattern was observed (Figure 2c).

We also observed that the clonal frequency distribution in 
each CTL product is largely biased toward highly expanded 
clones: clonotypes with frequencies ranked in the top 1% 
accumulatively occupy 90.10% (±12.85%) of the repertoire 
in LTS and 96.83% (±1.41%) in STS. For inter-sample 

clonotype similarity measurements, this distribution profile 
could underestimate the contribution of high-frequency 
clones. To mitigate this bias, we assessed similarity among 
the most prevalent clonotypes. By investigating the highest 
frequency clones at top 10%, top 1%, and top 0.1% ranges, we 
found that inter-patient TCR CDR3 similarities gradually 
decrease in both LTS (mean similarity values range from 
0.2292 to 0.0006) and STS (mean similarity values range 
from 0.3868 to 0.0051), indicating that higher frequency 
clones contribute more to similarity. Nevertheless, in each 
ranking category, compared with STS, significantly lower 
CDR3 sharing was observed within the LTS group 
(Figure 2d). Together, these results suggest that among the 
LTS, infused CTL cells are less likely to be expanded against 
a set of common epitopes. Like the intra-patient TCR diver-
sity analysis described above, these inter-patient CDR3 simi-
larity analyses also indicate that a common EBV antigen may 
not be the primary determinant of anti-NPC CTLs’ clinical 
efficacy.

To determine whether this similarity analysis was biased by 
intra-group HLA overlap, we examined the correlation 
between repertoire similarity and HLA sharing. Three alleles 

Figure 2. Long term survivors have lower inter-patient TCR repertoire similarity unrelated to HLA allomorphs. a-b. Similarity comparisons between LTS and STS 
for the CDR3 region. Each dot represents a Jaccard similarity value for a pair of LTS or STS. c. Similarity comparisons for full-length TCR. d. CDR3 similarity for top 
frequency clones. TCR clonotype analyses used 10%, 1%, and 0.1% clonotypes. e. Inter-patient HLA overlap in LTS and STS groups. The size of each dot represents the 
number of patient-matching pairs. P values were calculated using Pearson’s Chi-squared test. f. Correlation of inter-patient similarity versus the number of shared HLAs. 
P values were calculated using Wilcoxon signed-rank test; **, p < .01; ***, p < .001, ****, p < .0001; ns, not significant; LTS, long term survivors; STS, short term survivors.
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of type I HLA were examined, with numbers of inter- 
individual HLA alleles shared ranging from 0 to 6. No differ-
ences in HLA complexity were observed between LTS and STS 
(Figure 2e). Moreover, regardless of HLA diversity, all STS had 
higher CDR3 sharing rates than LTS (Figure 2f).

CDR3 structural motifs predict clinical response

Accumulating evidence from recent structural studies has 
determined that TCR-pMHC recognition does not require 
every amino acid in the CDR3 region. Instead, peptide contact 
hotspots, termed motifs consisting of 3–4 core amino acids 
within the CDR3 structure, can be routinely identified. This 
indicates that different CDR3s sharing the same motif may 
recognize the same epitope, even if the rest of their CDR3 
sequences vary.36,37 When applied to TCR repertoire analysis, 
Motif Analysis compellingly enhances the accuracy in organiz-
ing TCRs based on shared antigen specificities, eventually 
leading to more reliable frequency quantification of antigen- 
specific T cells.20,36 To perform Motif Analysis, we pooled all 
CDR3 clonotypes together from all LTS, and the unique CDR3 
list was generated by removing the duplicates. The 2mer, 3mer, 
and 4mer connected amino acid sequences derived from the 
top 10% unique CDR3 clonotypes constituted the initial motif 
pools. The ratio of intra-group summed frequencies of CDR3 
containing the K-mer motif was calculated between LTS and 
STS groups (LTS/STS). We then utilize an accuracy algorithm 
to identify motifs preferentially enriched in CTLs of LTS, 
where accuracy defines how well the input variables predict 
the outcomes (Figure 3a).38 When the ratio of LTS/STS is 
higher than 10, a total of 11 motifs were identified as non- 
negatively correlated with overall survival (Figure 3a, 3b). 
Taking the presence and frequency of these 11 motifs as the 
sole grouping parameter, we separated the majority of patients 
to match their clinical responses, except only three LTS mis-
identified (90.3% accuracy; Figure 3c), suggesting that CDR3 
motifs identified through machine learning may effectively 
stratify NPC patients benefitting from EBV-CTL therapy. In 
recent years, many EBV-specific TCRs were functionally vali-
dated and deposit into public databases, such as VDJdb39 and 
McPAS-TCR.40 We submitted all these 11 responses-associated 
motifs to these two databases for a search. Eight motifs, DGAG, 
EES, EVAG, GSRS, KTGE, LYL, SPFS and TTNT, were suc-
cessfully discovered within the CDR3 region of TCR(s) against 
EBV antigen epitopes. These epitopes spread on BMLF1, 
BRLF1, EBNA, and BZLF1 proteins (Figure 3d). This supports 
the notion that these motifs belong to CTLs that were 
expanded by EBV antigens during the production.

We next utilized machine learning to further rank the 
importance of these 11 CDR3 motifs. Two independent accu-
racy parameters were generated for each motif: mean decrease 
of accuracy and mean decrease Gini. The former computes 
the accuracy changes by permutating each variable with the 
hypothesis that permutation of the critical variable will 
decrease model accuracy. The latter builds individual decision 
trees and then measures the mean total decrease in node 
impurity for each variable. Both approaches identified the 
same two 4mer motifs, SPFS and SPDQ, as contributing 
most to response prediction accuracy across all patients 

(Figure 3e), both of which are significantly enriched among 
TCRs of LTS CTLs (Figure 3f). Frequency comparisons for 
the other 9 motifs also identified the motif SERR as enriched 
in the LTS group (Figure S3a), although its influence on 
prediction accuracy is lower (Figure 3e). As biomarker eva-
luation, ROC analysis yielded areas under the curve (AUC) of 
89.1% and 84% for SPFS and SPDQ, respectively (Figure 3g). 
For individual patients, the accumulative CDR3 frequency of 
the SPQD motif showed a positive correlation with overall 
survival among LTS (Figure 3h and Figure S3b). Moreover, 
these two motifs are significantly enriched in LTS with A2, 
A11, or B46 HLA alleles (Figure 3i). Together, these results 
show that the enrichment of specific motifs within the CDR3 
region of infused CTLs may predict NPC patients’ response to 
EBV-CTL therapy. Specifically, through the database search, 
we determined that the SPFS motif belongs to TCRs that 
recognize the RAKFKQLL epitope in the BLZF1 protein 
(Figure 3d). Experimentally, this epitope was presented by 
HLA-B*08:01. Although HLA-B*08:01 cannot be found for 
any patient in the motif analysis, we assessed whether other 
HLA alleles may present this epitope using NetMHCpan4.141 

and HLAthena42 algorithms. These bioinformatics tools pre-
dicted that the RAKFKQLL epitope may be presented by 
HLA-A*33:03, B*15:01, B*15:25, B*38:02, or B*46:01 with 
sufficient affinity. In our cohort, 27 out of 31 patients contain 
at least one of these HLA alleles (Table S4). Therefore, for our 
cohort, the presentation of RAKFKQLL epitope in tumor 
tissues is probable. This implies that SPFS-containing TCRs 
in the CTL products may be the component delivered the 
observed clinical benefit.

Discussion

EBV-positive NPC cells express several general viral antigens, 
including EBNA1, LMP1, and LMP2, which can be targeted to 
eliminate tumor cells effectively.43 Multiple clinical studies 
have shown that EBV-enriched CTLs containing LMP2- 
specific reactivity are associated with objective response.2,3,43 

However, while survival analysis showed significantly 
improved overall survival, the frequency of LMP2-specific 
T cells among infused CTLs, as analyzed by ELISPOT, failed 
to predict individuals’ anti-tumor response.3 Here, we con-
ducted high-throughput TCRβ repertoire analysis by deep 
sequencing to provide insight into the characteristics of EBV- 
CTL repertoires. We found that LTS have higher intra-patient 
TCR repertoire diversity and lower inter-patient similarity. 
Using a newly developed Motif Analysis algorithm,20 we iden-
tified 11 motifs capable of separating LTS from STS, such that 
these motifs might eventually be used as predictors of clinical 
efficacy.

TCR repertoire diversity characterizes the T cell clonal 
composition, which reflects the spectrum of antigen specificity 
and the quantity of each clonotype.44 Here we found that LTS 
have a more diverse CTL TCR repertoire, a finding which can 
be explained by at least two possible mechanisms. First, 
because multiple different TCR clones can recognize the same 
antigen epitope,32,45 vast repertoire diversity can magnify the 
immune response to a given antigen by formation of a more 
diverse pool of effector T cells with functionally 
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Figure 3. TCRβ CDR3 structural motifs predict clinical response. a. Model accuracy was applied to choose the optimal motif ratio in LTS and STS groups. The 
accuracy is valuated with the pool of motifs non-negatively correlated with overall survival. Number of X axis indicates greater than x. At a ratio of greater than 10, 
accuracy reached a maximum. b. Plot depicting LTS/STS CDR3 ratios and correlation with overall survival. The top candidates (highlighted in black) were chosen based 
on their positive correlation (≥0) and ratio ≥11. c. LTS were distinguished from STS by combining 11 CDR3 motifs. d. Motifs found in public databases. The 11 Motifs 
used to group patients were searched in VDJdb and McPAS-TCR databases. e. The indicated 11 CDR3 motifs were ranked according to their predictive accuracy. Left, 
mean decrease accuracy; right, mean decrease Gini. f. Enrichment of SPFS and SPDQ motifs in LTS. g. ROC curves of SPFS and SPDQ motifs indicate medium to high 
predictive power to distinguish between NR and R groups. h. Correlation between overall survival and accumulative frequency of CDR3 clonotypes bearing SPFS or 
SPDQ motifs. i. Correlation between HLA sharing and accumulative frequency of CDR3s bearing SPFS or SPDQ motifs. Statistics based on Wilcoxon signed-rank test; *, 
p < .05; **, p < .01; ns, not significant; LTS, long term survivors; STS, short term survivors.
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heterogeneity.46 This will enhance the resilience against the 
inevitable loss of individual clonotypes.18,47 If this antigen is 
dominant in tumor tissue, this could generate superior anti- 
tumor immunity. This phenomenon was previously observed 
in a breast cancer patient with a complete response toward 
tumor-infiltrating lymphocyte (TIL) therapy comprising seven 
highly expanded TCR clones against the same neoantigen.18 

Second, NPC cells might express several epitopes derived from 
EBV antigens to induce a cytotoxic CD8 + T cell response. In 
this way, more TCR clonotypes targeting an assortment of 
potential epitopes could simultaneously trigger a more robust 
anti-tumor immune response and prevent immune escape due 
to tumor heterogeneity. The breast cancer patient mentioned 
above received autologous TILs reactive against four neoanti-
gens to achieve durable complete tumor regression. Although 
before infusion, the in vitro-generated TIL product recognized 
only two neoantigens with eight different T cell clonotypes, 
three rare clonotypes emerged as dominant clones targeting 
two more neoantigens after in vivo expansion. Thus, a diverse 
TCR repertoire has a greater probability of containing rare 
clonotypes, which might expand into dominant clones 
in vivo to mediate late but durable tumor regression.18 In 
support of this, we observed decreased tumor growth rates 
after initial progression in several patients, indicating 
a delayed anti-tumor response of infused EBV-CTLs.3 This is 
also consistent with a previous retrospective analysis of mela-
noma patients showing that rare T cell clonotypes expand and 
exhibit superior anti-cancer properties in vivo.17

Regardless of which of these two mechanisms is most promi-
nent for NPC patient outcomes, a positive relationship between 
CTL repertoire diversity and prognosis has been documented in 
numerous pre-clinical and clinical studies. In B16 melanoma- 
bearing mice, increased diversity of tumor-infiltrating T cells con-
tributes to successful checkpoint blockade immunotherapy.44 

Moreover, diverse resident memory T cells in tumor-adjacent 
mucosa provide more effective immunological surveillance for 
postoperative gastric cancer patients.23 A phase III clinical trial 
of patients with metastatic renal cell carcinoma showed that TCR 
repertoires with high diversity are also correlated with a favorable 
prognosis.48 In addition, post-therapy TCR repertoire analysis 
revealed that peripheral CD4 + T cells from colorectal cancer 
patients with partial response exhibited significantly higher TCR 
repertoire diversity than those from patients with stable or pro-
gressive disease. This diversity difference was enlarged after cetux-
imab plus fluorouracil-leucovorin-irinotecan (FOLFIRI) 
treatment, further demonstrating the utility of monitoring TCR 
repertoire diversity changes for efficacy prediction.49 Finally, one 
study showed that favorable prognosis correlates with higher TCR 
repertoire diversity in NPC tumor tissues compared to paired 
adjacent normal tissues.50 These previous results are consistent 
with our findings that high CTL diversity associates with improved 
NPC patient immunotherapeutic outcomes.

Our Motif Analysis uncovered several motifs significantly 
associated with prolonged overall survival in advanced NPC 
patients. The idea that antigen specificity is primarily deter-
mined by a stretch of 3–4 amino acids within the CDR3 region 
is also strongly supported by the TCR:pMHC structural biol-
ogy study. Through a comprehensive yeast display screening,  

Garcia and colleagues51 exhaustively searched all possible anti-
gens recognized by the 42F3 TCR. Out of 4.2 × 108 variants, 
hundreds can bind the 42F3 TCR. Although the sequences of 
engaged antigens differ drastically, the TCRs invariably use the 
(S)DAP motif within CDR3β to recognize all antigens. 
Additionally, Davis and colleagues recently updated their 
motif analysis platform with GLIPH2.52 With GLIPH2 algo-
rithm, they successfully annotated 19044 unique TCRβ 
sequences into a smaller number of groups based on their 
motif similarity. The power of this tool was further validated 
through antigen discovery and functional validation. These 
elegant studies demonstrated that the motif-driven analysis is 
a reliable algorithm to classify TCR specificities without pre-
requisite for epitope or HLA restriction. This set of 11 tri/ 
tetrapeptide motifs identified here independently predict clin-
ical benefit with high accuracy, suggesting their possible future 
use as biomarkers to characterize the quality of EBV-CTL 
products and responsiveness to EBV-CTL therapy. CTL gen-
eration is a complex and challenging process requiring highly 
trained and skilled staff to maintain large numbers of T cells 
over a long duration.53 Typically, after an initial 7-day culture, 
millions of CTLs can be generated and sequenced. Results from 
repertoire sequencing combined with Motif Analysis could 
instruct us to stop further expansion if CTLs do not exhibit 
an appropriate LTS motif pattern, and, at this time, patients 
with an unfavorable prognosis could choose alternative treat-
ments that have a higher likelihood of success.

It is important to note the limitations of our study. First, 
only 31 samples (18 LTS and 13 STS) were subjected to TCR 
repertoire analysis. Additional collection and sequencing of 
peripheral blood samples could be used to strengthen our 
conclusions. Second, ideally, the TCR repertoire should be 
tracked after adoptive cell transfer. A comparison between 
pre- and post-infusion CTLs would provide more compre-
hensive information on TCR repertoire reconstitution 
in vivo. These caveats notwithstanding, our study presents 
a new methodology to stratify in vitro-generated EBV-CTLs 
by CDR3 recognition motifs associated with NPC patient 
survival in order to optimize therapeutic recommendations.

Conclusions

In this study, by conducting  
TCRβ repertoire sequencing with autologous EBV-expanded 
CTL products, we found that the presence of diverse TCR 
sequences containing a common core motif set is associated 
with a favorable response to CTL immunotherapy against 
EBV-positive NPC. This bedside to bench translational study 
is timely and instructive for the optimization of adoptive EBV- 
CTL NPC therapy.
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