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Abstract: Most irreversible blindness observed with glaucoma and retina-related ocular diseases, in-
cluding age-related macular degeneration and diabetic retinopathy, have their origin in the posterior
segment of the eye, making their physiopathology both complex and interconnected. In addition
to the age factor, these diseases share the same mechanism disorder based essentially on oxidative
stress. In this context, the imbalance between the production of reactive oxygen species (ROS) mainly
by mitochondria and their elimination by protective mechanisms leads to chronic inflammation. Ox-
idative stress and inflammation share a close pathophysiological process, appearing simultaneously
and suggesting a relationship between both mechanisms. The biochemical end point of these two
biological alarming systems is the release of different biomarkers that can be used in the diagnosis.
Furthermore, oxidative stress, initiating in the vulnerable tissue of the posterior segment, is closely
related to mitochondrial dysfunction, apoptosis, autophagy dysfunction, and inflammation, which
are involved in each disease progression. In this review, we have analyzed (1) the oxidative stress and
inflammatory processes in the back of the eye, (2) the importance of biomarkers, detected in systemic
or ocular fluids, for the diagnosis of eye diseases based on recent studies, and (3) the treatment of
posterior ocular diseases, based on long-term clinical studies.

Keywords: oxidative stress; inflammation; glaucoma; retina diseases; age-related macular degenera-
tion; diabetic retinopathy

1. Introduction

Age-related ocular diseases related to the posterior segment of the eye including
glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy (DR) share
similar characteristics, which facilitates their diagnosis. However, all of them are serious
diseases, leading to irreversible blindness. For instance, glaucoma is currently the most
common cause of irreversible visual impairment. Additionally, different estimations predict
the continuous increase of glaucoma in the coming years [1–3]. Moreover, the three diseases
present a complex pathophysiology, which is related to cellular senescence, oxidative stress,
and the inflammatory pathway [4].

Oxidative stress is normally associated with the generation of reactive oxygen (ROS)
and reactive nitrogen species (RNS). ROS can react rapidly with nitric oxide (NO), generat-
ing RNS. These substances are considered as metabolites with a high capacity to oxidize
proteins, lipids, and nucleic acids [5] and enhance autophagy and mitophagy processes [6],
cell dysfunction, necrosis, apoptosis, and cell death [7,8].
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1.1. Oxidative Stress and Inflammation

There are two main routes of ROS generation. The first is related to mitochondria,
which are associated with the electronic transport chain [9,10] and to cytochrome P450 [11].
The second is related to nicotinamide adenine dinucleotide phosphate oxidase (NADPH
oxidases), especially to phagocytic immune cells and endothelial cells [12], which are
consequently associated with the inflammatory response [13].

Although the study of these substances focuses on the cellular damage products, they
have important cellular functions such as regulators and signaling agents in multiple pro-
cesses such as apoptosis, mitophagy, adhesion, and cell differentiation [6,14,15]. However,
when the production of ROS and RNS exceeds the limits of the detoxification system in a
prolonged or chronic way, these substances are considered the main mediators of the in-
flammatory pathology [5,13]. The pro-inflammatory activity of these substances is partially
related to immune system cells such as polymorphonuclear neutrophils. These cells are
very abundant at inflammation sites, where specific enzymes such as myeloperoxidase are
involved in the transformation of ROS and the immune response [14]. Oxidative stress and
inflammation share close pathophysiological processes, appearing simultaneously in many
pathologies and suggesting a relationship between both phenomena [15].

Currently, the consensus describes the role of oxidative stress as one of the first events
in the inflammation cascade [16–18]; however, the mechanisms by which these oxidizing
substances are able to initiate and modulate inflammation are still unknown [5]. The
retina is a tissue that is especially sensitive to oxidative stress with a high metabolic rate
and oxygen consumption. The presence of photoreceptors that are rich in fatty acids
makes the retina susceptible to oxidation [19]. In the same way, different pathologies
that affect this tissue are closely related to inflammatory processes [20–22]. Therefore,
many pathologies related to the posterior pole of the eye have been associated with these
two processes, sharing their pathophysiology not only in oxidative stress but also in
inflammation phenomena. Thus, ocular biomarkers associated with oxidative stress and
inflammation represent a strategy in the diagnosis and monitoring of ocular diseases [4,23].

Before the classification of biomarkers, it is important to know their terminology. In
general, a biomarker is defined as a measurable indicator of a relevant biological, clinical
state, or it is capable of predicting one [24]. Biomarkers are typically molecules or structures
easily obtainable from different parts of the body, fluids, or products, that can affect or
predict the incidence of a disease [25]. They can be defined as molecular signatures of
ocular diseases states and are detected in the major eye-derived fluids, including tears,
aqueous humor, and vitreous humor, which may reveal critical information about the
state of eye health. Their application is generally less invasive, faster and easier than the
study of the final clinical state, and they are usually used for diagnosis and monitoring
of the progress and prognosis of a disease [24]. In this review, we will focus specifically
on biomarkers related to oxidative stress and inflammation in retinal diseases (including
AMD and DR) and in glaucoma; see Figure 1.

1.2. Biomarkers of Oxidative Stress

The processes associated with oxidative stress present high concentrations of ROS
and RNS. They comprise different chemical species such as superoxide anion oxygen
(O2
−), hydrogen peroxide (H2O2), and hydroxyl radicals (OH). RNS consists of nitric oxide

(NO) and peroxynitrite (ONOO−), which results from the reaction of NO with O2
−. [26].

Therefore, these chemical species have the potential to act as biomarkers of oxidative
stress. In the same way, the evaluation of ROS generators such as enzymes, including
nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) [27], show the
same potential as biomarkers. Interestingly, numerous pro-inflammatory cytokines can
activate NADPH oxidase and nitric oxide synthase 2 (NOS2), increasing NO production
and consequently peroxynitrite [4].
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Figure 1. Scheme of oxidative stress role in posterior ocular diseases. IOP: intraocular pressure; ROS: reactive oxygen 

species; MT: trabecular meshwork; RGCs: retinal ganglion cells; PR: photoreceptors (cones + rods); RPE: retinal pigment 

epithelium; AMD: age-related macular degeneration; DR: diabetic retinopathy. 
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Figure 1. Scheme of oxidative stress role in posterior ocular diseases. IOP: intraocular pressure; ROS: reactive oxygen
species; MT: trabecular meshwork; RGCs: retinal ganglion cells; PR: photoreceptors (cones + rods); RPE: retinal pigment
epithelium; AMD: age-related macular degeneration; DR: diabetic retinopathy.

Similarly, the mechanisms responsible for oxidative detoxification generate potential
biomarkers. In this context, nuclear factor erythroid 2-related factor 2 (Nrf2) is a regulatory
transcription factor for numerous detoxification enzymes through the sequence ARE
(Antioxidant Response Element) [28,29]. Nrf2 has an impact when it comes to measuring
the levels of glutathione (GSH), which is a tripeptide known for its active antioxidant
role [30]. The synthesis of this tripeptide is catalyzed by glutathione peroxidase (GPx),
and the GPx dysregulation is associated with processes of oxidative stress, inflammation,
and upregulation of retinal vascular endothelial growth factor (VEGF) [31]. Endothelial
changes involved in the activation of the vascular endothelium, related to inflammation
and tissue regeneration processes, are promoted by VEGF [32].

1.3. Biomarkers of Inflammation

There are many biomarkers associated with inflammation, such as the matrix metal-
lopeptidases (MMPs). In fact, MMPs are a family of calcium-dependent zinc-containing
endopeptidases that is involved in the degradation of the extracellular matrix, apoptotic
processes, and is closely related to inflammation [33,34]. In contrast, we find the transform-
ing growth factor-beta (TGF-beta), which is an activator of extracellular matrix production
with an anti-inflammatory role [35].

Another biomarker of inflammation is the tumor necrosis factor alpha (TNF-alpha).
TNF-alpha is an intercellular signaling protein related to inflammatory processes and apop-
tosis; the regulation of this protein is related to the cytosolic concentrations of ROS [36].
TNF-alpha can stimulate the release of interleukin-6, which is a glycoprotein secreted
by macrophages, T cells, endothelial cells, and fibroblasts involved in acute inflamma-
tion [37–39]. In addition, interleukins are a group of signaling cytokines closely related to
the immune system [40]. The pro-inflammatory role is performed by other interleukins
such as interleukin-1 and Interleukin-8, while others such as interleukin-10 have anti-
inflammatory activity [39,41].

2. Oxidative Stress in Glaucoma

Glaucoma is a multifactorial optic neuropathy characterized by the damage of the
optic nerve head and lamina cribosa, resulting in an irreversible loss of vision; this is the
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leading cause of irreversible blindness worldwide. It is estimated that about 76 million
people will be affected by glaucoma worldwide in 2020 [1,42]. Glaucoma cause is still
unclear, but it has been related to a mechanical stress and a reduction in the retinal blood
that induces a gradual degradation of the retina, which is caused by the progressive
damage of retinal ganglion cells (RGCs) and subsequently leads to their death [1]. There
are several glaucoma subtypes, but the two most common ones are those that originate
on the iridocorneal angle, including primary open-angle glaucoma (POAG) and primary
close-angle glaucoma (PACG) [43].

Numerous risks or etiologic factors have been regarded as being involved in the
pathophysiology development of glaucoma, such as increased intraocular pressure (IOP),
aging, high glutamate levels, certain genetic susceptibility such as myocilin or optineurin
alterations, alterations in NO metabolism, vascular alterations related with retina ischemia,
and oxidative stress [44–48]. Nevertheless, the mechanism of RGCs death in glaucoma
is not fully understood. However, it is known that RGCs are especially vulnerable to
increased levels of oxidative stress due to their tremendous oxygen consumption and
elevated proportion of polyunsaturated fatty acid. In this sense, there are two main
theories used to explain the glaucoma physiopathology, mechanical and vascular theories,
and, in both, the RGCs death is mediated by oxidative stress [49]. ROS, produced mainly
by mitochondria, are signaling molecules that, in high levels, are able to activate apoptotic
pathways, such as caspase 3 pathways (mitochondrial-mediated apoptosis related with
cytochrome c release) [50] or caspase-independent pathways [51]. ROS levels reduction
may protect RGCs from apoptosis [52], which are needed to maintain proliferation, signal
transduction, and gene expression [53].

The most important is the mechanical theory that is based on increased IOP, which
is currently considered to be the most important risk factor in developing glaucoma [47].
This IOP increase is generated by the incorrect balance between the production of aqueous
humour via ciliary processes and the drainage of aqueous humour via the trabecular mesh-
work (TM) [53]. The mechanical theory highlights the importance of direct IOP-related
increased compression of the axonal fibers, with deformation of the lamina cribosa plates
and disruption of axoplasmic flow, resulting in the death of RGCs. In addition, the IOP
increase induces changes in the mitochondria via its own fission, which stimulates reactive
oxygen species production and is capable of accelerating oxidative adduct formation and in-
creasing ROS-induced proteins such as heme oxygenase-1 (HO-1) [54,55]. This also causes
abnormal cristae loss, cytochrome C production, and retrograde neurotrophic inhibition
as well as a decrease in adenosine triphosphate (ATP) production [51,56,57], an enhance-
ment of nitrite level and retinal lipid peroxidation, and a decrease in retinal antioxidants;
furthermore, it stimulates glutaminergic neurotoxicity [58–60]. The imbalance between
ROS and antioxidant agent concentration, in which ROS levels exceed the antioxidants
concentrations, has been related with early retinal damage.

At the same time, oxidative stress has been also implicated with trabecular mesh-
work, which is located in the sclerocorneal angle and bathed by aqueous humor. TM is
the most vulnerable tissue of the anterior chamber to the oxidative damage due to its
constant exposure to light, extremely active mitochondrial activity, and predisposition to
inflammation. For that reason, TM contains antioxidant compounds to protect it from
oxidative stress. The rise of oxidant–antioxidant imbalance decreases the protection of
superoxide dismutase, catalase, and glutathione peroxidase, causing TM cell impairment
mediated by ROS [58]. The TM degeneration is due to a cellular adhesion reduction to
the adjacent extracellular matrix [61], overexpression of extracellular matrix proteins such
as fibronectin, which reduces TM cell permeability [56,57], direct desoxyribonucleic acid
DNA damage [59], and reduced local antioxidant activity [4,60].

Furthermore, it has been demonstrated that high levels of H2O2 are related to a
resistance to the outflow of aqueous humor, which is presumably due to cytoskeleton
rearrangements and the subsequent loss of adhesion of TM cells to extracellular matrix
proteins, and TM cell loss induces an H2O2 effect [61]. In addition, the TM endothelium may
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release NO, which, in conjunction with free radicals, can worsen the metabolic conditions
of TM cells and vary its motility [62,63]. NO acts as a cellular sodium pump modulator,
encouraging glutamate production and other intercellular messengers and thus altering
the activity of the ATP-dependent Na+/K+ pump, which produces a depolarization of the
organelle, which is a mechanism implicated in glaucoma pathogenesis [64]. NO may also
react with O- to form the potent neurotoxic peroxynitrite radical (ONOO-) in retinal neuron,
this being more common in glaucoma models than control [65,66]. At the same time, anion
superoxide radical (O2

−), involved in biological membranes destruction, and hydroxyl
radical (OH-), the most reactive free radical, tend to react with neighboring molecules
such as DNA, lipids, or proteins, altering mainly the structure and fluidity of the TM
cell membrane. In addition, DNA can be damaged by ROS, resulting in mutations that
affect the non-cycling cell population locked in the G0 phase of cell cycle, which in TM
has been reported as a potential pathogenetic factor for POAG onset [67]. The 8-hydroxy-
2′-deoxyguanosine (8-OH-dG) is the most abundant oxidative nucleotide modification,
and its concentration is significantly correlated with an increase in IOP and visual-field
damage [68,69].

On the other hand, the RGCs death vascular theory focuses on compromised blood
flow in retinal vessels, leading to an impaired autoregulation of blood flow to the optic
nerve and the subsequent ischemia-induced production of ROS, such as hydroxyl radicals,
which are the major cause of retinal injury [49,70]. The vascular dysfunction and neurode-
generation at the retina might be mediated by advanced glycation end products (AGEs),
which are an oxidative stress-related biomarker that results from the reaction between
reducing sugar with amino groups in proteins, lipids, or nucleic acids and is detected in the
axons of RGCs and retinal glial cells in glaucoma. AGEs might activate signaling molecules
as mitogen-activated protein kinases (MAPK) and nuclear factor kappa B (NF-kB), which
induces ROS production, and the subsequent angiogenesis and neural apoptosis, which
are related to immune responses as further described below [71]. In this way, Hondur
et al. reported that AGEs were higher in aqueous humor and blood samples in glauco-
matous patients than in non-glaucomatous healthy patients [60]. In addition, oxidative
stress modifies retinal glutamate/glutamine cycling, leading to a rise of neurotoxic levels
of glutamate, which induces a cellular components injury and is mediated by calcium,
causing a depolarization of the organelle and an excessive ROS generation [58,72,73]. In
this sense, it has been described that RGC apoptosis during glaucomatous injury itself
generates ROS production; hence, excess ROS produce oxidative stress, which also harms
the retina by causing a secondary degeneration of RGCs and generating a positive feedback
cycle [72,74].

At the same time, there are common oxidative stress pathways linking vascular and
mechanical theories. On one hand, blood flow decreases may be caused by the mechanical
compression of the vessel walls, which is induced by a rise in IOP, affecting the blood
supply to the laminar segments and damaging the RGC axons [49]. The rise in IOP induces
a vascular dysregulation in the retina because of an excessive ROS production as well as an
increase for NADPH oxidase 2 and lectin-type oxidized LDL receptor 1 (LOX1) expression
and/or an endothelial dysfunction in retina arterioles [75,76]. On the other hand, vascular
dysregulation might be related to TM damage, which is specifically linked to the production
of oxidizing free radicals in TM performed by endogenous aerobic metabolism. In addition,
the MT endothelium may release endothelins, which can induce vasoconstriction and
subsequently TM motility, vessel perviousness, and IOP alterations [77]. However, the MT
endothelium can also induce ischemia unrelated with vasoconstriction by a reduction of
the activity of the ATP-dependent Na+/K+ pump [62,64].

Finally, there are also other pathogenic mechanisms related to oxidative stress-mediated
glaucoma pathogenesis, such as inflammation activated by ROS and glutamate excitotox-
icity, which are not related to a rise in IOP or vascular dysfunction [78]. An anomalous
immune response and glial cell dysfunction may mediate oxidative stress, which harms
RGCs indirectly [58,73]. In this sense, it has been described that apoptosis signal-regulating
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kinase 1 (ASK1) mediated apoptotic pathway acts by decreasing TNF-α signalling, which is
a neurodegeneration mediator in glaucoma involved in the regulation of cytokine-induced
apoptosis [79,80]. ASK-1 deletion has been shown to prevent RGC death in glaucoma ani-
mal models [79], and ASK1 deficiency has been linked to oxidative stress levels reduction
and the subsequent RGC survival in glaucoma [81–83]. Moreover, an elevated ROS concen-
tration induces NF-kB activation both in the retina and MT, which stimulates the expression
of pro-inflammatory biomarkers, including endothelial leukocyte adhesion molecule-1
(ELAM-1), interleukin-1α (IL-1α), interleukin-6 (IL-6), and interleukin-8 (IL-8) [84].

3. Oxidative Stress in the Retina
3.1. Age-Related Macular Degeneration

Age-related macular degeneration (AMD) is the leading cause of permanent and
irreversible blindness in patients over the age of fifty in developed countries [85]. It is a
neurodegenerative disease that affects the central retina, called the macula, resulting in a
progressive loss of vision [86]. The pathogenesis of AMD is complex and multifactorial,
involving the interaction of genetic, metabolic, functional, and environmental factors. The
major abnormalities take place in the ocular structures of the macular region presented
in four interrelated tissues that include photoreceptors (PR), retinal pigment epithelium
(RPE), brunch membrane (BM), and choriocapillaris [87]. Two forms of AMD are classically
distinguished: the dry form, the most common, is characterized by the degeneration
and death of photoreceptors and RPE cells [88]. The exudative form, the most rapidly
progressing form, is linked to choroidal neovascularization (CNV) with angiogenesis
bleeding and fluid leakage, leading to sudden loss of central vision [89]. The two forms
share the same clinical features such as the presence of a lipid-like deposit called drusen in
early AMD, modification in the pigmentation of RPE in the retina, and loss of vision due to
geographic atrophy and neovascularization [90].

The retina is particularly susceptible to aging and vulnerable to the oxidative stress
since its two components PR and RPE are highly metabolically active [91]. In the PR cells,
there is a high demand for oxygen and nutrients from the blood cells and high metabolic
activity. Thus, the retina is considered one of the highest oxygen-consuming tissues in
the human body, making the retina oxygen tension over 70 mmHg [92]. This favorable
environment, with abundant photosensitizers, visible light exposure, and a high energy
demand, supports a highly oxidative milieu [91].

Furthermore, under normal conditions, RPE participates in the visual cycle, phagocytic
uptake, and degradation of shed apical photoreceptor outer segments (POS) [93]. However,
in the early stages of the disease, a crucial event in the molecular pathway is described by
a drastic reduction of RPE cell functions. In fact, RPE progressively degenerate, leading
to the degeneration of PR. Age-dependent phagocytic and metabolic insufficiency of
RPE cells leads to a dysfunction of RPE and the progressive accumulation of lipofuscin
granules [87]. Moreover, exposure to visible and ultraviolet A (UVA) light and high
oxygen levels as described before in the eye cause oxidation reactions and modify the
composition of lipofuscin. Consequently, the dysregulated lipid metabolism promotes
the oxidative process in the retina. Other photoreactive molecules with lipofuscin are
a potent photoinducible generator of reactive oxygen species (ROS), causing damage to
both proteins and lipids [87]. In this stress environment, the photooxidation of lipofuscin
generates reactive photoproducts including N-retinylidene-N-retinylethanolamine (A2E),
DNA oxidation, and cells apoptosis [94].

Oxidation levels increase in the aging macula, even though the retina and RPE cells
are rich in antioxidants such as vitamins (A, C and E) and carotenoids. As a result,
augmented levels of ROS with an attenuated antioxidant cell defense system lead to
oxidative stress, causing a critical site of injury in AMD characterized by more damage
of PR, RPE cells, and choriocapillaris [95,96]. As previously mentioned, the retina has a
very high oxygen consumption, and consequently, the stimulated retina tissue is abundant
in ROS. Moreover, the phagocytosis of the photoreceptors outer segment (POS) led by



Pharmaceutics 2021, 13, 1376 7 of 29

RPE cells is accompanied by respiratory burst and rapid eruption of ROS [97]. Then,
the digestion of POS induces the formation of more superoxide anion [98]. Furthermore,
with the high-energy light exposition, polyunsaturated fatty acids (PUFA) present in
the cell membranes of photoreceptors are readily oxidized. Gradually, peroxides and
organic radicals progressively develop, with the oxidation of PUFAs accumulating in
photoreceptors. In addition to this, the oxidation of PUFAs lasts many years and leads to
the functional and structural impairment of cell membranes that leads to the degeneration
of photoreceptors [99].

Additionally, PR and RPE, which are highly metabolically active, are composed of
postmitotic cells. They particularly accumulate DNA mitochondrial damage resulting
from their inability to reduce defective mitochondria during mitosis [92]. In addition to
that, oxidative stress causes mitochondria impairment in aging RPE cells, with its changes
in number, size, matrix density, and membrane integrity. This process is accompanied
by mitochondrial mutations [100]. Chronic increases in oxygen radical production in the
mitochondria can lead to a catastrophic cycle of mitochondrial DNA (mtDNA) damage
as well as functional decline, further oxygen radical generation, and cellular injury [101].
However, these mitochondrial dysfunctions lead to low ATP levels, causing not only the
attenuation of mitochondrial membrane potential but also the reduction of cytoplasmic
calcium accompanied by the augmentation of mitochondrial calcium sequestration. Other
damage includes chronic mitochondrial oxidative stress, leading to a decreased level of
mitochondrial superoxide dismutase and consequently an increase in superoxide anion,
shortening and disorganization of the photoreceptors, degeneration of RPE cells, thickening
of Brunch’s membrane, and finally apoptotic cell death in the AMD process [102].

However, due to oxidative stress, there is a decline in the upregulation of autophagy
in AMD. Nrf2 is the master regulator of the cellular antioxidant mechanism. In fact, it is a
transcription factor that regulates the production of antioxidant enzymes against oxidative
stress. Under normal conditions, Nrf2 is bound to Kelch-like epichlorohydrin (ECH)-
associated protein 1 (Keap1) in the cytosol, inactive, and predestined for degradation by the
ubiquitin–proteasome pathway [103]. However, under oxidative stress, Nrf2 dissociates
from Keap1, resulting in its upregulation and translocation into the nucleus. This leads
to the upregulation of several antioxidant genes and enzymes against ROS, including
heme oxygenase 1 (HO-1), NAD(P)H-quinone oxidoreductase (NQO1), glutathione S-
transferase (GST), superoxide dismutase (SOD), glutathione reductase, and ferritin [104].
Here, oxidative stress leads to the increase of different organic radicals and more ROS. For
example, the O2

− radical is a highly potent oxidative agent, as each free radical rapidly
gains three electrons to rebalance itself. Consequently, other ROS are generated, particularly
hydrogen peroxide and hydroxyl radicals [86].

Finally, oxidative stress leads to chronic inflammation in the AMD process. In fact, the
products of the oxidative stress trigger a chronic low-grade inflammation process. ROS
impair cells’ functions, react with nucleic acids, proteins, and lipids, and induce the pro-
duction of pro-inflammatory cytokines and angiogenic signals, including the development
of new fragile blood vessels with the production of vascular endothelium growth factors
(VEGF) [105] and changes in matrix metalloproteinases (MMPs) [106]. The inflammation
process stimulated by the complement system and carried out in the Brunch membrane
leads to different AMD forms. It is connected not only with the microglial activation in
the retinal choroidal interface but also with autoantibodies and the formation of immune
complexes in the Brunch membrane accompanied by choroidal macrophages infiltration,
leading to CNV. During inflammation, the increased metabolic activity of the inflamed
retina leads to the increased consumption of oxygen and causes hypoxia in the retinal cells.
Chronic retinal hypoxia can lead to cell death and irreversible visual impairment observed
in the exudative form of AMD [107].
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3.2. Diabetic Retinopathy

Diabetic retinopathy (DR) is one of the microvascular diabetes complications. In fact,
one-third of people with diabetes have DR. It is the major cause of blindness disease in the
middle-aged and elderly people and is described as a progressive neurodegeneration [108].
According to the presence or absence of retinal neovascularization, DR can be classified
clinically into non-proliferative (NPDR) and proliferative (PDR) forms with or without
macular oedema [109]. In DR, every cell is exposed to abnormally extracellular high glucose
concentrations that target retina and nerve tissues. The reason is that DR is characterized by
chronic hyperglycemia, causing altered cellular homeostasis in the retinal microvasculature
and endothelial cells in the choroid [110]. In the early stages of the disease, apoptosis causes
the reduction of endothelial cells, which is followed by the increased number of acellular-
occluded capillaries causing both the increase of vascular permeability and an increase of
capillary membrane thickening, and causing edema and hemorrhages. Unsealed capillaries
leak plasma and erythrocytes into the surrounding retinal tissue and lead to capillaries’
occlusion of the growth factors (such as VEGF) and pathological angiogenesis [111].

As previously described in AMD, oxidative stress also has an impact on DR. However,
in diabetes, in contrast with AMD, increased oxidants and reduced antioxidant systems
are present, independent of age, and have different negative effects [112]. In addition
to hyperglycemia, inducing endothelial cells damage, ROS are generated mainly in the
mitochondria, thereby stimulating mitochondrial superoxide production. Nevertheless,
it is important to note that the progression of diabetic retinopathy is connected to ROS
and oxidative stress mainly due to the metabolic memory [113,114]. Increased oxidant
generation in the mitochondria might damage mitochondrial DNA and proteins, since
ROS compromise the function of the electron transport chain. This damage leads to the
synthesis of increased amounts of superoxide even with normal levels of glucose. In that
case, even after normalized glycemia, DR progresses [113,114].

Mitochondrial dysfunction in both type 1 and type 2 DR accelerates premature en-
dothelial cell apoptosis in the local oxidative stress and sustained hyperglycemia. Con-
sequently, damage in mt DNA at the regulatory region is higher in comparison to other
mt DNA portions. To remedy this, the overexpression of enzyme 8-oxoguanine DNA
glycosylase (OGG1) and thymine DNA glycosylase is the result of mitochondrial DNA
repair. Their transcription and replication mechanisms including mitochondrial tran-
scription factor A (TFAM) and polymerase gamma (POLG) are also compromised [115].
The oxidative DNA damage marker is 8-hydroxy-2′-deoxy-guanosine (8-OHdG) with an
increased level in RPE and choroid [116]. In DR, the origin and alteration in biochem-
ical pathways are described as a chain of successive events linked to each other, from
cause to consequence, with a snowball effect worsening the state of damage and oxidative
stress [117]. In fact, hyperglycemia stimulates the increased mitochondrial ROS levels
that activate the poly-ADP-ribose polymerase (PARP) pathway. Superoxide causes an
elevation in the levels of glyceraldehyde-3-phosphate (G3P) by inhibiting its adenine din-
ucleotide + (NAD+)-dependent conversion to 1,3-diphosphoglycerate via the inhibition
of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity [118]. This mechanism
reduces glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity, contributing to
the overactivation of four classic hyperglycemia-induced metabolite pathways: (1) the
polyol pathway, (2) the protein kinase C (PKC) pathway, (3) the Advanced Glycation End
products (AGEs) pathway, and (4) the hexosamine pathway. All these four metabolites
resulting from different molecular pathway become the source of ROS production and
stimulation of oxidative stress [119]. In this regard, G3P, in high levels, play an important
role in all the different pathways: G3P upregulates the formation and deposition of AGEs
by accelerating the addition of triose phosphates to methyl-glyoxal, which is the main
AGE precursor. G3P also upregulates the PKC pathway by enhancing the conversion of
dihydroxyacetone phosphate to diacylglycerol (DAG) [120]. In continuation, G3P upreg-
ulation increases the availability of fructose 6-phosphate (F6P), which in turn drives flux
through the hexosamine pathway to the enhancement of glucosamine-6-phosphate and
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ultimately uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) levels. Finally, G3P
upregulation enhances the flux through the polyol pathway by increasing the availability
of glucose [121]. The origin of the four hyperglycemias-induced pathway metabolites
comes from the NADPH level. In fact, decreased NADPH levels and increased NADPH
oxidase (NOx) levels contribute to the regeneration of glutathione, which is described as
a scavenger of ROS. This imbalance in the level of NADPH and NADPH oxidase leads
to ROS accumulation and cell damage [120]. Moreover, glycation of the metabolite AGEs
causes mitochondrial dysfunction, and vice versa, persistent mitochondrial DNA damage
and respiratory chain protein glycation generate AGEs that stimulate ROS production.
More ROS amplified AGEs formation [115,120].

Oxidative stress not only influences mitochondrial dysfunction and retinal vasculature
but also exerts a neurodegenerative impact on the diabetic retina. In fact, ROS decreases
the brain-derived neurotrophic factor (BDNF), which regulates axonal growth, synaptic
activity, and neuronal survival. Consequently, the damage of the synaptic transmitter
and the degradation of the neurotrophic factor cause neuronal cells apoptosis and visual
impairment [122]. Furthermore, oxidative stress is related to inflammation. ROS stimulates
inflammation and angiogenesis by a molecular pathomechanism and contributes to the de-
velopment of microvascular lesions. In this context, the AGEs pathway increases cytosolic
ROS level and activates NF-κB mechanism. [53].

Consequently, ROS regulate the expression of pro-inflammatory proteins by activation
of the pro-inflammatory NF-κB pathway, which leads to the production of tumor necrosis
factor alpha (TNF- α) and the generation of inflammatory and angiogenic mediators
such as interleukins (IL-6), interleukine8 (IL-8), cyclooxygenase 2 (COX-2), intercellular
adhesion molecule 1 (ICAM-1), monocyte chemoattractant protein 1 (MCP-1), VEGF, and
different inflammatory cytokines [123]. Moreover, ROS derived from the family of NADPH
oxidase (NOx) enzymes may activate hypoxia-inducible factor-1 (HIF-1) pathways and
participate in the development of proliferative diabetic retinopathy and angiogenesis [123].
In addition, oxidative stress contributes to the pathogenesis of both diabetic micro- and
macrovascular complications at the molecular level by apoptosis, the activation of stress
signaling pathways, transcriptional factors, as well as in the induction of molecular damage
of proteins, DNA, and lipids, accelerated formation of AGEs, and activation of homeostatic
pathways [124,125]. Table 1 summarized the principal biomarkers of oxidative stress and
inflammation in the back surface diseases.

Table 1. Summary of the principal biomarkers of oxidative stress and inflammation in clinical studies evaluating their
presence not only in glaucoma and diabetic retinopathy but also AMD.

Disease Molecular Disorder Biomarker Sample Type References

Glaucoma Oxidative stress

AGEs Blood
AH Hondur et al. [60]

NO Serum
AH Zanón-Moreno et al. [126,127]

PC Serum
AH

Erdurmuş et al. [128]
Hondur et al. [60]

MDA Plasma
AH

Erdurmuş et al. [128]
Rokicki et al. [128–131]

8-OHdG Serum
AH Sorkhabi et al. [67,132–135]

SOD, GS AH Yuki et al. [133]

Glaucoma Inflammation

IL-4, IL-12, IL-15
IL-6, IL-8 Tear Benitez-Del-Castillo et al. [136]

Duveshet al. [137]

IL-2, IL-17, IL-8 Tear film Agarkov et al. [138]
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Table 1. Cont.

Disease Molecular Disorder Biomarker Sample Type References

IL-5, IL-12, IL-15
IFN- γ, (MIP-1β)

IL-8, MCP-1(alpha)
(IP)-10

AH Mohanty et al. [134]
Kokubun et al. [139]

TNF-alpha Plasma
AH

Kondkar et al. [140,141]
Sawada et al. [142–144]

VEGF AH Tripathi et al. [145,146]

MMP-9 AH
Tear Markiewicz et al. [147,148]

AMD Oxidative stress

8-OHdG AH Lau et al. [149,150]

MDA Serum
Plasma Totan et al. [151–155]

AMD Inflammation

IL-1α, IL-15, IP-10
CRP AH Sakurada et al. [156]

IL-6 AH Klein et al. [157,158]

VEGF, MCP-1
MIG, TGF-ß. AH Jonas et al. [159–161]

VEGF
MCP-1 AH Sakurada et al. [156]

Mimura et al. [162–164]

IL-1B, TGF-ß Vitreous Zhao et al. [165,166]

Myosin-13
STAT3 Tear film Winiarczyk M et al. [167]

CAPN7
MYC AH Jonas et al. [159]

MMP-9 AH Jonas et al. [159].

MMP-9 Vitreous Ecker et al. [168].

DR Oxidative stress

Pentosidinr, CML
hydroimidazolone Serum Fosmark et al. [169,170]

CML AH Endo et al. [169,170]

ICAM-1 Retina McLeod et al. [171,172]

DR Inflammation

Lactotranferrine
Lipophilin A, lacritin,

Ig lambda
Tear Csősz et al. [173].

IL-1β
IL-8, IP-10,

IL-6
MCP-1

IL-2, IL-5
VEGF

AH
Oh et al. [174]
Wu et al. [175]

Endo et al. [169,174,176–178]

IL-6, VEGF
IL-8, IP-10

MIP-1β, TNF-α
MCP-1, PlGF

AH

Funatsu et al. [177,179–181]
Kakehashi et al. [182–185]

Wu et al. [180,181,186]
Elner et al. [186]

Clusterin, complement
C3, C4-A
factor I

Vitreous
AH Balaiya et al. [187]

MMP-9 Vitreous
Plasma

Jacqueminet et al. [188]
Beránek et al. [189]
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4. Diagnosis

Current research lines on the diagnosis of eye diseases are focused on the detection of
specific biomarkers in systemic or ocular fluids due to their potential in clinical practice.
The biomarkers are catalogued as invasive biomarkers if they are obtained from aqueous
humor, vitreous, or retina samples and non-invasive biomarkers if they can be obtained
from urine, plasma, or tear samples. The differences between studies such as different
analytical assays for detecting biomarkers or the variability in stages of the disease of the
enrolled patients make it difficult to compare the results.

In this section, biomarkers of oxidative stress and inflammation process associated
with glaucoma and retinal diseases are described.

4.1. Glaucoma

Advanced glycation end products (AGEs) could help in the early diagnosis and prog-
nosis of glaucoma. Hondur et al. [60] reported significantly higher levels of AGEs in blood
and aqueous humor (AH) samples in glaucomatous patients compared to control. AGEs
accumulation can also be detected using a sensor that determines the skin autofluorescence
levels, which is correlated with AGEs [71].

Products of oxidative stress are suggested as potential biomarkers. Nitric oxide
(NO) is a free radical and shows higher serum [128] and aqueous humor concentration
in patients with primary open angle glaucoma (POAG) [126,127]. Protein carbonyls (PC)
content is the most general indicator and by far the most used marker of protein oxidation.
An increase in levels is found in the serum of patients with pseudoexfoliative glaucoma
(PXG) [128] and in aqueous humor of glaucomatous patients [60]. Malondialdehyde (MDA)
is a lipid peroxidation product whose levels increase in plasma [128–131] and aqueous
humor [137,155,190,191] in patients with glaucoma. Malonyl dialdehyde levels seem to be
correlated with the severity of visual field loss in primary angle-closure glaucoma (PACG)
and POAG [182,183]; thereby, they are considered to be a good indicator of the glaucoma
progression. 8-hydroxy-2′-deoxyguanosine (8-OHdG) is an oxidative product of DNA
damage whose levels in serum [67,132–135] and aqueous humor [67,134] are reported to
be higher in glaucoma patients than controls. Mohanty et al. [134] found a strong positive
correlation between plasma and aqueous 8-OHdG levels. Conversely, Kondkar et al. [135]
concluded that 8-OHdG cannot serve as a potential clinical biomarker in POAG due to the
high rate of false positivity measured with an ELISA kit. This agent can be also detected
in urine but with lower correlation [133]. In general, the increase in oxidant agents is
associated with a decrease of the antioxidant capacity. In this way, the fact that antioxidants
such as superoxide dismutase (SOD) and glutathione synthase (GS) concentrations were
significantly lower in POAG patients than in controls means that they may be used as
biomarkers.

The inflammatory process results in the release of inflammatory cytokines and chemokines.
In tear samples, an increase in IL-4, IL-12, IL-15 [192], IL-6 [136], and IL-8 [137] in patients
with glaucoma have been reported. Agarkov et al. [138] proposed IL-2, IL-17, and IL-8 as
good markers in tear film for use in the diagnosis and prognosis of glaucoma. Since the
extraction of aqueous humor samples from patients is an invasive procedure, tear samples
represent a non-invasive method that has attracted clinical interest. For this reason, the
correlation between tears and aqueous humor has been evaluated but, until now, poor
levels of correlation have been observed [184,192].

In aqueous humor, IL-5, IL-12, IL-15, IFN-γ, macrophage inflammatory protein-1 alpha
(MIP-1 α) [192], macrophage inflammatory protein-1 beta (MIP-1β) [139], (IL)-8 [147,151,193],
monocyte chemoattractant protein 1 (MCP-1) [139], and interferon gamma-induced protein
(IP)-10 (24) were significantly higher in patients with a form of glaucoma. Chono et al. [185]
identified the highest odds ratio for IL-8 in PXG or neovascular glaucoma (NVG), and
its level was correlated with preoperative IOP or visual field defects in PXG eyes. They
showed that the level of IL-8 in the aqueous might be a potential candidate molecule that
can predict the clinical outcome of surgical interventions in eyes with refractory glaucoma.
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Elevated levels of tumor necrosis factor alpha (TNF-α) can induce retinal ganglion cell
(RGC) apoptosis in patients with glaucoma, and for this reason, its expression has been
studied [194]. High levels of TNF-α in plasma [140,141] and aqueous humor [142–144]
have been associated with POAG and PXG, and its potential as a biomarker for glaucoma
diagnosis or progression has been suggested [142]. TNF-α can be utilized as a predictor of
the outcomes of glaucoma surgery [195].

Vascular endothelial growth factor (VEGF) is a cytokine with a significant role in
neovascularization and inflammation. High levels of VEGF in aqueous humor are increased
in POAG [145,146] and have been mainly associated with NVG [147,153,154,196,197].
VEGF levels have been correlated with other cytokines [185], and it is postulated that its
expression relates with the severity of glaucoma and plays a role in glaucoma development
and progression in NVG.

In general, an increase in MMP-9 activity in AH and in tear samples of patients with
POAG and in early forms of PACG, POAG, and PXG eyes compared to controls have
been reported [147,148]. Concentrations of MMP-9 in the tear film have been employed in
the development of a linear multivariate regression analysis for predicting the onset and
progression of POAG [198].

4.2. Retinal Diseases
4.2.1. Age-Related Macular Degeneration

Inflammatory cytokines and chemokines are proposed as potential biomarkers. In
aqueous humor, Sakurada et al. [156] found significantly higher levels of IL-1α, IL-15, IP-10,
and C-reactive protein (CRP) in neovascular age-related macular degeneration (nAMD)
patients. Whereas some studies showed an increase of IL-6 levels associated with the
pathology [157,158], others did not find the statistical significance [190,191,199]. IL-6 has
been associated with the presence of geographic atrophy secondary to AMD [200]. More
aqueous cytokines associated with nAMD include VEGF [156,201], monocyte chemoat-
tractant protein 1 (MCP-1) [159–161], migration-inducing gene (MIG) [159], and TGF-ß. In
contrast, other studies did not report a significant difference in aqueous VEGF [164,167,202]
and MCP-1 levels [162–164]. In vitreous, higher IL-1B levels and transforming growth
factor-ß (TGF-ß) were found in nAMD patients [165,166].

Regarding tear film, a pilot study performed by Winiarczyk et al. [167] found the
upregulated expression of inflammatory markers such as myosin-13 and signal transducer
and activator of transcription 3 (STAT3) in nAMD patients. STAT3 has been postulated
to be a potential biomarker for the diagnosis of AMD. In dry AMD, there was a major
representation of two proteins, calpain-7 (CAPN7) and Myc proto-oncogene protein (MYC),
which are involved in oxidative stress and inflammation. MMP-9 has been found in the
aqueous humor of nAMD patients [159]. In the vitreous of AMD patients with subretinal
fluid (SRF) accumulation, the levels of MMP-9 showed a positive correlation, suggesting it
as a prognostic biomarker for diseases affected by SRF accumulation [168].

Factors related to oxidative stress could be potential biomarkers for the incidence
and/or progression of AMD. 8-hydroxy-2′-deoxyguanosine (8-OHdG) is an oxidative
product of DNA damage whose levels are higher in the aqueous humor of nAMD pa-
tients [149,150]. The presence of malondialdehyde (MDA), one of the reactive compounds
originating from PUFA oxidation, is detected in blood samples. Serum and plasma samples
from AMD patients showed higher MDA levels than in the control groups [151–155]. They
represent a reliable non-invasive biomarker of oxidative stress in AMD patients. Another
lipid peroxidation marker is the F2-isoprostane (F2-IsoPs), which is considered to be impor-
tant as a vivo marker of oxidative damage in AMD (63). Sabanayagam et al. [203] demon-
strated that the presence in the urine of F2-IsoPs was positively associated with AMD.

4.2.2. Diabetic Retinopathy

Some of the well-known AGE adducts described in vivo are pentosidine, N-
(carboxymethyl) lysine (CML), and hydroimidazolone. Serum levels of pentosidine, hy-



Pharmaceutics 2021, 13, 1376 13 of 29

droimidazolone, and CML increase in patients with type 2 diabetes retinopathy [178,204,205].
In aqueous humor, CML levels increase throughout the progression of diabetic retinopathy
(DR) [169,170] and thus are used as markers of oxidation. In contrast, no correlation be-
tween AGE levels and retinopathy in diabetic patients has been found in some reports [193].

Regarding the inflammatory process, in tears, lactotransferrin, lipocalin 1 (LCN-1),
lysozyme C, lipophilin A, lacritin, and immunoglobulin lambda chain levels increased in
patients with diabetic retinopathy [173]. In contrast, Kim et al. [196] found a decreased of
LCN-1 levels, along with heat shock protein (HSP) in no proliferative diabetic retinopathy
compared with control. TNF-α levels increase in patients with DR and are correlated
with the severity of the pathology [206,207]. In aqueous humor levels of IL-1β [175,
197], IL-8, IP-10 [174], IL-6 [175–177,197], TNF-α [187,208,209], MCP-1 [174] (24), IL-2,
IL-5 [175], and VEGF [169,174,176–178] were higher in patients with certain type of DR
compared to controls. Most of the proteins reported in aqueous are correlated with vitreous:
IL-6 [177,179–181], VEGF [182–185], IL-8 [184,192,194], IP-10 [186], MIP-1β, TNF-α [180],
MCP-1 [184,192,210], PlGF [180], and VEGF. The vitreous and aqueous levels of IL-6 and
VEGF were significantly correlated with the severity of diabetic retinopathy and with the
pathogenesis of diabetic macular edema [183,189,211]. On the other hand, proteomics
analysis of vitreous and AH shows proteins that participate in a complementary system:
clusterin, complement C3, and C4-A, which are factors that can serve as biomarkers for
proliferative diabetic retinopathy (PDR) [187].

Oxidative stress stimulates intercellular adhesion molecules (ICAM-1), vascular cell
adhesion molecules (VCAM-1), and selectins (E-selectin), which mediate leukostasis—a
typical event of the inflammatory process. The ICAM-1 level has been shown to be in-
creased in the diabetic retina [171,172]. However, the results of these inflammatory markers
are not consistent. While some studies reported differences in levels of ICAM-1, VCAM-1
in serum [212–214], or vitreous [215] and their possible relation with RD, others did not find
significant differences [202,216,217]. Regarding matrix metallopeptidases, elevated con-
centrations have been reported in the retina of diabetic rats [218]. In vitreous [204] and in
plasma samples, MMP-9 showed higher concentrations in DR [188] and PDR patients [189]
than controls.

5. Treatment
5.1. Glaucoma

The main therapeutical target for glaucoma treatment is decreasing the intraocular
pressure by decreasing the aqueous humor production or increasing its outflow, as this
pressure is the major risk factor for developing the disease [205]. Nevertheless, the use of
antioxidants such as vitamins, coenzyme Q10, melatonin, essential fatty acids, and natural
extracts, principally in the form of dietary supplements, has been studied and proposed as
an adjuvant treatment.

The oral administration of nicotinamide (vitamin B3), a nicotinamide adenine dinu-
cleotide (NAD+) precursor, demonstrated its efficacy in preserving the retinal ganglion
cells in different rodent glaucoma models but also in improving the pattern electroretino-
gram [219–221], this last finding being confirmed in a randomized double-masked clinical
trial in glaucoma patients [222]. Concerning ascorbic acid (vitamin C), Xu et al. [208]
showed that its supplementation to a porcine trabecular meshwork culture correlated with
both lower reactive oxygen species and higher lysosomal proteolysis, but in a clinical study
by Leite et al. [209], the oral administration did not affect glaucomatous patients. Further-
more, the dietary deficiency of vitamin E was proved to be stimulating retinal ganglion cell
death, which is associated with retinal lipid peroxidation, in a glaucoma rat model [210].
In this sense, commercial eye drops (Coqun®) combining vitamin E with coenzyme Q10,
another antioxidant promoting the retinal ganglion cell survival and mitochondrial DNA
preservation [211,223], were evaluated in glaucoma patients. These eye drops improved
the pattern electroretinogram and reduced superoxide dismutase concentration in aqueous
humor, but there was nothing reported about the main glaucoma clinical markers [224,225].
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Melatonin is a neurohormone with antioxidant properties that has been studied
for glaucoma treatment. However, its therapeutical interest lies in the agonist action
on MT1, MT2, and putative MT3 melatonin receptors located in the ciliary body. The
activation of these receptors decreases the chloride efflux from non-pigmented epithelial
cells, reducing the aqueous humor production [226]. Through this mechanism, Martínez-
Águila et al. [227,228] demonstrated that the topical instillation of melatonin and its analogs
5-methoxycarbonylamino N-acetyl tryptamine (5-MCA-NAT) and agomelatine reduced
the intraocular pressure in rabbits and mice. In normotensive subjects, two clinical studies
found that the short- and mid-term oral administration of nutritional supplements based
on melatonin reduced by 1 mmHg the intraocular pressure [229,230], which are values not
considered clinically relevant.

In relation to essential fatty acids, the oral administration of omega-3, omega-3 com-
bined with omega-6, and α-lipoic acid in different animal glaucoma models showed efficacy
in reducing retinal oxidative stress and inflammation, ganglion cell death, and even in-
traocular pressure [231–234]. Conversely, a single clinical study reported a decrease of only
1 mmHg in the intraocular pressure of normotensive subjects after the oral supplementation
with omega-3 [235]. Additionally, the dietary supplementation of natural extracts based on
Ginkgo biloba, green tea catechins, saffron, and black currant anthocyanins demonstrated
antioxidant and neuroprotective properties in animal models [236–238] but no clinical
efficacy to treat glaucoma [239–243].

Finally, the results of several clinical studies evaluating different dietary supplements
combining antioxidants showed no influence on the main clinical glaucoma parameters
or long-term development of the disease [244–248]. Therefore, this lack of scientific evi-
dence makes more long-term studies vital to ascertain the need to incorporate antioxidant
supplements for glaucoma treatment effectively.

5.2. Retinal Diseases

Similar to glaucoma, there are a large number of preclinical studies demonstrating
the efficacy of vitamins B [249], C [250], and F [251], coenzyme Q10 [252], melatonin [253],
omega-3 [254], α-lipoic acid [255], and different natural extracts [256–258] to protect the
retina from oxidative stress. In different animal models of retinal degeneration and diabetic
retinopathy, the antioxidant properties of these compounds have been associated with
the inhibition of retinal cell apoptosis as well as reduced levels of both inflammation
biomarkers and vascular endothelial growth factor (VEGF) [249–258].

Furthermore, other alternatives such as naturally occurring carotenoids, which are
vitamin A precursors present in the retina [259], resveratrol [260], and synthetic drugs have
been proposed as antioxidants treatments for retinal diseases. These synthetic drugs include
free radical scavengers (edaravone and SUN N8075) [261,262], an antagonist of peroxisome
proliferator-activated receptors (GSK0660) [263], an inhibitor of NADPH oxidase 1 and
NADPH oxidase 4 (GKT137831) [264], and an activator of nuclear factor erythroid 2-related
factor 2 (dimethyl fumarate) [265].

In the following sections, the efficacy of antioxidant dietary supplementation for
age-related macular degeneration (AMD) and diabetic retinopathy treatment is reviewed,
based on long-term clinical trials.

5.2.1. Age-Related Macular Degeneration

The role of VEGF in the pathophysiology of AMD converted the anti-VEGF agents
into the gold standard therapy of the disease, especially in its wet form [266]. Nevertheless,
antioxidant supplements based on multivitamins, omega-3, trace elements, and natural
extracts are usually prescribed as an adjuvant treatment for preventing and slowing the
progression of AMD.

The Age-Related Eye Disease Study (AREDS), the most remarkable work in this
context, was a multicenter, randomized, and double-masked clinical trial that involved
3640 AMD patients [267,268]. The study evaluated the long-term effects of the daily oral



Pharmaceutics 2021, 13, 1376 15 of 29

administration of a tablet containing vitamins C (500 mg) and E (400 IU), β-carotene
(15 mg), zinc (80 mg), and cupric oxide (2 mg) on the AMD progression. In 2001, the
5-year follow-up results reported that the probability of progression to advanced AMD in
patients who manifested high-risk clinical features was lower with AREDS formulation
(20.2%) than the placebo administration (27.8%), manifesting an odds ratio (99% confidence
interval) of 0.66 (0.47, 0.91) [267]. Later, the 10-year follow-up results showed that this
probability increased to 45.7% in the group receiving the AREDS formulation, which was
still lower than the placebo administration (53.8%), while the odds ratio remained at 0.66
(0.53, 0.83) [268].

The AREDS2 was a second clinical trial under the same experimental design that
involved 4203 AMD patients with the purpose of assessing if the addition of lutein (10 mg)
+ zeaxanthin (2 mg), omega-3 (docosahexaenoic acid (350 mg) + eicosapentaenoic acid
(650 mg)), or both to the original AREDS formulation would reduce the risk of AMD
progression [269,270]. However, all of the formulations, including the original AREDS
one, showed no effect on the risk of AMD progression to advanced stages compared with
placebo administration [269]. Additionally, a higher incidence of lung cancer was found in
AMD patients who received β-carotene compared with those who did not, especially in
former smokers. The association between β-carotene and lung cancer was the reason why
β-carotene was replaced by lutein and zeaxanthin in the commercially available AREDS
formulation [270].

The Nutritional AMD Treatment 2 (NAT2) study was another important clinical trial
that involved 263 exudative AMD patients for a 3-year follow-up, where the daily oral
administration of docosahexaenoic acid (840 mg) and eicosapentaenoic acid (270 mg) only
showed a lower incidence of choroidal neovascularization compared with placebo but with
no statistically significant differences [271].

In two meta-analyses, Evans and Lawrenson [272,273] analyzed the capability of
antioxidant dietary supplementation for both preventing AMD (five clinical trials) and
slowing the progression of the disease (14 clinical trials), showing no evidence of the efficacy
of multivitamin and other antioxidant supplements for being prescribed as AMD adjuvant
treatments. Finally, other antioxidant drugs and natural extracts have been evaluated in
clinical trials with limited efficacy to be incorporated in the clinical practice, too [274–276].

5.2.2. Diabetic Retinopathy

Strict glycemic control is the first-line treatment of diabetes to prevent the ocular man-
ifestations of diabetic retinopathy [277], but the dietary supplementation of antioxidants
has been proposed as an adjuvant therapy with the same purposes as for AMD.

In this regard, several mid- and long-term prospective, randomized, and placebo-
controlled clinical trials showed that the daily oral administration of tablets combining
vitamins (A, B2, B3, B6, B9, B12, C, and E), carotenoids (lutein, zeaxanthin, and astaxanthin),
coenzyme Q10, omega-3 (docosahexaenoic and eicosapentaenoic acids), and trace elements
had a disparity of results in terms of blood levels of both antioxidants and glycated
hemoglobin (HbA1c), visual function, or retinopathy signs in diabetes patients [278–283].
Out of the six referenced studies, only three studies reported an improvement in the
blood levels of antioxidants [279,282,283], while one study reported an improvement in
HbA1c [282], one study reported an improvement in visual function [280], and two studies
reported an improvement in central macular thickness [279,282]. Additionally, García-
Medina et al. [278], in a 5-year follow-up, found that the oral administration of vitamins
C and E, lutein, β-carotene, and trace elements did not reduce the progression of diabetic
retinopathy in patients with type 2 diabetes, this clinical trial being the only one that
evaluated the efficacy to slow the progression of the retinal disease.

Concerning other dietary supplements, a clinical trial of Zhang et al. [284] reported
that the daily administration of lutein 10 mg for 9 months in type 2 diabetes patients
with non-proliferative diabetic retinopathy improved visual acuity in a clinically relevant
way compared with placebo (0.10 LogMar). Conversely, Haritoglu et al. [285] did not
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report changes in visual function, in addition to blood levels of HbA1c and macular edema
prevention after the daily supplementation of α-lipoic acid in patients manifesting mild
to moderate diabetic retinopathy. Moreover, the effect of different natural extracts in
diabetic retinopathy has also been investigated but showed no changes in the severity of
the disease [286–289].

Again, the lack of long-term studies evaluating these antioxidant therapies with pos-
itive results in the progression of diabetic retinopathy makes it impossible to prescribe
dietary supplements as adjuvants with an evidence-based guarantees. Finally, Table 2 sum-
marizes the principal long-term clinical studies evaluating the effect of different antioxidant
supplements not only in diabetic retinopathy but also in glaucoma and AMD.

Table 2. Summary of the principal long-term clinical studies evaluating the effect of different antioxidant supplements for
the treatment of posterior ocular diseases.

Disease Reference Antioxidants Study Design Main Findings

Glaucoma Parisi et al. [224] Vitamin E,
coenzyme Q10

Prospective
(n = 43)

After the daily topical instillation of eye
drops for 12 months, the

electroretinogram pattern was improved
in open-angle glaucoma patients with

similar results to the monotherapy with
β-blockers, manifesting no changes in

the intraocular pressure.

Glaucoma García-Medina et al. [244]

Vitamins A, B1, B2,
B3, B6, B9, B12, C, E,
lutein, zeaxanthin,

omega-3, trace
elements

Prospective,
randomized

(n = 117)

After the daily oral administration for
24 months, there were no changes in

terms of visual field and retinal
parameters evaluated by optical

coherence tomography, in the macular
and optic nerve, compared with the

control patients.

Glaucoma Mutolo et al. [245]

Vitamins B1, B2, B6,
forskolin,

homotaurine,
carnosine, trace

elements

Prospective,
randomized,

(n = 22)

After the daily oral administration for
12 months, the intraocular pressure

decreased 1.9 mmHg, and the retinal
function in terms of pattern

electroretinogram and foveal sensitivity
improved compared with the control

group.

Age-related macular
degeneration

Age-Related Eye Disease
Study (AREDS) [267,268]

Vitamins C, E,
β-carotene, zinc,

cupric oxide

Prospective,
multicenter,
randomized,

double-masked
(n = 3640)

After the daily oral administration of the
AREDS formulation for 120 months, the
estimated probability of progression to

advanced AMD in patients who
manifested high-risk clinical features was
lower with AREDS formulation (45.7%)
than the placebo (53.8%), the odds ratio
and its 99% confidence interval being

0.66 (0.53, 0.83).

Age-related macular
degeneration AREDS2 [269,270]

AREDS +
(1) lutein and

zeaxanthin
(2) omega-3

(3) both together

Prospective,
multicenter,
randomized,

double-masked
(n = 4203)

After the daily oral administration of the
AREDS2 formulations for 60 months,

there was no risk of developing
advanced AMD with any of the

formulations, which included the
original AREDS composition.

Additionally, a higher incidence of lung
cancer was found in a group receiving
β-carotene vs. no β-carotene group,

especially in former smokers.

Age-related macular
degeneration

The Nutritional AMD
Treatment 2 (NAT2) [271]

Docosahexaenoic
acid,

eicosapentaenoic
acid (omega-3)

Prospective,
randomized,

double-masked
(n = 263)

After the daily oral administration of the
NAT2 formulation for 36 months, these

antioxidants only showed a lower
incidence of choroidal

neovascularization compared with
placebo but with no statistically

significant differences.
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Table 2. Cont.

Disease Reference Antioxidants Study Design Main Findings

Diabetic retinopathy García-Medina et al. [278]
Vitamins C, E,

lutein, β-carotene,
trace elements

Prospective,
randomized (n = 97)

After the daily oral administration for
60 months, patients with type 2 diabetes

and non-proliferative retinopathy or
without retinopathy showed a statistical

reduction in the progression of
retinopathy, which was not considered
clinically relevant compared with the

control group, and there were no changes
in the plasma total antioxidant status.

Diabetic retinopathy Lafuente et al. [282]

Vitamins A, B2, B3,
B6, B9, B12, C, E,

lutein, zeaxanthin,
omega-3, trace

elements

Prospective,
randomized,
single-blind

(n = 55)

After the daily oral administration for
36 months, there was an improvement of
visual function (not clinically relevant),

central macular thickness, and the
plasma levels of HbA1c, IL-6,

docosahexaenoic acid, and other
antioxidants.

Diabetic retinopathy Sanz-González et al. [283]

Vitamins A, B2, B3,
B6, B9, B12, C, E,

lutein, zeaxanthin,
omega-3, trace

elements

Prospective,
randomized

(n = 480)

After the daily oral administration for
38 months, the blood levels of different

pro-oxidants markers decreased, and the
antioxidants increased in type 2 diabetic
patients with diabetic retinopathy. No
signs of ocular disease development

were analyzed.

6. Discussion

This review analyzed the oxidative stress and inflammatory processes in the back
of the eye. The approach was to describe the role of oxidative stress as one of the first
events in the inflammation cascade, thereby explaining how biomarkers of oxidative stress
and inflammation are necessary to understand the physiopathology of main diseases and
molecular crosstalk disorder that connect retinal blood vessels, retina, and retinal ganglion
cells. For instance, in glaucoma, the TM degeneration induced by oxidative injury might
cause a disorder in the aqueous humor outflow pathway and the subsequent intraocular
pressure elevation [58], the oxidative stress in this case being a secondary factor in the
mechanical theory of glaucoma pathogenesis.

In the retina, oxidative stress appears to be central in the development of AMD and
is identified as a crucial factor in the progression of the pathology [290]. This is due
to its relationship with other molecular mechanisms and physiological conditions that
favor the generation of ROS and lead to dysregulated lipid metabolism, dysregulated
antioxidant mechanisms, mitochondrial dysfunction, dysregulated angiogenesis, and
inflammation. Moreover, in diabetic retinopathy, hyperglycemia seems to be the first
trigger in the pathogenesis of vascular complications, and oxidative stress represents the
common link in all of the hyperglycemia-induced biochemical and molecular pathways in
the retina. Many metabolic and hemodynamic pathways and their relatives’ mediators are
activated. Based on the strong evidence of a role of oxidative stress in the pathogenesis of
vascular complications, the use of antioxidants should represent an appealing approach.

The treatment of these pathologies with antioxidant supplements is controversial.
Several studies have shown that antioxidant may help to regulate the oxidative stress
damage in the posterior pole of the eye in animal model, but it is not possible to extrapolate
to our clinical practice, because human trials have not clearly shown the efficacy. In many
cases, different antioxidants are combined seeking to improve the effect. This combination
shows some disadvantages such as positive or negative interaction of different antioxidants
among them with uncertain effects or the optimal dose and combination. It is evident that
more studies have to be developed to evaluate the long-term efficacy and safety of different
combinations of antioxidants in order to find out useful formulation against a degenerative
posterior pole eye disease.
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In summary, there is a clear importance of oxidative stress in posterior pole pathologies,
but biomarkers of the inflammation related with oxidative stress, detected in systemic or
ocular fluids, could be very important for diagnosis and even treatment with different
antioxidant supplements.
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age-related macular degeneration. Curr. Eye Res. 2009, 34, 1089–1093. [CrossRef]

153. Evereklioglu, C.; Er, H.; Doganay, S.; Cekmen, M.; Turkoz, Y.; Otlu, B.; Ozerol, E. Nitric oxide and lipid peroxidation are increased
and associated with decreased antioxidant enzyme activities in patients with age-related macular degeneration. Doc. Ophthalmol.
2003, 106, 129–136. [CrossRef] [PubMed]

154. Yildirim, Z.; Ucgun, N.I.; Yildirim, F. The role of oxidative stress and antioxidants in the pathogenesis of age-related macular
degeneration. Clinics 2011, 66, 743–746. [CrossRef] [PubMed]

155. Jia, L.; Dong, Y.; Yang, H.; Pan, X.; Fan, R.; Zhai, L. Serum superoxide dismutase and malondialdehyde levels in a group of
Chinese patients with age-related macular degeneration. Aging Clin. Exp. Res. 2011, 23, 264–267. [CrossRef] [PubMed]

156. Sakurada, Y.; Nakamura, Y.; Yoneyama, S.; Mabuchi, F.; Gotoh, T.; Tateno, Y.; Sugiyama, A.; Kubota, T.; Iijima, H. Aqueous
humour cytokine levels in patients with polypoidal choroidal vasculopathy and neovascular age-related macular degeneration.
Ophthalmic Res. 2015, 53, 2–7. [CrossRef]

157. Klein, R.; Myers, C.E.; Cruickshanks, K.J.; Gangnon, R.E.; Danforth, L.G.; Sivakumaran, T.A.; Iyengar, S.K.; Tsai, M.Y.; Klein,
B.E.K. Markers of inflammation, oxidative stress, and endothelial dysfunction and the 20-year cumulative incidence of early
age-related macular degeneration: The Beaver Dam Eye Study. JAMA Ophthalmol. 2014, 132, 446–455. [CrossRef]

158. Kang, G.Y.; Bang, J.Y.; Choi, A.J.; Yoon, J.; Lee, W.C.; Choi, S.; Yoon, S.; Kim, H.C.; Baek, J.H.; Park, H.S.; et al. Exosomal proteins
in the aqueous humour as novel biomarkers in patients with neovascular age-related macular degeneration. J. Proteome Res. 2014,
13, 581–595. [CrossRef]

159. Jonas, J.B.; Tao, Y.; Neumaier, M.; Findeisen, P. Cytokine concentration in aqueous humour of eyes with exudative age-related
macular degeneration. Acta Ophthalmol. 2012, 90, e381–e388. [CrossRef]

http://doi.org/10.1177/1120672118795399
http://doi.org/10.1080/02713683.2017.1362003
http://doi.org/10.17116/oftalma202013604194
http://doi.org/10.1080/09273948.2017.1327605
http://doi.org/10.2147/OPTH.S162999
http://doi.org/10.2147/OPTH.S155168
http://doi.org/10.1167/iovs.09-4247
http://doi.org/10.19082/3833
http://doi.org/10.2147/OPTH.S19453
http://doi.org/10.1016/S0161-6420(98)92782-8
http://doi.org/10.1097/00061198-200210000-00006
http://doi.org/10.1155/2015/812503
http://doi.org/10.1167/iovs.17-21723
http://doi.org/10.1167/iovs.10-5663
http://doi.org/10.1080/09273948.2020.1828488
http://doi.org/10.1136/bjo.85.12.1426
http://doi.org/10.3109/02713680903353772
http://doi.org/10.1023/A:1022512402811
http://www.ncbi.nlm.nih.gov/pubmed/12678277
http://doi.org/10.1590/s1807-59322011000500006
http://www.ncbi.nlm.nih.gov/pubmed/21789374
http://doi.org/10.1007/BF03324965
http://www.ncbi.nlm.nih.gov/pubmed/22067370
http://doi.org/10.1159/000365487
http://doi.org/10.1001/jamaophthalmol.2013.7671
http://doi.org/10.1021/pr400751k
http://doi.org/10.1111/j.1755-3768.2012.02414.x


Pharmaceutics 2021, 13, 1376 24 of 29

160. Jonas, J.B.; Tao, Y.; Neumaier, M.; Findeisen, P. Monocyte chemoattractant protein 1, intercellular adhesion molecule 1, and
vascular cell adhesion molecule 1 in exudative age-related macular degeneration. Arch. Ophthalmol. 2010, 128, 1281–1286.
[CrossRef]

161. Kramer, M.; Hasanreisoglu, M.; Feldman, A.; Axer-Siegel, R.; Sonis, P.; Maharshak, I.; Monselise, Y.; Gurevich, M.; Weinberger,
D. Monocyte chemoattractant protein-1 in the aqueous humour of patients with age-related macular degeneration. Clin. Exp.
Ophthalmol. 2012, 40, 617–625. [CrossRef]

162. Mimura, T.; Funatsu, H.; Noma, H.; Shimura, M.; Kamei, Y.; Yoshida, M.; Kondo, A.; Watanabe, E.; Mizota, A. Aqueous Humour
Levels of Cytokines in Patients with Age-Related Macular Degeneration. Ophthalmologica 2019, 241, 81–89. [CrossRef]

163. Rezar-Dreindl, S.; Sacu, S.; Eibenberger, K.; Pollreisz, A.; Bühl, W.; Georgopoulos, M.; Krall, C.; Weigert, G.; Schmidt-Erfurth,
U. The Intraocular Cytokine Profile and Therapeutic Response in Persistent Neovascular Age-Related Macular Degeneration.
Investig. Ophthalmol. Vis. Sci. 2016, 57, 4144–4150. [CrossRef]

164. Ten Berge, J.C.; Fazil, Z.; van den Born, I.; Wolfs, R.C.W.; Schreurs, M.W.J.; Dik, W.A.; Rothova, A. Intraocular cytokine profile and
autoimmune reactions in retinitis pigmentosa, age-related macular degeneration, glaucoma and cataract. Acta Ophthalmol. 2019,
97, 185–192. [CrossRef]

165. Zhao, M.; Bai, Y.; Xie, W.; Shi, X.; Li, F.; Yang, F.; Sun, Y.; Huang, L.; Li, X. Interleukin-1β Level Is Increased in Vitreous of Patients
with Neovascular Age-Related Macular Degeneration (nAMD) and Polypoidal Choroidal Vasculopathy (PCV). PLoS ONE 2015,
10, e0125150. [CrossRef]

166. Bai, Y.; Liang, S.; Yu, W.; Zhao, M.; Huang, L.; Li, X. Semaphorin 3A blocks the formation of pathologic choroidal neovasculariza-
tion induced by transforming growth factor beta. Mol. Vis. 2014, 20, 1258–1270.

167. Winiarczyk, M.; Kaarniranta, K.; Winiarczyk, S.; Adaszek, Ł.; Winiarczyk, D.; Mackiewicz, J. Tear film proteome in age-related
macular degeneration. Graefes Arch. Clin. Exp. Ophthalmol. 2018, 256, 1127–1139. [CrossRef]

168. Ecker, S.M.; Pfahler, S.M.; Hines, J.C.; Lovelace, A.S.; Glaser, B.M. Sequential in-office vitreous aspirates demonstrate vitreous
matrix metalloproteinase 9 levels correlate with the amount of subretinal fluid in eyes with wet age-related macular degeneration.
Mol. Vis. 2012, 18, 1658–1667.

169. Endo, M.; Yanagisawa, K.; Tsuchida, K.; Okamoto, T.; Matsushita, T.; Higuchi, M.; Matsuda, A.; Takeuchi, M.; Makita, Z.; Koike, T.
Increased levels of vascular endothelial growth factor and advanced glycation end products in aqueous humour of patients with
diabetic retinopathy. Horm. Metab. Res. 2001, 33, 317–322. [CrossRef]

170. Fosmark, D.S.; Torjesen, P.A.; Kilhovd, B.K.; Berg, T.J.; Sandvik, L.; Hanssen, K.F.; Agardh, C.D.; Agardh, E. Increased serum
levels of the specific advanced glycation end product methylglyoxal-derived hydroimidazolone are associated with retinopathy
in patients with type 2 diabetes mellitus. Metabolism 2006, 55, 232–236. [CrossRef]

171. McLeod, D.S.; Lefer, D.J.; Merges, C.; Lutty, G.A. Enhanced expression of intracellular adhesion molecule-1 and P-selectin in the
diabetic human retina and choroid. Am. J. Pathol. 1995, 147, 642–653.

172. Miyamoto, K.; Khosrof, S.; Bursell, S.E.; Rohan, R.; Murata, T.; Clermont, A.C.; Aiello, L.P.; Ogura, Y.; Adamis, A.P. Prevention of
leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition.
Proc. Natl. Acad. Sci. USA 1999, 96, 10836–10841. [CrossRef]
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