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Sepsis is a life-threatening organ dysfunction caused by the host’s malfunctioning
response to infection. Due to its high mortality rate and medical cost, sepsis remains
one of the world’s most intractable diseases. In the early stage of sepsis, the over-
activated immune system and a cascade of inflammation are usually accompanied by
immunosuppression. The core pathogenesis of sepsis is the maladjustment of the host’s
innate and adaptive immune response. Many immune cells are involved in this process,
including neutrophils, mononuclear/macrophages and lymphocytes. The immune cells
recognize pathogens, devour pathogens and release cytokines to recruit or activate other
cells in direct or indirect manner. Pyroptosis, immune cell-extracellular traps formation and
autophagy are several novel forms of cell death that are different from apoptosis, which
play essential roles in the progress of sepsis. Immune cells can initiate “self-sacrifice”
through the above three forms of cell death to protect or kill pathogens. However, the
exact roles and mechanisms of the self-sacrifice in the immune cells in sepsis are not fully
elucidated. This paper mainly analyzes the self-sacrifice of several representative immune
cells in the forms of pyroptosis, immune cell-extracellular traps formation and autophagy
to reveal the specific roles they play in the occurrence and progression of sepsis, also to
provide inspiration and references for further investigation of the roles and mechanisms of
self-sacrifice of immune cells in the sepsis in the future, meanwhile, through this work, we
hope to bring inspiration to clinical work.

Keywords: sepsis, pyroptosis, NETosis, immune cells, self-sacrifice
1 INTRODUCTION

Sepsis is a systemic inflammatory response syndrome (SIRS) induced by infection, which can cause
multiple organ dysfunction in severe cases. Sepsis is accompanied by a release of a variety of
inflammatory cytokines secreted from immune cells, including neutrophils, monocytes/
macrophages, lymphocytes and microglia (1–3). With the rapid progression of the severity of
sepsis and in the critical condition with severe sepsis and septic shock, the average mortality rate of
sepsis is 25% to 30%, and even 40%–50% in septic shock (4). Previous studies have demonstrated
that the pathological process of sepsis is very complex, which still poses a big challenge in critical
care medicine at present (5, 6).
org April 2022 | Volume 13 | Article 8334791

https://www.frontiersin.org/articles/10.3389/fimmu.2022.833479/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.833479/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:zhjcheng1@126.com
mailto:yuan_shiying@163.com
https://doi.org/10.3389/fimmu.2022.833479
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.833479
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.833479&domain=pdf&date_stamp=2022-04-29


Wen et al. Self-Sacrifice in Sepsis
In recent years, the pyroptosis and autophagy, as well as
immune cells extracellular traps, including neutrophil
extracellular traps (NETs), macrophages extracellular traps
(METs), mast cells extracellular traps (MCETs), eosinophils
extracellular traps (EETs), basophil extracellular traps (BETs)
and dendritic cells extracellular traps (DCETs), are defined as
unique forms of programmed cell death, which is different from
necrosis and apoptosis (Table 1). These are programmed deaths,
but none of them are genetically regulated under physiological
conditions, they are caused by pathological stimuli or changes in
the external environment, then further release of substances by
cell death continue to perform essential roles on the body. The
death of immune cells to protect or damage the body is
undoubtedly similar to a kind of self-sacrificing death of cells,
however, they have not been comprehensively evaluated.

Researches have confirmed that the pyroptosis is an
inflammatory form of programmed cell death dependent on
inflammatory caspase-1, caspase-4, caspase-5 and caspase-11, as
well as the release of a large number of pro-inflammatory cytokines
(3, 7). The pyroptosis mainly relies on inflammasome to activate
caspase family and then cleave and activate gasdermin protein,
which is transferred to the membrane to form holes and thus leads
to cell membrane rupture (8). The role of immune cell pyroptosis in
sepsis is by far the most controversial. This self-sacrificing way of
death was initially thought to play a protective role in sepsis, but
now more and more studies have proved the disadvantages of
excessive pyroptosis (8–10).

Immune cells extracellular traps are relatively new as research
topics, among which NETs has made significant advances in
oncology, autoimmune disease and COVID-19 in recent years
(11–13). Neutrophils activate trap and kill pathogens by releasing
substances composed of depolymerized chromatin and
intracellular granular proteins. Neutrophils would die during
the formation of NETs, which is called NETosis (14). With
further study, more types of immune cells have been found that
they can launch extracellular traps formation with disrupted cell
membrane releasing DNA and histone to protect or damage the
host tissue in programmed cell death. NETs plays an important
role in the clearance of pathogens in sepsis and improves the
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survival rate of patients with sepsis. Neutrophils release histone,
histamine and other inflammatory mediators into the blood after
forming NETs, which could damage the tissue and promote the
apoptosis of macrophages, aggravating the inflammatory
response in sepsis (15). They can activate platelets to start the
coagulation process and induce the formation of thrombosis as
well, further aggravating the disease (16–18). Therefore, the
detailed mechanism of NETs in the pathophysiological process
of sepsis deserves further investigation.

The autophagy is a process enveloping bacteria and viruses
escaped from the phagosomes or damaged mitochondria into
vesicles, fusing with lysosomes to form autophagosomes and
degrading their encapsulated contents. The relatively broad term
“autophagy” itself has been utilized with rather variable and
sometimes misleading connotations. The material in the
cytoplasm and lysosomal degradation are acknowledged to be
involved in the autophagy (19). In the early stage of sepsis,
autophagy is induced in many important organs such as heart,
brain, lung, liver and kidney, and it plays a protective role in the
body. With the suppression of immune cell function, the body
enters a period of continuous immunosuppression, with the
development of sepsis, autophagy activity decreased (20). In
the progression of sepsis, autophagy of immune cells plays an
important role. Many studies have proved that macrophages,
lymphocytes and neutrophils play a role in actively removing
microorganisms and participating in inflammatory reactions
(21–23).

The pyroptosis, autophagy, and immune cells extracellular
traps formations can all play significant roles in sepsis in a way
that resembles self-sacrifice. Much evidence has shown that
pyroptosis, immune cells, extracellular traps formations and
autophagy are widely involved in the occurrence and
development of infectious diseases, neurological diseases,
atherosclerotic diseases, and endocrine disease (14, 19, 24, 25).
The immune cells through the self-sacrifice to achieve their goal
is very interesting, so far, there are a lot of studies on these three
ways of death in sepsis, but whether these three ways play a
protective or damaging role in the process of sepsis is
controversial at present, and no consistent answers have been
TABLE 1 | Comparison of different cell death modes.

Pyroptosis Apoptosis Necrosis NETosis Autophagy

Initiating Programmed Programmed Accidental Programmed Programmed
Inducement Pathological stimulus Gene regulation under physiological

conditions
Pathological changes or

severe damage
Pathological stimulus Nutrient deficiency or

hormone induction
Signaling pathway Caspase-1/4/5/11 Caspase-3/6/7 Non-caspase Non-caspase Non-caspase
Terminal event Lytic Non-lytic Lytic Lytic Lytic
TUNEL assay YES YES YES NO NO
Plasma membrane
pore formation

YES NO NO NO NO

Organelle Become deformed Organelle integrity Become deformed or
swollen

Become deformed Eaten by autophagosomes

Cellular morphology Become enlarged
and deformed

Shrink Become enlarged and
deformed

Become enlarged
and deformed

Produce vacuoles

Effect on tissue Inflammatory Non-inflammatory Inflammatory Inflammatory Non-inflammatory
DNA damage Random degradation Degraded to 200bp and integer

multiples of fragments
Random degradation No degradation Random degradation
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obtained in cell experiments or clinical trials. Therefore, an in-
depth study of this “self-sacrifice” in sepsis is important and
necessary. This review focuses on the roles they play in the
occurrence and progression of sepsis. The inspiration and
reference could also be provided to us with immune cells’ self-
sacrifice in sepsis, which could provide a deeper understanding
of the mechanism of sepsis, and new treatment strategies
for sepsis.
2 THE DEVELOPMENT OF SELF-
SACRIFICE IN IMMUNE CELLS IN SEPSIS

2.1 The Development of Immune Cell
Pyroptosis in Sepsis
The phenomenon of pyroptosis was first discovered by
Zychlinsky et al. in 1992. They observed a novel pathogenic
mechanism of cell death in Shigella flexneri-infected
macrophages, they found that this process mainly depended on
caspase-1 rather than the traditional form of caspase-3-
dependent cell death (26). In 1998, Hubert Hilbi claimed that
caspase-1 played an essential role in the specific type of cell
death. Pro-interleukin(IL)-1b would be cleaved after the
activation of caspase-1, which results in inflammation, and this
mode of cell death is distinct from apoptosis. Besides, they
proposed that caspase-1 had dual effects of promoting
apoptosis and inflammation (27). In 2001, Boise LH and
Collins CM first discussed this new type of programmed cell
death and used “Pyroptosis” to name the cell death mode
dependent on caspase-1 (28, 29). In 2011, Kayagaki et al.
highlighted the importance of caspase-11 in pyroptosis and
pointed it as a non-classical pathway. Moreover, they
demonstrated in vivo, as opposed to current reasoning, that
caspase-11 rather than caspase-1 might be the basic effector of
deleterious inflammatory responses. Their discoveries likewise
feature the need to return to the job of caspase-1 versus caspase-
11 in various mouse infection models, as so far, all investigations
have utilized Casp1/11 twofold knockout mice (30). In 2018,
Kambara et al. raised an essential point to explain the
pathological mechanisms of sepsis. They reported that
gasdermin D (GSDMD), a pro-inflammatory factor, could
exert anti-inflammatory effects by promoting neutrophil death,
and GSDMD would be a potential therapeutic target in the
future (31).

2.2 The Development of Immune Cell-
Extracellular Traps in Sepsis
In 2004, Volker Brinkmann firstly used IL-8, phosphor myristate
(PMA) and lipopolysaccharide (LPS) to stimulate neutrophils.
They found that activated neutrophils became flat and formed
prominent extracellular structures called NETs, and this process
was called NETosis. The fibrous structure of NETs could not
only kill bacteria efficiently, but also serve as a physical barrier to
prevent the further spread of bacteria. Whereas they observed
that the excessive exposure of extracellular histone complexes
could cause damage to the immune system, which indicated that
Frontiers in Immunology | www.frontiersin.org 3
NETosis was a double-edged sword to the immune system (32).
In 2007, further investigation by Dr. Brinkmann’s group
concluded that NETosis was a novel form of cell death
pathway. They stressed that NETosis was mainly produced by
neutrophils and described the way it killed bacteria
effectively postmortem (33). In 2008, for the first time, von
Köckritz-Blickwede et al. proposed MECTs as a novel cell death
pathway in leukocytes (34). In 2012, Yipp et al. provided
evidence that NETosis might lead to tissue damage besides its
bactericidal properties (35). In 2015, Boe et al. described
extracellular traps in macrophages and called it METosis (36).

2.3 The Development of Autophagy-
Dependent Immune Cell Death in Sepsis
Ashford TP and Porter KR first proposed the term “autophagy”
in 1962 after discovering the phenomenon of “self-eating” in cells
(37). It referred to the double layer of membrane shedding from
the ribosomal region of the rough endoplasmic reticulum.
Autophagosome was formed by the degraded organelles,
proteins and other components, which fused with lysosomes to
create autophagosome and degraded the encapsulated contents
to meet the metabolic needs of the cell itself and the renewal of
some organelles (38). In 1997, Matsuura et al. from the Ohsumi
Ryoshinori Laboratory discovered that APG1 encodes a new type
of serine/threonine protein kinase, and its kinase activity is
necessary for autophagy (39). As the molecular mechanism of
autophagy has slowly been elucidated, the relationship between
autophagy and disease such as oncogenesis, immune system
diseases, cardiovascular and neurological diseases has constantly
being discovered and understood (40). In 2013, Choi et al.
proposed the possible mechanism of autophagy and relevant
therapeutic strategies by pharmacological means. Provided for
the focal part about AKT-mechanistic target of rapamycin
(MTOR) to directing autophagy, they evaluated fasting-
induced autophagic reactions and found that they were
impeded for hearts for these mice. Moreover, These discoveries
showed that the signal defect of impair autophagy caused by
LMNA gene mutation is one of the pathogenesis of the disease
(41). In 2016, the Nobel Prize in Physiology or Medicine was
awarded to Tokyo Institute of Technology researcher Yoshinori
Ohsumi due to his discovery of the early identification and
characterization mechanisms of the autophagy machinery.
3 THE ROLES AND MECHANISMS OF
“SELF-SACRIFICE” OF IMMUNE CELLS
IN SEPSIS

3.1 The Immune Cells’ Pyroptosis in
Sepsis
According to the cleavage of inflammatory molecules upstream
of GSDMD, pyroptosis could be divided into caspase-1-
dependent classical pathway and caspase-4/5/11-dependent
non-classical pathway (9, 42). In the classical pathway, under
April 2022 | Volume 13 | Article 833479
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the stimulation of pathogens, bacteria and other signals,
intracellular Nod-like receptor (NLR) family recognizes these
signals and activates casepase-1 by binding with pro-caspase-1
through adaptor protein ASC. On the one hand, activated
caspase-1 could cut GSDMD. GSDMD is divided into N-
terminal and C-terminal, the N-terminal of GSDMD and
phosphatidylinositol on cell membrane are combined to form
holes which called “gasdermin channel”, then releasing contents
and inducing inflammation (43). On the other hand, activated
caspase-1 cleaves pro-IL-1b and pro-IL-18 to transform into
IL-1b and IL-18, which is released to extracellular and lead to
inflammation as well. In the non-classical pathway, taking LPS as
an example, the activation of caspase-4/5/11 does not require the
involvement of ASC, LPS could directly enter the cells without
the receptors. The lipid A portion of LPS binds to the N-terminal
of caspase activation and recruitment domain of caspase-4/5/11
and induces its oligomerization. After caspase-4/5/11 is
activated, then the activated caspase-4/5/11 could cleave
GSDMD and induce pyroptosis, meanwhile inducing the
caspase-1 activation to cleave pro-IL-1b and pro-IL-18, the
expression of IL-1b causes a febrile reaction, dilates blood
vessels, causes hypotension, promotes immune cells
(polymorphonuclear neutrophils, monocytes, macrophages,
Frontiers in Immunology | www.frontiersin.org 4
and dendritic cells) infiltration, and ultimately damages tissues
(44). Meanwhile, IL-18 is a cytokine with multiple pro-
inflammatory functions, it could activate Th1 cells and
produces interferon-g (IFN-g). The overproduction of IL-18
may policy the inflammatory response and cause tissue
damage (45) resulting in an inflammatory response (43, 46). It
is worth noting that pannexin-1and P2X7 downstream of
caspase-11 play a significant role for pyroptosis and
susceptibility to sepsis induced by the non-classical pathway
(47). Then we will focus on exploring how this complex process
plays a role in immune cells in sepsis (Figure 1).

3.1.1 Neutrophils’ Pyroptosis in Sepsis
Pyroptosis of neutrophils is a pro-inflammatory programmed
cell death process performed by the protein GSDMD. From the
point of view of protection, the intracellular replicative niche of
the bacteria is cleared through pyroptosis of neutrophils,
immune factors released during pyroptosis active the effector
cells to kill the pathogen (10). In contrast, Mei Yang et al.
suggested that neutrophils could secrete IL-1b through
caspase-1-dependent classical pathway and then lead to a
lower survival rate in mice. Compared to those in controls, the
expression of caspase-1, NLRP-1, IL-1b, and IL-18 decreased in
FIGURE 1 | Mechanisms of self-sacrifice in neutrophils. Pyroptosis mainly relies on inflammasome to activate caspase family, caspase family could cleave and
activate gasdermin protein, which is transferred to the membrane to form holes and thus leads to cell membrane rupture. NETs components DNA and histones can
act as DAMPs molecules to directly initiate or amplify inflammatory responses. NETosis induced by LPS in neutrophils can elicit caspase-11 and GSDMD-dependent
histone H3 citrullination. NETosis is a multi-step process involving the destruction of neutrophil nuclear and cytoplasmic granular membranes, chromatin relaxation,
chromatin interaction with granular proteins, and chromatin release from the cells. A variety of stimulants, such as PMA, microflora, LPS, eubacteria, activated blood
plates, IL-8 and immune complexes, can induce the formation of NETs through the PKC signaling pathway. Autophagy is a process enveloping bacteria and viruses
escaped from the phagosomes or damaged mitochondria into vesicles, fusing with lysosomes to form autophagosomes and degrading their encapsulated contents.
Neutrophil autophagy could subsequently activate NETs. NETs, neutrophil extracellular traps; DAMPs, damage‐associated molecular patterns; LPS,
lipopolysaccharide; GSDMD, gasdermin D; PMA, phosphor myristate; IL, interleukin; PKC, protein kinase C.
April 2022 | Volume 13 | Article 833479
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mice with AC-YVAD-CMK (caspase-1-inhibitor) treatment,
additionally, with AC-YVAD-CMK treatment, they observed
that the accumulation of neutrophils and macrophages were
suppressed, serum creatinine and blood urea nitrogen level were
decreased, and the expression of GSDMD reduced (48). In 2014,
Chen et al. confirmed that neutrophils could express multiple
Nod Like Receptors (NLRs) and are significant source of IL-1b
during acute Salmonella infection. In addition, the neutrophil
NLRC4 inflammasome drove caspase-1 and IL-1b activation
(49). In 2018, Chen et al. clarified that due to the low
expression of caspase-1 in neutrophils and the classical
inflammasome signal transduction aptamer protein ASC,
GSDMD could not be cleaved effectively, resulting in focal
death independent of the classical pathway in neutrophils.
However, IL-1b could be released during this process, which in
turn recruits more neutrophils to accumulate (50).

In caspase-4/5/11-dependent non-classical pathway, it is
worth emphasizing that Kumari et al. revealed that the release
of caspase-11 in neutrophils was crucial and indispensable for
LPS-induced mortality after sepsis, but it does not play primary
roles in other cells, such as intestinal epithelial cells (51).

Analogously, during polymicrobial sepsis, Gentile et al.
evidenced that the level of inflammatory cytokines and
neutrophils’ phagocytosis could increase, the survival rate of
wild-type mice and bacterial colonization could decrease after
ablation of caspase-1/11, moreover, they emphasize that caspase-
1/11 activity, not only could accelerate the magnitude of the
inflammatory response, but also suppress protective immunity
(52). In contrast, Cheng et al. used the mature neutrophils
extracted from mouse bone marrow, and found neutrophils
was sensitive to caspase-11-dependent non-classical pathway,
in which could effectively cleave the GSDMD in neutrophils,
conditional deletion of caspase-11 in lung injury caused by
bacterial sepsis could reduce neutrophils accumulation and
pyroptosis, indirectly proving that caspase-11-dependent non-
classical pathway might be involved in the lung injury after
sepsis, moreover, they evidenced that caspase-11 and GSDMD
contributed to host defense and the decrease of bacterial load
though driving the NETosis (53). Peptidylarginine deiminases
(PADs) are a family of calcium-dependent enzymes. In 2020,
Yuzi Tian et al. testified that PAD2 protein is increased in sepsis
patients and CLP-induced mouse models of sepsis. Through the
using of PAD2-specific inhibitors, they demonstrate that it could
decrease NETosis and macrophage’casepase-11-dependent
pyroptosis, and inhibition of caspase-11 activation could lead
to reduce the release of IL-1a and high mobility group box 1
(HMGB1) in the peritoneal cavity, which increases the number
of macrophages, significantly reduces bacterial load and
inflammation in the blood, and ultimately increases survival
and organ function after sepsis (54).

3.1.2 The Lymphocytes’ Pyroptosis in Sepsis
At present, there is no sufficient evidence showing that
pyroptosis of lymphocytes can directly aggravate the
occurrence of sepsis. Whereas Sarkar et al. used caspase-1
knockout, IL-1 knockout, IL-1/IL-18 double knockout and
their respective wild-type mice to analyze the survival rate in
Frontiers in Immunology | www.frontiersin.org 5
2006, they found that mice with caspase-1 knockout had a higher
survival rate and they proposed that caspase-1-dependent
pyroptosis might cause delayed apoptosis of B lymphocytes,
which further affected the phenotype of macrophages and thus
improved the survival rate, of note, this process is not regulated
by cytokines, finally they proved that caspase-1 was essential to
surviving live E. coli-induced septic shock (55). Moreover,
studies have shown that Group 2 Innate lymphoid Cells (ILC2)
can inhibit the activation of caspase-1 by secreting IL-9, thus
inhibiting pyroptosis of vascular endothelial cells, additionally,
granzyme released by cytotoxic lymphocytes can trigger
pyroptosis in target cells by cleaving GSDMB (56). Kader et al.
manifested that in Ehrlichia-induced sepsis mice, caspase-11-
mediated HMGB1 cytosolic translocation and extracellular
secretion are linked to the induction of pyroptosis, the IFNAR
signaling involve in this process, which played an essential role in
bacterial replication and NKT cells, CD8+ cells and neutrophils
expanded during this process, resulting the damage of liver in
sepsis (57). In a word, the pyroptosis in lymphocytes does have a
relationship with sepsis, but the mechanism of their interaction is
still worth further exploration.
3.1.3 The Pyroptosis of Monocyte/Macrophage
in Sepsis
Sepsis-associated disseminated intravascular coagulation (DIC)
could inhibit macrophage pyroptosis through platelet endothelial
cell adhesion molecule-1 (PECAM-1), thus restoring vascular
barrier integrity (58). PECAM-1 could significantly increase or
decrease the expression of caspase-11 through the up-regulation or
down-regulation of the expression of Sphingosine-1-phosphate
receptors-2 (S1PR2) in macrophages. Many sphingosine-1-
phosphate receptors are expressed in macrophages, which could
promote caspase-11-dependent pyroptosis of macrophages. Loss
of S1PR2 could reduce the pyroptosis of macrophages and
improve the prognosis of sepsis caused by E. coli infection. They
also proved that a RhoA inhibitor significantly reduced caspase-11
activation (59). In 2018, Wang et al. found that the level of the
caspase-1, the percentage of caspase-1-induced peripheral blood
monocyte pyroptosis, and the level of IL-18 were significantly
increased in patients with post-traumatic sepsis compared with
healthy subjects, and the percentage of peripheral blood
mononuclear cells pyroptosis could predict the development and
the occurrence of post-traumatic sepsis (60). In the same year,
Chen et al. proved that the activity of bone marrow-derived
macrophages in sepsis mice was inhibited after treatment with
HMGB1, leading to the increased release of IL-1b and IL-18
through caspase-11-dependent pyroptosis. They demonstrated
that HMGB1 interacted with extracellular LPS to intervene
caspase-11-dependent pyroptosis in fatal sepsis, which is a
physical and specific bond interaction, and in this process
RAGE-dependent internalization was a decisive pathway by
disrupting the membrane of the acidic lysosome, allowing LPS
to enter the cytoplasm. More importantly, they found that
HMGB1 and caspase-11 was upregulated 24 hours after the
onset of sepsis, providing the basis for targeted therapy for
sepsis (61). Unlike caspase-11-dependent pyroptossis in
April 2022 | Volume 13 | Article 833479
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neutrophils, recently studies presented that caspase-11-
dependent-pyroptosis in macrophages mainly plays a damaging
role in the process of sepsis. Salvamoser et al. showed that the
levels of caspase-1 and caspase-11, and the expression of caspase-1
in macrophages were increased in mice after LPS-induced sepsis.
Besides, the deficiency of caspase-1 and caspase-11 in mice
resulted in increased tolerance to septic shock and reduced
mortality in mice (62). Similarly, Kang et al. confirmed that
regulating caspase-11-mediated GSDMD cleavage in
macrophages improved immune hyperactivation in sepsis,
indicating that genetic or pharmacologic suppression of
excessive pyroptosis in macrophages could enhance the survival
rate of mice in sepsis (63).

Microglia and peripheral macrophages belong to
mononuclear macrophages of hematopoietic origin and
microglia is the only resident macrophages of the brain
parenchyma acting as innate immune effector cells in the
central nervous system (64). Microglia activation and
neuroinflammation are the main features of neuropathology
(65, 66). In 2019, Xu et al. confirmed that caspase-1 inhibitors
could suppress the expression of GSDMD and its cleavage from
GSDMD-NT, then inhibit the pyroptosis of microglia on day 1
and 7. In addition, it could also reduce the detrimental effects of
IL-1b, monocyte chemoattractant protein-1 (MCP-1), and TNF-
a in the serum and brain of septic mice and thus alleviate brain
injury. Therefore, caspase-1 inhibitors can protect against brain
injury caused by sepsis to some extent, mainly by blocking the
microglial pyroptosis pathway and reducing the release of pro-
inflammatory cytokines (67). Furthermore, Xu et al. further
found that that TREM-1 was a key regulator of inflammation.
Microglia further increased N-terminal of GSDMD and the
formation of GSDMD pores through upregulation of TREM-1,
leading to pyroptosis of microglia, then resulting the damage in
nerve. TREM-1-induced spleen tyrosine kinase (SYK)
mobilization is responsible for microglial pyroptosis through
CARD9/NF-kB and NLRP3/caspase-1 pathways both in vivo and
in vitro. It is worth mentioning that such inflammation is not
directly equivalent to sepsis, according to the definition of sepsis
and their role in sepsis remains to be studied (68). In the same
year, Liang Li et al. illustrated that microglial with
Cylindromatosis deficiency could exacerbate LPS-induced
pyroptosis in septic mice (69). In 2020, a study in a rat
model of cardiac arrest found that selective inhibition of
NLRP3 and caspase-1 with MCC950 and Ac-YVAD-cmk
could significantly prevent microglial pyroptosis (70).

3.2 The ICETs Cell Death in Sepsis
NETotic cell death was originally characterized by neutrophils, of
note, similar structures have been found in macrophages,
eosinophils, basophils, and DC cells by now. This designation
has so far been controversial and not widely advocated (71). At
present, NETs is mainly through NADPH oxidase (NOX)
dependent and NOX independent pathways. A variety of
stimulants, such as PMA, microflora, LPS, eubacteria, activated
blood plates, IL-8 and immune complexes (IC), could induce the
formation of NETs through the NOX-dependent pathway
Frontiers in Immunology | www.frontiersin.org 6
(72–75), protein kinase C (PKC) or rapidly accelerated
fibrosarcoma (RAF)-mitogen-activated protein kinase (MEK)-
extracellular signal-regulated kinase (ERK) signaling pathway
(75, 76). After the activation of neutrophils, NETs can be formed
in the NOX-dependent cell death process (77). The NOX-
independent pathway occurs without lysis of neutrophils, and
ROS generation is not involved in. NETs are transported mainly
through nuclear membrane blister and subsequent vesicles.
Activated platelets may be the inducer of this pathway. The
specific mechanism remains unclear and needs further study.
The NETotic cell death is largely unknown, both in terms of
naming and mechanism, but its role in sepsis is still
being explored.

3.2.1 NETs in Sepsis
NETosis is a multi-step process involving the destruction of
neutrophil nuclear and cytoplasmic granular membranes,
chromatin relaxation, chromatin interaction with granular
proteins, and chromatin release from the cells (14). In 2013,
Yipp BG and Kubes P divided NETosis into suicidal NETosis and
vital NETosis, and the two categories differ in whether cells are
cleaved. Vital NETosis primarily provides extracellular
antibacterial action while neutrophils remain mobile and
phagocytic (15). Khan et al. added one more point and
elucidated that those increasing concentrations of LPS was a
critical switch that suicidal NETosis could be turned on (78).

Suicidal NETosis is shown to be able to promote the
inflammatory response, induces coagulation disorder, and
damages the tissue directly (14, 79). There is growing evidence
showing that NETs and their components are cytotoxic and can
directly kill endothelial and epithelial cells in vitro. Moreover,
excessive accumulation of NETs in vivo leads to epithelial and
endothelial tissue damage (80). Endothelial cell activation is an
integral part of sepsis pathogenesis. In the study of Gupta et al. in
2010, activated endothelial cells induced NETs through IL-8
resulting in severe tissue damage (81). What’s more, Villanueva
et al. demonstrated that “low-density granulocytes” had a greater
capacity to produce NETs. By creating a higher proportion of
NETs, these cells might drive disease pathogenesis (82). Xu et al.
concluded that Extracellular histones from NETs are cytotoxic in
vitro and have lethal effect on mice, in vivo, histone administration
might result in vacuolated endothelium and thrombosis. Besides,
After infusing of APC (activated protein C) with E. coli in
baboons, they detected that histone in the circulation of baboons
decreased and observed it could prevent lethality in mice, implying
that APC could cleavage the histone (mainly H3 and H4), and the
overactivation of NETs led to extracellular histones accumulation,
thus contributed to the death of mice in sepsis (83). Inversely,
Schauer et al. in 2014 ascertained that the mice with NETosis-
deficient could exacerbate disease that can be decreased by
adoptive by aggregated NETs’ transformation. Besides, the
hydrolytic protease adhered to NETs interfered with neutrophil
recruitment and activation as well as degraded cytokines and
chemokines, thereby alleviating local inflammation (84). The
above studies show that the specific effects of NETs are being
explored and dialectically.
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Coagulation disorder is a typical pathological feature of
sepsis, and the thrombogenic mechanisms of NETs are varied.
First, during the formation of NETs, tissue factors can be
produced and released, which act as the trigger for the
exogenous clotting pathway, thereby activating the coagulation
cascade and simultaneously stimulating platelet activation,
leading to platelet aggregation and ultimately thrombosis (85).
NETs can then activate endogenous pathways by activating
clotting factor XII in the blood, resulting in deep vein
thrombosis (86).

Furthermore, pyroptosis and NETosis are not two
independent processes in neutrophils. They are mechanistically
linked with each other and have mutual effects. One study has
shown that NETosis induced by LPS in neutrophils can elicit
caspase-11 and GSDMD-dependent histone H3 citrullination. It
revealed that neutrophils used an inflammasome and GSDMD-
dependent mechanism to activate NETosis as a defense response
against cytosolic bacteria. But whether their cooperation is
beneficial for removing pathogens still needs more evidence to
study. This kind of cooperation is not limited to neutrophils but
also in other immune cells.

NETs components DNA and histones can act as damage‐
associated molecular patterns (DAMPs) molecules to directly
initiate or amplify inflammatory responses (Figure 2). Szatmary
et al. described the direct damage in three ways, including
thrombosis, tissue hypoperfusion and organ damage (80).
Tsourouktsoglou et al. found that NETs induced the up-
Frontiers in Immunology | www.frontiersin.org 7
regulation of IL-6 and pro-IL-1b transcription levels in
macrophages by TLR2 or TLR4 (87). Similarly, Song et al. in
China recently found that NETs could induce the pro-
inflammatory M1-type polar izat ion of lung t issue
macrophages, thus aggravating lung injury (88). More
interestingly, Chen et al. reported that NETs could facilitate
macrophage pyroptosis in sepsis through RAGE and dynamin-
dependent signaling, in which histone H3 plays an important
role (89). At this point, how pyroptosis and NETs cooperate and
constrain with each other in neutrophils has been discovered
sustainedly in sepsis. Linson Chen further emphasized the
connection between NETs and macrophage pyroptosis in
sepsis. He stressed out that NETs could promote pyroptosis of
macrophages, which could exacerbate the inflammatory
response of sepsis (89).

3.2.2 Lymphocytes Extracellular Traps’
Nets in Sepsis
Studies have suggested that T lymphocyte depletion is the main
feature of immunosuppress ion in sepsis (90 , 91) .
Immunosuppression of T cells in sepsis could be through
cytokines secretion, including the release of IL-10, down-
regulation of IL-7, and up-regulation of T cell proliferation by
programmed death 1 (PD-1)/PD-1 ligand (PD-L1) (91, 92).

Unfortunately, whether lymphocytes could have extracellular
traps’ nets as neutrophils is on doubt and there is no research
reported. If lymphocytes also had such structure, we would
FIGURE 2 | The collaboration of different cells in self-sacrifice. Neutrophil autophagy could subsequently activate NETs. Neutrophils used an inflammasome and
GSDMD-dependent mechanism to activate NETosis. NETs could induce the pro-inflammatory M1-type polarization of lung tissue macrophages, thus aggravating
lung injury. NETs could promote pyroptosis of macrophages, which could exacerbate the inflammatory response of sepsis. Activated endothelial cells induced NETs
through IL-8 resulting in severe tissue damage. NETs and their components are cytotoxic and can directly kill endothelial and epithelial cells. During the formation of
NETs, tissue factors can be produced and released, thereby activating the coagulation cascade and simultaneously stimulating platelet activation, leading to platelet
aggregation and ultimately thrombosis. NETs, neutrophil extracellular traps; GSDMD, gasdermin D; IL, interleukin.
April 2022 | Volume 13 | Article 833479

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Wen et al. Self-Sacrifice in Sepsis
suppose that the primary function might be as follows (1): a
physical barrier and a signal-bearer (2); capturing and killing the
bacteria through specific enzyme secretion from extracellular
nets (3); killing themselves in programmed cell death, which is
caused by excessive activation of lymphocytes, thus giving rise to
immunosuppression and exacerbation of sepsis.

3.2.3 Macrophages Extracellular Traps in Sepsis
Extracellular traps exit not only in neutrophils but also in
Macrophages. Macrophages extracellular traps (METs) are
thought to be composed of cellular DNA, histones and MPO
(myeloperoxidase), cellular proteins, which have similar
structures with neutrophils. King et al. and Aulik et al. clarified
that the increase of ROS might be involved in the pathways (93,
94). Liu et al. proposed a ROS-independent mechanism of METs
in the defensive effects against microbes (95). However, whether
elastase and myeloperoxidase could contribute to METosis need
to be further elucidated (96–98). What is even more interesting is
that METs was thought to be capable of killing microorganisms
at first defense. However, a recent study noted that the METs
induced by a rapid growing mycobacterium release actually
provided a scaffold to enhance bacterial growth, and thus
facilitated the bacteria’s survival in the disease, intriguingly
Sungmo et al. emphasized that this process depended on
calcium influx instead of NAPHP oxidase activity, in addition,
they found histone, MPO and elastase made up of microbicidal
proteins (93). We need to emphasize two points here: firstly,
bacterial infection and sepsis are not identical, and further
verification is needed to determine whether this mechanism
has the same effect in the sepsis models, moreover, PMA-
Differentiated THP-1 cells and mycobacterium were used in
this trial, which are unique.

3.2.4 Mast Cell-Extracellular Traps in Sepsis
Like NETs, mast cells have appeared to secret their atomic DNA
and shape mast cell-extracellular traps (MCETs), which can
entangle and eliminate different organisms (34). MCETs
mainly consists of histones, tryptase and LL-37 (99). LL-37 an
18-kDa precursor protein, which could defend against bacterial
due to its pore-forming activity and induce mast cells to release
nucleic acids to kill bacteria (100, 101). MCETs could also recruit
neutrophils by storing and releasing TNF-a to further promoting
inflammation (102). However, this uncontrolled mast cell
degranulation will enhance the nearby immune reaction in this
manner, exaggerating and maintaining tissue damage (103–105).
Here, we need to point out that the relationship between MCETs
and sepsis has not been discussed at present, and the discussion
about MCETs mainly focuses on the antibacterial effects (34,
103), and chemical inducers of MCET formation, like listeria
monocytogenes and mycobacterium tuberculosis (106–108).
Therefore, we expect further studies to point out the close
connection between sepsis and MCETs.

3.2.5 Eosinophil and Basophil Extracellular
Traps in Sepsis
Different from NETs, eosinophils release their mitochondrial
DNA and granule proteins to form eosinophils extracellular
Frontiers in Immunology | www.frontiersin.org 8
traps (EETs) activated by LPS, IL-5, C5a and eotaxin after
response to the physical antibacterial mechanism in the
inflammation (109, 110). Notably, its hyperactivation can also
be amplified to induce a self-sacrifice attack. Eosinophils can
produce some toxins, which are involved in coagulation
disorders (111). It is interesting to note that the infiltration of
eosinophils to lungs under the infection of A. fumigates leads to
the degranulation of eosinophils, which provides a protective
effect against lethal respiratory virus infections (112). As for
basophils, basophils extracellular traps (BETs) has been reported
to possess antimicrobial activity by exerting its extracellular
traps (104).

3.2.6 Dendritic Cell Extracellular Traps in Sepsis
Dendritic cells (DCs) is specialized antigen presenting cells. DCs
play an indirect role mainly by regulating T cells in the
progression of sepsis (113). Loures et al. found that
plasmacytoid DCs (pDCs) could form pDC extracellular traps
(pETs) containing DNA and citrullinated histone H3, which had
similar structures with NETs. Infection of A. fumigatus hyphae
could stimulate the formation of pETs via Dectin-2. It has been
shown that pETs acted mainly as an antibacterial agent (114).
Besides, a loss of DC autophagy slowed sepsis by increasing
lifespan and decreasing IFNa (115).

3.3 The Autophagy of Immune
Cells in Sepsis
In sepsis, there are multiple targets that could induce autophagy.
LPS, as an important pathogenic factor in sepsis, has been shown
to induce autophagy through toll-like receptor 4 (TLR4)
dependent pathway. TLR4 signaling pathways can be divided
into two categories: myeloid differentiation factor 88 (MyD88)
dependent pathway and MyD88-independent pathway. LPS
activates a downstream P62-dependent aggregation-like
inducible structure (ALIS) of selective autophagy through the
MyD88-TLR4-dependent pathway (21). In addition, LPS could
activate the autophagy by affecting NF-kB in sepsis model (116).

3.3.1 The Autophagy of Neutrophil in Sepsis
At present, there are a majority of studies on the relationship
between autophagy and sepsis, and much evidence concludes that
autophagy brings a more positive impact on immediate clearance of
pathogens (117), neutralization of microbial toxins (118), regulation
of cytokine release, and reduction of apoptosis (119). Who has an
agreement with the above points is that, Hsieh, C. H has
emphasized that in CLP-induced-sepsis mice, the inhibition of
autophagy can damage relevant organs, they observed that in the
septic hearts the reveal of the autophagosomes could increase
dramatically, but few autolysosomes were detected, suggesting
that incomplete autophagy might be one of the reasons of tissue
damage caused by autophagy (120). On the contrary, a few research
results have the opposite conclusion. Autophagy is usually induced
in the early phase of sepsis, and its activity decreases in the late stage
of sepsis. Studies have also underlined that autophagy was
involved in mitochondrial damage caused by sepsis and had toxic
effects on the human body, Unuma Kana concluded that LPS
stimulated cells to release the exocytosis of autolysosomes,
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resulting in multi-organ injuries due to its release into the
circulation (121).

Autophagy can also promote the formation of NETs (3, 8). In
2017, an analysis of neutrophil autophagy markers in 44 patients
with sepsis in South Korea found that neutrophil autophagy
increased in patients with sepsis survivors and the autophagy of
healthy neutrophil could subsequently activate NETs, which was
confirmed in vivo in a subsequent study performed in mice,
neutrophils isolated from patients who died of sepsis could
induced dysregulation of autophagy (72).

3.3.2 The Autophagy of Lymphocyte in Sepsis
Additionally, different from the two-sidedness of pyroptosis and
NETosis on immune cells, the primary effect of lymphocyte
autophagy activation is to improve the severe inflammatory
response of sepsis. In 2017, Oami et al. demonstrated that the
lack of autophagy on CD4+ T cells will increase the mortality of
mice, compared with the control mice, a blockade of autophagy
could increase the expression of Bcl-2-like 11, lead to
mitochondrial accumulation and accelerate programmed cell
death in T cells. And the autophagy of T cells will protect mice
from immunosuppression from a control experiment (23).
Similarly, in a TLR7-mediated model of autoimmunity,
Weindel et al. certified the loss of autophagy in B cells and
DCs could lead to excessive tissue inflammation and cytokines
related to inflammasome (115). In cecal ligation and puncture
(CLP)-induced sepsis model in T-cell-specific autophagy related
protein 7 (Atg7)-knockout mice and control mice, the mice with
T-cell autophagy deficiency had higher mortality via suppressing
bacterial clearance in the spleen, they finally proposed that
autophagy might inhibit sepsis-induced apoptosis and
immunosuppression in T lymphocytes (122). Ge et al.
proposed that IL-36b reduced the immunosuppressive activity
of CD4+ CD25+ Tregs by initiating the autophagy, subsequently
improving to progress of the host immune reaction in sepsis and
reducing the mortality rate in mice. Mechanistic studies uncovered
that IL-36b set off autophagy of CD4+ CD25+ Tregs. These effects
were obviously receded under the precondition of the autophagy
inhibitor 3-methyladenine or Beclin1 knockdown (123).

3.3.3 The Autophagy of Macrophages in Sepsis
In sepsis, pattern recognition molecules (PRMs), such as LPS from
the pathogen, can bind to pattern recognition receptors (PRRs) on
the macrophage membrane, and activate downstream
inflammatory pathways in macrophages. Activated macrophages
expressmanypro-inflammatory cytokines suchas IL-6 andTNF-a,
which could promote the inflammatory response of sepsis (128).

In addition to pyroptosis and METs, autophagy also plays a
vital role in modulating macrophages in sepsis. Autophagy
mainly affects the progress of sepsis by influencing
the senescence and phagocytosis of macrophages, regulating
the death, polarization and activation of macrophages, and the
release of inflammatory cytokines from macrophage (127, 129,
130). The effects of autophagic macrophages on the
pathophysiological process of diseases are now debated (131).
The excessive activation of macrophages can result in many
inflammatory and autoimmune diseases, including sepsis. It has
Frontiers in Immunology | www.frontiersin.org 9
been elucidated that autophagy induced by rapamycin can
negatively regulate the abnormal activation of macrophages
and reduce the inflammatory response (126).

Autophagy and pyroptosis are not two separate processes in
macrophages, they can interact with each other. In a mouse model
of Pseudomonas aeruginosa-induced sepsis, the deficiency of Atg7
gene, an indispensable regulatory factor in inducing autophagy
(132) through phagophore initiation, expansion, transition and
fusion (130, 133), could enhance the activity of inflammasomes in
macrophages via elevating blood levels of IL-1b and IL-18 and
increasing macrophage pyroptosis (134). A further study proved
that in Pseudomonas aeruginosa–induced sepsis, flagellin is an
effective activator of the inflammasome, and loss of Atg7 led to
increased pyroptosis (135). Consequently, the regulation
mechanismsof autophagy inpyroptosismight be a future direction.
4 CLINICAL RESEARCH STATUS

The immune cells die in such a self-sacrificing way in sepsis, which
undoubtedly has a huge impact on the procession of sepsis. Based
on the above studies, how to control the process of these self-
sacrificing immune cells towards the direction of protecting the
body is one goal of our clinical struggle. Though the research in this
area is extremely limited, there are still several research, which
might provide some reference and intelligence for the future
clinical research.

Based on the above injurymechanism, treatments for sepsis have
been extensively developed now. For instance, nitrosonisoldipine, a
photodegradation product of calcium channel inhibitor nisoldipine,
can serve as a selective inhibitor of inflammatory caspase to block
caspase-1-depenpent classical pyroptosis way and caspase-11-
depenpent non-classical way, which ultimately contributes to the
improvement of the survival time in LPS- and CLP-induced septic
models (124). Similarly, Ethyl pyruvate, is a simple aliphatic ester,
which has been proved to inhibit the connection of LPS to caspase-
11-depenpent non-classical pyroptosis in macrophages, then
positively affects the antibacterial ability of the body in sepsis
(136). An Fc-modified HIT-like monoclonal antibody was
invented to bind to PF4-NET complexes, further enhance DNase
resistance. Treatment with this antibody has the capability of
decreasing bacterial dissemination and increasing survival in
mouse sepsis models, evidencing a novel NET-targeting approach
to improve outcomes in sepsis (125). The same antibody-based
strategy was reported in 2020, tetranectin could bind with HGBM-1
to inhibit the recruitment of lactate dehydrogenase and caspase in
macrophage, this interaction could further reduce inflammatory
damage and play a positive role in lethal sepsis (137).

In 2019, a study showed that Dexmedetomidine could reduce
pyroptosis and histone release of astrocytes by reducing NLRP3
and caspase-1 recruitment in vivo and vitro, which might protect
comprehensively nerve cells from damage in sepsis (138). What’
more, there are exploration on treating sepsis through
magnesium ions, chemical destruction and of GSDMD,
cathelicidin peptide LL-37 (139–141). Although many studies
have suggested that caspase and NADPH are potential clinical
therapeutic targets in sepsis, unfortunately, they have not been
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widely practiced and recommended. In 2015, David Nobuhiro
Douda proposed a possible therapeutic approach to combat with
NETs, which is mediated by ROS and a calcium activated small
conductance potassium channel (142).

Although the pathways of pyroptosis, NETS and have
attracted a lot of attention from researchers, and their
stimulants, pathways, receptors, and effects are increasingly
being discovered (143). However, the progress of clinical
research and drugs development targeting immune cells is not
satisfying. Although targeted drugs have been developed for
NETs and pyroptosis like FDA-approved disulfiram and so on
(124, 144–148), their roles in immune cells in sepsis remains
unclear. In 2020, Stiel et al. collected statistics of complete blood
count, C-reactive protein (CRP), IL-6, levels of cell-free DNA
(cfDNA), neutrophil elastase (NE) and myeloperoxidase (MPO)
in umbilical cord blood to try to predict the early-onset sepsis.
Unfortunately, the markers of NETosis they testified could not
predict the happening of sepsis (149).
5 SUMMARY AND FUTURE
RESEARCH PROSPECTS

Immune cells in previous studies on sepsis mainly revolved
around the protective effects of recruiting and activating
immune cells on the host and the damage to the body by
Frontiers in Immunology | www.frontiersin.org 10
immunosuppression. In the battle between immune cells and
pathogens, if immune cells fail, they will face unprogrammed
death, which means necrosis, or apoptosis, but if immune cells
could initiate a self-sacrifice programmed death before the
failure, for example, T cells and B cells release tissue factors
and cytokines to kill bacteria by launching autophagy, and
neutrophils and macrophages’ pyroptosis directly or indirectly
to improve immune suppression, in this way immune cells will
protect the host through sacrificing themselves. Therefore, we
separately discussed the function of three different death modes
in sepsis immune cells, and this self-sacrificing death mode is
intelligent for immune cells. However, not all immune cells can
play an active role in protecting the host in this process, as well as
neutrophils, macrophages, and microglia, if their pyroptosis and
extracellular traps are over-activated, their damage to the
organism will be greater than the protective effects in sepsis.
(Tables 2, 3) What is worth paying attention to in the future is
how to amplify the advantages of self-sacrifice of immune cells,
while reducing the disadvantages of self-sacrifice of immune
cells. With the continuous discovery of the mechanisms of these
self-sacrifice, the corresponding treatments related to sepsis will
be the direction of future exploration.

What we want to emphasize here is that not all immune cells
can produce extracellular traps structures. Eosinophils,
neutrophils, basophils, mast cells, macrophages and
microglia have been proved to be capable of forming
TABLE 2 | The pros of various self-sacrifice of immune cells.

Cell types First author Method Results

Neutrophils Chen et al. (2014) (49) NETosis induced by caspase-11 and
GSDMD

A defense response against cytosolic bacteria↑

Schauer et al. (2014)
(84)

NETsosis Cytokines and chemokines↓ and local inflammation↑

Pareja et al. (2013)
(117)

Autophagy Clearance of pathogens↑

Maurer et al. (2015)
(118)

Autophagy Neutralization of microbial toxins↑

Liu et al. (2015) (119) Autophagy Cytokine release↓ and apoptosis↓
Hsieh et al. (2011)
(120)

Inhibition of autophagy Damage relevant organs↑

lymphocytes Zhou et al. (2020) (56) Inhibiting the activation of caspase-1 Pyroptosis of vascular endothelial cells↓
Oami et al. (2017) (23) Lack of autophagy on CD4+ T cells Mortality of mice↑
Weindel et al. (2017)
(115)

Loss of autophagy Tissue inflammation↑ and cytokines related to inflammasome↑

Lin et al. (2014) (122) T-cell autophagy deficiency Bacterial clearance↓
Ge et al. (2020) (123) Initiating the autophagy Progress of the host immune reaction in sepsis↑ and the mortality rate↓

Monocyte/
macrophage

Song et al. (2018) (59) Reducing the pyroptosis Prognosis of sepsis↑
Wang et al. (2018) (60) Sepsis compared with healthy

subjects
Percentage of caspase-1-induced peripheral blood monocyte pyroptosis, and

the level of IL-18↑
Liu et al. (2014) (95) METs defensive effects against microbes↑

Eosinophils Muniz et al. (2018)
(112)

EETs Protective effects against lethal respiratory virus infections↑

basophils Morshed et al. (2014)
(104)

BETs Antimicrobial activity↑

Dendritic cells
(DCs)

Loures et al. (2015)
(114)

pETs Antibacterial activity↑

Weindel et al. (2017)
(115)

Loss of DC autophagy Lifespan↑ and IFNa↓
GSDMD, gasdermin D; NETs, neutrophil extracellular traps; METs, macrophages extracellular traps; EETs, eosinophils extracellular traps; DC, dendritic cell; BETs, basophil extracellular
traps; pETs, pDC extracellular traps; IL, interleukin.
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extracellular traps (104, 150). However, some immune cells can
only produce extracellular traps in some specific and certain
stimulating conditions. Whether the extracellular traps in the
immune cells exert positive or negative effects depends on
different physiopathology condition, including the different
diseases, location of immune cells, immune cell types, and type
and intensity of stimulus. But according to the current studies,
the extracellular traps of the immune cell are almost a double-
Frontiers in Immunology | www.frontiersin.org 11
edged sword. Whether it is protective or detrimental depends on
the pathophysiology of the disease. We propose for the first time
here that the structures of histone, enzyme and chromatin DNA
secreted by immune cells after specific stimulation are
collectively called immune cell-extracellular traps (ICETs).
They all contain DNA, histones and granular proteins involved
in the innate immune response and die in a programmed way in
which their cell membrane is dissolved.
TABLE 3 | The cons of various self-sacrifice of immune cells.

Cell types First author Method Results

Neutrophils Sarkar et al. (2006)
(55)

Caspase-1 knockout Survival rate↑ and expression of IL-1 in neutrophils↓

Gentile et al. (2015)
(52)

Ablation of caspase-1/11 Inflammatory cytokines and neutrophils’ phagocytosis↑, the survival rate of wild-type mice and
bacterial colonization↓

Cheng et al. (2017)
(53)

Deletion of caspase-11 Neutrophil accumulation and pyroptosis↓

Tian et al. (2020) (54) Inhibiting caspase-11-
dependent pyroptosis

Generation of NETs↓ and sepsis severity↓

Gupta et al. (2010)
(81)

Activating endothelial cells Severe tissue damage↓ through IL-8

Xu et al. (2009) (83) Overactivation of NETs Neutrophil margination, vacuolated endothelium, intra-alveolar hemorrhage and macro- and
microvascular thrombosis↑

Chen et al. (2021)
(124)

A selective inhibitor of
inflammatory caspase

Survival time↑

Gollomp et al. (2020)
(125)

An antibody of caspase Bacterial dissemination↓ and survival↑

Szatmary et al.
(2018) (80)

Initiating or amplify
inflammatory responses

Thrombosis, tissue hypoperfusion and organ damage↑

Tsourouktsoglou
et al. (2020) (87)

NETs IL-6↑ and pro-IL-1b transcription levels↑

Szatmary et al.
(2018) (80)

NETs Epithelial and endothelial tissue damage↑

Song et al. (2019)
(88)

NETs Pro-inflammatory M1-type polarization of lung tissue macrophages↑

von Bruhl et al.
(2012) (86)

NETs Deep vein thrombosis↑

Chen et al. (2018)
(89)

NETs Pyroptosis of macrophages↑ and inflammatory response of sepsis↑

Yang et al. (2021)
(48)

Pyroptosis Accumulation of neutrophils and macrophages↓, sCR and BUN level↓, the expression of
GSDMD↓, the expression of Caspase-1, NLRP-1, IL-1b, and IL-18↓

Unuma et al. (2015)
(121)

Autophagy Mitochondrial damage caused by sepsis↑ and toxic effects on the human body↑

Chen et al. (2014)
(49)

Pyroptosis Expression of NLRs↑ and IL-1b↑

Monocyte/
macrophage

Luo et al. (2020) (58) Inhibiting macrophage
pyroptosis

vascular barrier integrity↑

Salvamoser et al.
(2019) (62)

Deficiency of caspase1/11 Tolerance to septic shock↑ and the mortality in mice↓

Kang et al. (2018)
(63)

Suppression of excessive
pyroptosis

Survival rate of mice↑

Xu et al. (2019) (67) Inhibiting the pyroptosis Brain injury↓
Wang et al. (2019)
(126)

Inhibiting the autophagy Inflammatory response↓

Chang et al. (2020)
(70)

Selective inhibition of
NLRP3

Microglial pyroptosis↓

Lee et al. (2016)
(127)

METs Bacterial growth and the bacteria's survival in the disease↑

Mast cells Mollerherm et al.
(2016) (103)

MCETs Tissue damage↑

Eosinophils Ueki et al. (2013,
2018) (109, 111)

EETs Coagulation disorders↑
IL, interleukin; TXNIP, thioredoxin interacting protein; sCR, serum creatinine; BUN, Blood Urea Nitrogen; GSDMD, gasdermin D; NLR, NOD-like receptor; METs, macrophages extracellular
traps; MCETs, mast cell-extracellular traps; EETs, eosinophils extracellular traps.
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In sepsis, the phenomenon of self-sacrifice of these immune
cells is very interesting and notable, which provides us with a
novel understanding of the roles and mechanisms of immune cell
in the pathogenesis of sepsis. Nevertheless, our discussion is
limited in three ways of the self-sacrifice attack in which immune
cells die without discussing other ways of self-sacrifice attack.
Whether the self-sacrifice attack is elf or devil is still under
further study. There have been evidence demonstrating that from
the point of view of self-sacrifice, neutrophils do more harm than
protection, which means that we could focus on this
characteristic in the treatment of sepsis in the future clinical
studies. Unfortunately, there is no conclusive evidence proving
that the other immune cells do more harm than good through
pyroptosis, ICETs or autophagy. The exploration and
exploitation of the initiating and regulating pathways,
mechanisms of action and potential therapeutic drugs are on
the way. On the other hand, how to magnify the protective effects
and lower the detrimental effects of “ self-sacrifice “ of immune
cells is worth exploring in the future. When to intervene the “
self-sacrifice “ of immune cells is also needed to be clarified.
Moreover, the interplay and relationship between pyroptosis,
ICETs and autophagy are also an important challenge for future
research. Finally, it is worth mentioning that it is regrettable that
we have not seen an attempt based entirely on this principle in
Frontiers in Immunology | www.frontiersin.org 12
clinical practice, but it is gratifying to see that there is an upper
pathway in the use of a few drugs, and we believe that this path
will be gradually explored.

In addition to the immune cells, pyroptosis, extracellular
traps or autophagy has also been observed in tissue cells,
including cardiomyocytes and endothelial cells. Meanwhile,
our review does not cover all immune cells, only several
relatively important immune cells are chosen as represents to
be discussed.
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Tuberculosis Catalase Inhibits the Formation of Mast Cell Extracellular
Traps. Front Immunol (2018) 9:1161. doi: 10.3389/fimmu.2018.01161

108. Campillo-Navarro M, Leyva-Paredes K, Donis-Maturano L, González-
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