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Skeletal muscle is the most abundant type of tissue in human body, being involved
in diverse activities and maintaining a finely tuned metabolic balance. Autophagy,
characterized by the autophagosome–lysosome system with the involvement of
evolutionarily conserved autophagy-related genes, is an important catabolic process
and plays an essential role in energy generation and consumption, as well as substance
turnover processes in skeletal muscles. Autophagy in skeletal muscles is finely tuned
under the tight regulation of diverse signaling pathways, and the autophagy pathway has
cross-talk with other pathways to form feedback loops under physiological conditions
and metabolic stress. Altered autophagy activity characterized by either increased
formation of autophagosomes or inhibition of lysosome-autophagosome fusion can
lead to pathological cascades, and mutations in autophagy genes and deregulation
of autophagy pathways have been identified as one of the major causes for a variety of
skeleton muscle disorders. The advancement of multi-omics techniques enables further
understanding of the molecular and biochemical mechanisms underlying the role of
autophagy in skeletal muscle disorders, which may yield novel therapeutic targets for
these disorders.

Keywords: autophagy, AMPK, mTOR, muscle cell homeostasis, transcriptional regulation, skeletal muscle
diseases

INTRODUCTION

Skeletal muscles, a type of highly organized and specialized tissue in vertebrates, make up
about 40% of total body mass and play a central role in diverse activities, such as locomotion,
macromolecule turnover and storage, energy metabolism, and oxygen consumption (Tortora
and Anagnostakos, 1987; Frontera and Ochala, 2015). Under starvation conditions, skeletal
muscles serve as a significant internal source of nutrients, energy, and cellular building
blocks. Additionally, the different types of activities that skeletal muscles are involved in,
especially prolonged or high-intensity exercises, generate reactive oxygen species (ROS), which
results in the damage of macromolecules such as nucleic acids, proteins, lipids, and cellular
components (Neel et al., 2013). Molecular signaling pathways and cellular processes in
skeletal muscles are shaped to efficiently cope with such cellular damage as well as other
types of injury.
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The autophagy signaling pathway is essential for energy
generation/consumption and macromolecule turnover processes
in skeletal muscles. Abnormal autophagy in muscles results in
cellular alterations such as mitochondrial damage, endoplasmic
reticulum stress, impaired sarcomeric-protein turnover, and cell
death (Bonaldo and Sandri, 2013), leading to the development
of various types of skeletal muscle disease. The critical roles of
autophagy in skeletal muscles have been gaining more attention
over the past two decades. In this review, we discuss the
physiological function of autophagy in maintaining cellular
homeostasis of skeletal muscle and the role of autophagy in
muscle disorders.

THE EVOLUTIONARILY CONSERVED
AUTOPHAGY PATHWAY

The term “autophagy,” which means “self-eating,” is a highly
conserved process from yeast to plants and animals (Ohsumi,
2014; Levine and Kroemer, 2019). Genetic studies in yeast have
identified essential Autophagy-related genes (ATG) (Tsukada
and Ohsumi, 1993; Thumm et al., 1994; Harding et al., 1995;
Titorenko et al., 1995; Yuan et al., 1997; Sakai et al., 1998;
Mukaiyama et al., 2002; Parzych et al., 2018). A total of 42
ATG genes have been identified (Klionsky et al., 2016; Parzych
et al., 2018; Delorme-Axford and Klionsky, 2019); they are
highly conserved from yeast to human. Studies using reverse
genetic tools have further illustrated the physiological and
pathophysiological roles of autophagy in multiple cellular events
in higher organisms, including human cells. The autophagy
pathway comprises a series of highly organized sequential steps
responsible for recruiting and degrading misfolded proteins and
the recycling of the decomposition products.

A series of dynamic membrane events contribute to
autophagosome formation, involving several steps of
morphological change in the cell (Parzych and Klionsky, 2014).
The sequential steps of autophagy involve the participation
and interaction of the ATG proteins Figure 1. The ULK/Atg1
complex is responsible for the initiation of autophagosome
formation. This complex consists of five members in yeast (Atg1,
Atg13, Atg17, Atg29, and Atg31) and four members in mammals
(ULK1/2, ATG13, FIP200/RB1CC1, and ATG101) (Papinski and
Kraft, 2016). ULK1/2 (Atg1 in yeast) is the only core protein
with serine/threonine kinase activity in the autophagy signaling
pathway. Autophagy signaling is mediated by activation of the
ULK/Atg1 complex prior to autophagosome assembly. The
ULK/Atg1 complex acts as a bridge between the upstream
nutrient or energy integrator mTOR and the downstream ATG
proteins involved in autophagosome formation, phosphorylating
a variety of downstream proteins. It is believed that downstream
ATG proteins are not necessary for membrane recruitment of
ULK/Atg1 complex at the initiation stage (Suzuki et al., 2007;
Koyama-Honda et al., 2013).

The formation of the class III phosphatidylinositol-3 kinase
complexes I (PI3KC3-C1) is an essential event at the nucleation
stage, which follows the formation of ULK/Atg1 complex
(Kihara et al., 2001; Itakura et al., 2008). Vesicle nucleation

leads to formation of the isolation phagophore (Levine and
Kroemer, 2008). PI3KC3-C1 is composed of four components
including the catalytic subunit PIK3C3 (also known as VPS34),
BECLIN 1 (mammalian homolog of yeast Atg6), PIK3R4
(phosphoinositide-3-kinase regulatory subunit 4, also known
as VSP15), and Atg14/ATG14L (Autophagy-Related Protein
14-Like Protein) (Kihara et al., 2001; Itakura et al., 2008;
Matsunaga et al., 2009; Levine and Kroemer, 2019). During the
initiation of autophagy, PI3KC3-C1 is activated and recruited
to sites of phagophore nucleation on the endoplasmic reticulum
(ER) and mitochondria to convert phosphatidylinositol (PI)
into phosphatidylinositol 3-phosphate (PI3P) (Funderburk
et al., 2010; Fan et al., 2011; Hamasaki et al., 2013).
Although a number of studies have demonstrated that Atg14-
containing complex PI3KC3-C1 is involved in the formation of
autophagosome, several reports suggested that UVRAG-PI3KC3-
C2 complex is critical for Vps34 function on endolysosomal and
autophagolysosomal maturation (Itakura and Mizushima, 2009;
Matsunaga et al., 2009; Nezis et al., 2014; Levine and Kroemer,
2019). PI3KC3-C2 shares PI3KC3, BECLIN1, and PIK3R4 with
PI3KC3-C1, but contains a UVRAG (UV radiation resistance
associated gene protein) instead of ATG14L (Itakura et al., 2008).

Vesicle nucleation is followed by the elongation and
expansion of phagophore in the cytoplasm. The phagophore
becomes a cup-shaped double membrane structure and begins
to surround cytoplasmic material (Lamb et al., 2013). Two
ubiquitin-like proteins, autophagy-related 12 (ATG12) and
microtubule-associated protein 1 light chain 3 alpha/beta
(MAP1LC3A/MAP1LC3B, LC3), a human homolog of yeast Atg8
(Ohsumi and Mizushima, 2004; Nakatogawa, 2013, 2014), play
essential roles in the elongation and expansion of phagocytic
membranes. ATG12 is conjugated to autophagy-related 5
(ATG5), mediated by E1 ubiquitin ligase-like conjugating
enzyme autophagy-related 7 (ATG7) and E2 ubiquitin ligase like
conjugating enzyme autophagy-related 10 (ATG10), and then
the interacts with autophagy-related 16 (ATG16) non-covalently
(Romanov et al., 2012; Walczak and Martens, 2013). LC3 is
cleaved by the autophagy-related 4 (ATG4) cysteine peptidase
at the C-terminal end to produce cytoplasmic LC3-I, which is
also linked to phosphatidylthanolamine (PE) in a ubiquitin-like
reaction that requires ATG7 and autophagy-related 3 (ATG3) to
form LC3-phosphatidylethanolamine conjugate (LC3-II). LC3-
II, in this lipid form, is integrated into the autophagosomal
membrane and has been regarded as an autophagosomal marker
(Fujita et al., 2008; Burman and Ktistakis, 2010).

Phagophore closure during the maturation stage results in
sequestration of cytoplasmic component and formation of the
autophagosome. As maturation proceeds, the autophagosome
fuses with endosomes and vacuoles (in yeast and plant) or
lysosomes (in metazoan cells), forming the autophagolysosome
and leading to the degradation of the inner membrane
and its contents. When the degradation is complete, the
autophagolysosome becomes a residual body. The resulting
breakdown products such as amino acids and fatty acids are sent
back to the cytoplasm and are reused for cellular metabolism,
providing an internal source of energy generation and building
blocks for catabolism (Ohsumi, 2014; Sakakibara et al., 2015).
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The underlying mechanism by which autophagosome fusion is
regulated is not clear. Recent studies suggest that Atg8 proteins
may act as a master controller for the final fusion stages of
autophagy (Nguyen et al., 2016; Yu and Melia, 2017; Kriegenburg
et al., 2018). Several other proteins, such as SNAREs (syntaxin
17, SNAP29 and VAMP8), and tethering factors (HOPS complex,
and the Rab GTPase, RAB7) are required for the fusion of the
autophagosomal membrane with the lysosome (Itakura et al.,
2012; Balderhaar and Ungermann, 2013; Schaaf et al., 2016;
D’Agostino et al., 2017).

MOLECULAR REGULATION OF THE
AUTOPHAGY PATHWAY IN SKELETAL
MUSCLES

In skeletal muscles, autophagy is under the tight regulation
of several signaling inputs and interacts with other signaling
pathways Figure 2.

AMPK and mTORC1
The AMPK and mammalian target of rapamycin complex 1
(mTORC1) signaling pathways, as central players in cell survival,
proliferation and metabolism, have numerous interconnections
with the core genes of the autophagy pathway.

AMPK acts as an energy sensor to monitor changes in the
intracellular level of ATP, which is particularly critical in muscles
where high rates of energy consumption occur. The growth
of skeletal muscles depends on the balance between protein
catabolism and anabolism. Atrophy occurs when the rate of
muscle protein breakdown is higher than that of muscle protein
synthesis. Activated by a rising AMP/ATP ratio, AMPK up-
regulates ATP-producing catabolic pathways while suppresses
ATP-consuming biosynthetic processes (Winder et al., 2000;
Viollet et al., 2003; Wang et al., 2011). AMPK activity is also under
the regulation of Liver kinase B1 (LKB1) and mTORC1 through
a series of phosphorylation events in skeletal muscles, as revealed
in cell culture and model organism studies (Bolster et al., 2002;
Sakamoto et al., 2005; Koh et al., 2006; Williamson et al., 2006;
Thomson et al., 2007, 2010; Ou et al., 2018).

AMPK modulates autophagy through at least two mechanisms
in skeletal muscle. AMPK activation in mouse skeletal muscle
results in a relocalization of transcription factor Forkhead box
O3a (FoxO3a) to the nucleus where it induces the expression
of autophagy-related genes including LC3B-II, Gabarapl1, and
BECLIN1 through transcriptional regulation which we will
discuss in more detail below, leading to autophagy (Sanchez
et al., 2012). In addition, under nutrient starvation conditions,
mammalian AMPK directly phosphorylates ULK1 at Ser 317
and Ser 777, promoting the initiation of autophagy which
subsequently provides energy and nutrition (Kim et al., 2011;
Ljubicic and Jasmin, 2013). AMPK activation releases ULK1 from
the complex composed of AMPK, mTORC1, ULK1, FIP200,
and Atg13, leading to autophagy activation (Hosokawa et al.,
2009). These results suggest that a basal level of autophagy
is required to degrade misfolding proteins and damaged
organelles to maintain homeostasis under normal nutritional

conditions, while autophagy is upregulated by AMPK activation
to degrade proteins as a source of alternative nutrients and
energy under stress responses such as starvation and exercise
(Sanchez et al., 2012).

The mTOR signaling pathway is an evolutionarily conserved
pathway which controls multiple cellular processes, including
metabolism, protein synthesis, ribosome biogenesis, cell growth,
differentiation, and autophagy (Wullschleger et al., 2006;
Laplante and Sabatini, 2012). mTOR is classed into two
distinct complexes, named mTORC1 and mTORC2 (Laplante
and Sabatini, 2012). mTORC1 consists of raptor (regulatory
associated protein of mTOR), mLST8 (the mammalian lethal
with SEC13 protein 8), PRAS40 (the 40 kDa proline-rich
Akt substrate), and DEPTOR (the DEP domain-containing
mTOR-interacting protein), and is sensitive to rapamycin
(Wullschleger et al., 2006). mTORC2 shares DEPTOR and
mLST8 with mTORC1 and includes the distinct components
rictor (rapamycin insensitive companion of mTOR) and mSIN1
(mammalian stress-activated map kinase-interacting protein 1)
(Jacinto et al., 2004; Sarbassov et al., 2004).

Several studied have demonstrated that the mTORC1
signaling is essential for muscle function. Mice lacking muscle
specific tuberous sclerosis complex (TSC) showed sustained
activation of mTORC1 and unchanged levels of LC3I and LC3II
under fed, basal, and starved conditions, suggesting constitutive
and starvation-dependent autophagy is blocked. This impaired
autophagy gives rise to a severe, late-onset myopathy. Rapamycin
treatment restores autophagy and alleviates the myopathic
phenotype of the mice. Although FoxO3 is activated, constitutive
and starvation-induced autophagy is blocked by mTORC1-
mediated inhibition of ULK1. mTORC1 phosphorylates ULK1
at several sites, such as Ser 757, which prevents interaction
between ULK1 and AMPK (Kim et al., 2011; Bento et al.,
2016). Paradoxically, abolishment of mTORC1 activity by
deletion of raptor also induces autophagy, even though FoxO-
dependent transcription of autophagy genes is reduced. These
data demonstrate that mTORC1 is another upstream regulator
for autophagy induction in skeletal muscle (Castets et al., 2013).

Other studies also show the feedback of ULK1 on AMPK
and mTORC1. ULK1 can directly phosphorylate raptor and
negatively regulate either mTORC1 activity or substrate binding
(Alers et al., 2012). All three subunits of AMPK (AMPKα1, -β2,
and -γ1) can serve as direct substrates of ULK1 and ULK2.
Through such phosphorylation events, ULK1 confers negative
regulation of AMPK kinase activity (Alers et al., 2012). Thus, in
addition to being a regulatory target of AMPK and mTORC1,
the autophagy pathway constitutes a negative regulatory feedback
loop to both signaling pathways and maintains a finely balanced
state of cellular homeostasis.

Transcriptional Regulation
As previously mentioned, transcriptional regulation is a key
component of autophagy regulation in skeletal muscle. A large
number of studies have demonstrated that autophagy is under
the control of multiple transcription factors such as Forkhead
box O3 (FoxO3), nuclear factor κB (NF-κB), glucocorticoid
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FIGURE 1 | The sequential steps of autophagy involve the participation and interaction of the ATG proteins.

receptors (GR), and SMAD. Autophagy genes are targets of these
transcription factors under metabolic stress conditions.

FoxO3
FoxO3 functions as an activator of the transcription of autophagy
genes ATG4, ATG8B, ATG12, LC3, BECLIN1, BNIP3, VPS34,
ULK1, and ULK2 in skeletal muscle (Mammucari et al., 2007;
Zhao et al., 2007; Sanchez et al., 2012; Di Malta et al.,
2019). Importantly, FoxO3 plays a necessary and sufficient
role in muscle atrophy through its effect on autophagy.
Inhibition of Bnip3 largely blocks autophagy induced by
FoxO3 (Sandri et al., 2004; Mammucari et al., 2007). A study
using muscle-specific FoxO1,3,4–/– mice has identified that
29 of the 63 atrophy-related genes are controlled by FoxO
under the fasting condition. The induction of autophagy-
related genes like LC3, Gabarapl, Bnip3 etc. were abolished
in the FoxO1,3,4–/– mice. Consistently, autophagy is severely
impaired in these mice.

It is well known that the ubiquitin-mediated proteasome
system (UPS) and autophagy/lysosome system are two major
mechanisms for degradation of damaged or misfolded
proteins. It has been found that both the autophagy-
lysosome and the ubiquitin–proteasome system are under
the control of FoxO proteins, contributing to skeletal
muscle protein loss. FoxO family members regulate atrophy-
related ubiquitin ligases atrogin1/MAFbx, MuRF1, TRIM63,
MUSA1, SMART, UBC, USP14, and Ube4b, as well as other
genes encoding proteasome subunits, which together are
involved in muscle atrophy (Bodine et al., 2001; Gomes
et al., 2001; Sandri et al., 2004; Milan et al., 2015). Genes
functioning in other pathways connected to authophagy
under stress conditions such as unfolded protein response
were negatively affected in the FoxO 1,3,4–/– mice,

too (Milan et al., 2015). These results strongly support
the master regulating role of FoxO transcription factors
in muscle atrophy.

Nuclear Factor-κB (NF-κB)
Nuclear factor-κB (NF-κB) is an important molecule for multiple
cellular responses. Hundreds of genes have been identified
that are transcriptionally controlled by NF-κB (Zhang et al.,
2017). Recent studies have associated NF-κB activation with
the loss of skeletal muscle mass in different physiological and
pathological conditions. It has been found that skeletal muscle-
specific deletion of IKKβ, an upstream activator of NF-κB
signaling, inhibited the expression of MuRF1 E3 ubiquitin ligase.
Overexpression of the dominant negative mutant form of IκBα,
an inhibitory protein of NF-κB also inhibited the degradation of
proteins in muscle. These results suggest the important role of
NF-κB activation in muscle-wasting (Bodine et al., 2001; Cai et al.,
2004; Cao et al., 2005; Mourkioti et al., 2006).

NF-κB appears to have both activating and inhibitory effects
on myogenesis or skeletal muscle formation. It can inhibit
myogenic differentiation through transcriptional regulation of
cyclin D1 and the transcription factor YinYang1 (YY1) which
silences expression of myofibrillar genes (Guttridge et al.,
1999; Mitin et al., 2001; Wang et al., 2007). Although NF-
κB has been considered as a negative regulator of myogenesis,
results from some reports support the role of NF-κB in pro-
myogenesis. It has been found that insulin growth factor-II
(IGF-II) stimulates NF-κB activation, which further induces
the myogenic signaling pathway (Kaliman et al., 1999).
These anti- or pro-myogenesis effects on muscles may be
determined by a switch between the canonical and non-
canonical NF-κB signaling pathway (Bakkar et al., 2008;
Bakkar and Guttridge, 2010).
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FIGURE 2 | The regulation of autophagy by various signaling pathways and the interactions between them. Red color represents inhibition and green color indicates
activation.

Many studies have described the relationship between NF-
κB and autophagy. NF-κB signaling has been shown to be
involved in autophagy in a context-dependent manner (Ben-
Neriah and Karin, 2011; Hayden and Ghosh, 2012; Salminen
et al., 2012; Verzella et al., 2016; Begalli et al., 2017; Bennett et al.,
2018). One study has demonstrated that the proinflammatory
cytokine TWEAK promotes skeletal muscle atrophy by activating
the expression of several autophagy genes including BECLIN1,
LC3B, and Atg5 via TRAF6-Mediated NF-κB activation (Dogra
et al., 2007). Indeed, NF-κB activation is sufficient to induce

the expression of genes involved in or related to the autophagy
pathway such as BECLIN1 and the BAG3-HspB8 complex
(Copetti et al., 2009; Nivon et al., 2012; Salminen et al., 2012;
Rapino et al., 2015). Under starvation conditions, IKKα and
IKKβ also stimulate the expression of Atg5, BECLIN1, and
LC3 in a NF-κB-independent manner (Comb et al., 2011). On
the other hand, NF-κB signaling also has inhibitory effects on
autophagy under certain circumstances, which may be mediated
by indirect mechanisms. NF-κB signaling may activate mTOR
kinase, promote the expression of autophagy inhibitors such
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as Bfl-1/A1 (a Bcl-2 family member and a BECLIN1 binding
partner) and block autophagy inducers such as JNK1, BNIP3,
p53, and ROS (Edelstein et al., 2003; Djavaheri-Mergny et al.,
2006; Papa et al., 2006; Balaburski et al., 2010; Kathania et al.,
2011; Morgan and Liu, 2011; Sarkar et al., 2011; Salminen
et al., 2012). These results indicate that the activation of NF-
κB signaling in acute stress may induce autophagy while a
delayed activation inhibits autophagy. This may represent a
protective mechanism from cell death induced by autophagy
(Salminen et al., 2012).

These studies demonstrate that NF-κB is a critical regulator of
autophagy in skeletal muscle. Although the association of NF-κB
with autophagy has been intensively investigated, the majority
of these studies focused on cancer. Understanding of the role of
NF-κB in muscle autophagy is still limited and future in-depth
investigations are needed.

Glucocorticoid Receptor (GR) Signaling
Glucocorticoid receptor (GR) signaling has been shown to be
associated with protein synthesis and proteolysis in skeletal
muscle. GR signaling is crucial for protein breakdown in muscle
cells (McGrath and Goldspink, 1982; England and Price, 1995;
Hasselgren, 1999; Long et al., 2008; Stahn and Buttgereit, 2008;
Sun et al., 2008). During fasting, the expression of poly-ubiquitin
mRNA is increased by administration of dexamethasone and
the proteolysis pathway is activated in skeletal muscle. Muscle
protein breakdown is decreased in adrenalectomized rats, which
can be counteracted by glucocorticoid administration (Wing and
Goldberg, 1993; Tiao et al., 1996; Mitch et al., 1999). These results
suggest that GR signaling is required for protein breakdown in
skeletal muscle. Glucocorticoids have been found to stimulate
Foxo1 and 3 mRNA in muscle atrophy (Furuyama et al., 2003;
Lecker et al., 2004) and activate the expression of UPS related
proteins such as atrogin-1, Murf1, and Fbxo30 (Jagoe et al., 2002;
Sandri et al., 2004; McLoughlin et al., 2009; Milan et al., 2015).
The expression of the autophagy genes Map1lc3b and Bnip3 were
induced in both control and glucocorticoid receptor knock-out
(GRKO) mice under hypoxia and reduced food intake, but GRKO
mice shows a blunted response with impaired expression of
Foxo1. These data suggest that glucocorticoid receptor signaling
may contribute to autophagy in the context of muscle atrophy
through control of gene expression (de Theije et al., 2018).
Furthermore, mTOR repressors REDD1 and KLF15 have been
identified as direct target genes of the glucocorticoids. Expression
of Redd1 induces autophagy and inhibits protein synthesis
(Wang et al., 2006; Molitoris et al., 2011; Britto et al., 2014).
KLF15 also activates the expression of atrogin-1 and MuRF1
genes and therefore induces skeletal muscle atrophy (Shimizu
et al., 2011). One recent study has identified a new mechanism
by which a selective NR3C1/glucocorticoid receptor modulator,
Compound A (CpdA), has an off-target effect on autophagy.
In the classic NR3C1/GR pathway, NR3C1 is recruited to
the promoter of SQSTM1 and other NFE2L2-controlled genes
following binding of the GR ligand dexamethasone. In contrast,
the transcription factor NFE2L2 is recruited to the promoter of
SQSTM1 by CpdA, suggesting a distinct activating mechanism
of autophagy (Mylka et al., 2018). It should be noted that this

mechanism has been identified only in mouse bone marrow-
derived macrophages. Whether or not the mechanism can be
extend to the skeletal muscles needed to be examined.

Transforming Growth Factor (TGF)-β
Signaling
Transforming growth factor (TGF)-β signaling is one of the
most important pathways in a variety of physiologic processes.
Growth/differentiation factor-8 (GDF-8, myostatin), one of
TGF-β family members, has been identified as a skeletal
muscle-specific protein from early embryonic development till
adulthood. Deletion of the GDF-8 gene results in a 3 fold increase
in skeletal muscle mass, caused by hyperplasia or hypertrophy
(McPherron et al., 1997). Multiple mutations in the GDF-8 gene
have been identified in human and mammals, which lead to
increased muscle mass (Grobet et al., 1997, 1998; Kambadur et al.,
1997; McPherron and Lee, 1997; Szabo et al., 1998; Williams,
2004; Clop et al., 2006; Mosher et al., 2007). The binding of GDF8
to its receptors leads to the phosphorylation of the transcription
factor SMAD2/3 and the recruitment of SMAD4 (Sartori et al.,
2009). Activation of SMAD2/3 counteracts the inhibitory effect
of JunB on FoxO3, contributing to atrophy (Sartori et al., 2009;
Welle, 2009; Raffaello et al., 2010). SMAD3 expression also
increases the promoter activity of the atrogin-1, MuRF1, and
PGC1α, activates the PTEN 3′-UTR and FoxO response element
reporters and inhibits the miR-29 promoter activity and mTOR in
skeletal muscle leading to protein breakdown and skeletal muscle
fiber atrophy (Goodman et al., 2013). These results suggest that
GDF8 plays a critical role in muscle atrophy.

TGF-β1 treatment induces phosphorylation of SMAD2 and
SMAD3,p62 degradation,LC3β II lipidation and the synthesis
of collagen type Iα2 and fibronectin in primary human atrial
myofibroblasts (Ghavami et al., 2015). On the other hand,
autophagy may be negatively correlated with TGF-β signaling.
One recent study has found that the prostaglandin-degrading
enzyme, 15-PGDH, is elevated in muscles during aging, which
may be responsible for age-related muscle atrophy. Inhibition
of 15-PGDH by a small molecule or genetic depletion has
beneficial effects on muscle rejuvenation, mediated by a series
of events such as increased PGE2, restoration of mitochondrial
function, decreased atrogene expression and TGF-β signaling,
and increased autophagy (Palla et al., 2021). These results
demonstrate the context-dependence of TGF-β-mediated effects
in skeletal muscles.

Other Regulatory Molecules
Other regulatory molecules include mitochondrial proteins
OPA1 (optic atrophy 1), DRP1 (Dynamin related protein 1),
FGF21 (the fibroblast growth factor 21), and CHMP2B (the
charged multivesicular body protein 2B). The mitochondrial
dysfunction has been considered as one of the major
characteristics of aging process and is associated with muscle
loss. OPA1 has been well known for its roles in autophagy and
crosstalk with Atg7 (Tezze et al., 2017; Larsson et al., 2019;
Zaninello et al., 2020). Muscle-specific Drp1 deletion results
in detrimental changes including mitochondrial dysfunction,
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autophagy impairment, muscle wasting and weakness, suggesting
the critical role of mitochondrial dynamics in muscles (Favaro
et al., 2019). FGF21 increases glucose uptake and fat utilization
in adipocytes, resulting in enhanced mitochondrial oxidation
and activation of AMPK. The skeletal muscle-specific deletion
of Atg7 stimulates FGF21 expression in an ATG4-dependent
manner (Kim et al., 2013). The mice lacking FGF21 showed a
decrease in autophagy/lipophagy, which leads to accumulation
of lipid and cardiac muscle cell disorganization (Ruperez et al.,
2018). Moreover, the general autophagy flux is slightly reduced
while the mitophagic flux is significantly decreased in FGF21
knockout mice under starved conditions, and Bnip3 is required
for FGF21 induced muscle atrophy and mitophagy (Oost et al.,
2019). Other studies showed that increased level of serum FGF21
is associated with multiple metabolic diseases such as muscle
atrophy (Staiger et al., 2017; Tezze et al., 2017). Further studies
are needed to clarify the physiological and pathological roles
of FGF21 in muscle cells (Oost et al., 2019). CHMP2B is a
subunit of endosomal sorting complex required for transport-III
(ESCRT-III). CHMP2B has been shown to be involved in
protein degradation pathways including autophagy and the
endosome–lysosome pathway. siRNA-mediated depletion of
ESCRT subunits or expression of the CHMP2B C-terminal
truncated mutants impairs autophagic degradation, leading to
the accumulation of autophagosomes (Filimonenko et al., 2007;
Lee et al., 2007).

Interaction With Ubiquitin/Proteasome
Pathway
Skeletal muscle is often subjected to mechanical, heat, and
oxidative stress, resulting in cell damage. Proteolysis is
required for repair and regeneration in skeletal muscle.
Both the ubiquitin/proteasome pathway and autophagy-
mediated proteolysis contribute to protein turnover in skeletal
muscles. Studies over the past two decades have revealed the
connection between these two pathways in skeletal muscles.
The transcription factor FoxO3 has been shown to stimulate the
expression of many autophagy-related genes and the ubiquitin
E3 ligases, atrogin-1/MAFbx (Sandri et al., 2004), as well as
lysosomal proteolysis in muscle (Mammucari et al., 2007; Zhao
et al., 2007; Bell et al., 2016). Autophagy inhibition results in
muscle atrophy, loss-of-force production, myopathy phenotypes,
and loss of muscle mass, which is similar to the phenotypes
caused by disrupting the functions of atrogin-1 and MuRF1, two
atrophy-related ubiquitin ligases, as well as deficiencies in genes
involved in different catabolic pathways (Bodine et al., 2001;
Baehr et al., 2011). Importantly, both Atrogin-1 and MuRF1
are stimulated in Atg7–/– muscles. Atg7 deletion also results in
apoptosis in muscle cells. Muscle-specific Atg5–/– mice showed
the same phenotypes as Atg7–/– mice (Raben et al., 2008). Thus
the autophagy-lysosome pathway and ubiquitin-proteasome
pathway function in parallel downstream of FoxO regulation and
may be complementary to each other.

Thus AMPK, mTORC1, mTORC2 and other signaling
activities interact with autophagy in the processes of controlling
muscle growth, development, size control, atrophy, hypertrophy,

and regeneration. The roles of these signalings in the
transcriptional regulation of the autophagy pathway have
been under intensive investigation in skeletal muscles under
normal physiological and diseased pathological conditions.
However, the complex and inextricably interwoven network of
these signalings and how they are maintained at a finely balanced
state remain fully elucidated. Furthermore, how perturbations
to genes in these pathways lead to muscle disorders need to be
further investigated by human genetics studies and functional
studies using model organisms.

PHYSIOLOGICAL ROLES OF
AUTOPHAGY IN MUSCLE CELLS

Accumulating evidence suggests the essential role of autophagy
in maintaining cellular homeostasis. Autophagy provides energy
and building blocks for metabolism and cellular renewal,
controlling the level of amino acids, lipids, carbohydrates and
nucleic acids during nutrient deprivation (Tsukada and Ohsumi,
1993; Otto et al., 2003; Scott et al., 2004; Kang et al., 2007). Also,
autophagy plays an essential role in intracellular quality control,
contributing to the degradation of damaged or aggregated
proteins and basal protein turnover. Cells constitutively exhibit
a basal autophagy level even under normal growth conditions
and autophagy was further induced in response to metabolic
stress (Mizushima, 2005). Studies have shown that the inhibition
of autophagy results in accumulation of ubiquitinated protein
aggregates and inclusion bodies in multiple cell types including
muscle cells (Hara et al., 2006; Komatsu et al., 2006; Nakai
et al., 2007; Ebato et al., 2008; Jung et al., 2008; Raben
et al., 2008; Masiero et al., 2009), as well as abnormalities in
mitochondria, peroxisomes, ER and Golgi (Komatsu et al., 2005;
Jung et al., 2008). It has now become evident that autophagy
involves a highly selective process for the removal of unwanted
cellular components and damaged organelles in non-starved cells
in addition to its non-selective bulk degradation mechanism
(Reggiori et al., 2005; Kraft et al., 2009; Guimaraes et al., 2015).

Many studies have demonstrated the role of autophagy in
muscle growth, atrophy, hypertrophy, regeneration and during
exercise. In the Atg7 gene, the cysteine residue encoded by
nucleotides in exon 14 is required for activation of substrates.
Targeted deletion of exon 14 of Atg7 specifically in adult
mice liver impaired autophagosome formation and inhibited the
bulk degradation of proteins under fasting condition (Komatsu
et al., 2005). In addition, muscle-specific Atg7 knockout
mice showed abnormal mitochondria, disorganized sarcomere,
reticulum distension, and aberrant concentric membranous
structures (Komatsu et al., 2005; Masiero et al., 2009). They
exhibited muscle phenotypes such as morphological properties
of myopathy, muscle loss and degeneration under catabolic
conditions (Masiero et al., 2009). ATG16L1 hypomorphic mice
display decreased levels of autophagy, causing a significant
reduction in the growth and generation of muscle fibers (Paolini
et al., 2018). These data suggest a beneficial role of a basal
level of autophagy in maintaining muscle mass and myofiber
integrity under physiological conditions (Masiero et al., 2009).
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Stimulation of autophagy by caloric restriction and exercise may
have beneficial effects on lifespan. Impairment of autophagy
leads to muscle degeneration and wasting (Masiero et al., 2009;
Carnio et al., 2014).

Physical activities have been shown to have an impact on
muscle function, which is mediated by autophagy. A proper
autophagic flux is required for the degradation of damaged cell
organelles and proteins, which provides building blocks and
energy during starvation and stress. Exercise and starvation
may have the beneficial metabolic effects on human health
through BCL2 mediated autophagy (He et al., 2012). On the
other hand, excessive autophagy results in atrophy (Grumati
et al., 2010). Therefore, an appropriate activation level of
autophagy during exercise is critical for muscle homeostasis.
Excessive autophagy associated with mutations in the LAMA2
gene resulted in massive muscle wasting. Laminin α2 chain
deficiency in mice leads to the increased expression of expression
of autophagy-related genes in muscle and the phenotypes
of muscle fibrosis, atrophy, and apoptosis, suggesting the
pathological role of excessive autophagy (Carmignac et al.,
2011; Vainshtein et al., 2014). These findings provide the
first evidence that autophagy flux is essential for normal
physical activity and defective or excessive autophagy flux
leads to muscular dystrophies. This further suggests that the
activators of autophagy could serve as potential targets for the
treatment of muscular dystrophies (Grumati et al., 2010, 2011;
Grumati and Bonaldo, 2012).

Satellite cells are muscle stem cells, which usually reside in a
mitotically quiescent state (in G0 phase) and are transcriptionally
inactive (Schultz, 1978). The paired domain transcription factor
Pax7 is the specific biomarker for all satellite cells (Seale et al.,
2000). Once they receive stimuli such as hormones, nutrition,
injury or disease, these cells will subsequently begin proliferating
to replenish the stem cell pool or differentiating to generate
new muscle fibers (Hansen-Smith et al., 1979; Chanoine et al.,
1987; Brack and Rando, 2012; Yin et al., 2013). It has been
shown that constitutive autophagy is required for satellite cells
to maintain their stem cell fitness. Autophagy may provide
an energy source for activation by degradation of substrates.
SIRT1, a key nutrient sensor, is required for autophagy during
satellite cell activation. Either a small molecular inhibitor of
SIRT1 or genetic deletion could block autophagy in satellite
cells (Tang and Rando, 2014). Failure of autophagy in aged
satellite cells or genetically defective cells (such as those from
Atg7 knockout mice) results in senescence, oxidative stress and
mitochondrial dysfunction, and accumulation of organelles and
proteins (Chakkalakal et al., 2012; Cosgrove et al., 2014; Sousa-
Victor et al., 2014; Garcia-Prat et al., 2016). Reactivation of
autophagy restores their stemness (Garcia-Prat et al., 2016). It has
been shown that autophagy is activated in denervation atrophy
(Schiaffino and Hanzlikova, 1972) and denervation leads to both
a reduction in satellite cell numbers and progressive skeletal
muscle atrophy (Schultz, 1978; Rodrigues Ade and Schmalbruch,
1995; Viguie et al., 1997). Thus autophagy is implicated in
muscle regeneration. It determines the transition between the
quiescence and senescence fate of muscle stem cells. On the
other hand, it seems that satellite cells are not the reason for

muscle fiber hypertrophy, although they are required for the
de novo formation of new fibers and fiber regeneration. It is
widely accepted that that muscle mass is increased primarily by
hyperplasia but not the number of satellite cells (McCarthy et al.,
2011; Fukada, 2018). Muscle fiber hypertrophy is functionally
normal but regenerative process is significantly reduced in
muscle depleted of satellite cells, suggesting that the presence of
satellite cells does not determine muscle mass (Amthor et al.,
2009; McCarthy et al., 2011; Sambasivan et al., 2011; Jackson
et al., 2012; Bachman et al., 2018). In addition, activation
of AKT results in an increase in hypertrophic fibers and
enhances myofibrillar force without satellite cell proliferation
(Blaauw et al., 2009). These findings demonstrate that atrophy
may not be attributed to the decline in satellite cell number.
Physical exercise and nutrition may be a better treatment for
muscle weakness than a stem cell based therapeutical approach
(Schwartz et al., 2016).

Autophagy plays a key role in different physiological
and pathological processes in heart. Cardiac-specific deletion
of Atg5 in mice results in hypertrophy, cardiac dilatation
and contractile dysfunction accompanied by disorganized
mitochondria, abnormal sarcomere structure and accumulation
of misfolded proteins. The Atg5–/– mice develop cardiac
dysfunction under stress conditions, demonstrating autophagy
activity is required for cardiomyocyte homeostasis (Nakai et al.,
2007). In contrast, overexpression of Atg5 stimulates autophagy
and increases lifespan in mice (Klionsky et al., 2016). In
addition, cardiac-specific Parkin deletion suppresses mitophagy
and leads to a lethal cardiomyopathy in developing hearts
(Gong et al., 2015).

Autophagy also contributes to ischemia and reperfusion.
As discussed above, autophagy is induced by activation of
AMPK signaling and inhibition of mTOR signaling. Autophagy
was induced by AMPK activation and was suppressed by a
dominant negative mutant of AMPK during ischemia, while
autophagy was induced by BECLIN1 but not AMPK signaling
during reperfusion, suggesting autophagy may play different
roles in ischemia and reperfusion (Matsui et al., 2007). Further
studies are needed to clarify the underlying mechanism of
autophagy during ischemia and reperfusion injury. The roles
of autophagy in heart failure vary depending on the context.
Heart failure is characterized by cardiac hypertrophy, and can
be induced by pressure overload through cardiac autophagy.
Heterozygous deletion of BECLIN1, which leads to a reduction
of cardiomyocyte autophagy, alleviates cardiac hypertrophy
and dysfunction. In contrast, overexpression of BECLIN1 in
cardiomyocytes worsens pathologic phenotypes (Zhu et al.,
2007). However, phosphorylation of BECLIN1 induced by Mst1
impairs autophagy and induces cardiac dysfunction in heart
failure. Mst1 gene deletion activates autophagy and diminishes
cardiac remodeling and dysfunction in heart failure (Maejima
et al., 2013). These results suggest that the beneficial or
detrimental effect of autophagy on heart failure are determined
by the specific conditions.

Loss of muscle mass has been found in a variety of
diseases such as diabetes, AIDS, sepsis, cardiac disease, and
chronic obstructive pulmonary disease (Jagoe and Engelen, 2003;
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Lecker et al., 2006). These diseases share the same cellular
features of excessive protein breakdown which disrupts the
balance between anabolism and catabolism, thereby leading
to myofiber atrophy (Sandri, 2008). Microarray analyses also
demonstrated the up-regulation of autophagy-related genes
LC3 and GABARAPL1 in muscle wasting induced by different
experimental conditions (Lecker et al., 2004). All the studies
discussed above demonstrated that the autophagy level is
required to be finely tuned and properly regulated to maintain
the homeostasis of skeletal muscles during physiological and
stressed conditions. Disruption of balanced autophagy leads to
the pathogenesis of a variety of muscle disorders, which we
discuss in more detail below.

PATHOLOGICAL ROLE OF AUTOPHAGY
IN MUSCLE DISORDERS

Autophagic vacuoles have constantly been observed in skeletal
myofibers in diseases like autophagic vacuolar myopathies
(AVM) (Malicdan et al., 2008). Muscle disorders cause muscle
weakness, muscle wasting and even paralysis, which severely
affects patients’ mobility. Environmental factors such as bacterial
infection, injury and other diseases like cancers can lead to
muscle diseases. Genetic components can also contribute to the
development of skeletal muscle disorders (Prior et al., 2007),

including mutations in autophagy genes, which are summarized
in Table 1.

Duchenne Muscular Dystrophy (DMD)
Duchenne Muscular Dystrophy (DMD) is the most common
childhood form of muscular dystrophy. The prevalence is
estimated to be 1 in every 3,500–5000 live male births
(Emery, 1991; Romitti et al., 2015; Crisafulli et al., 2020).
Because DMD is inherited in an X-linked pattern, it primarily
affects males, with rare cases in females. Most children
with DMD will need a wheelchair by their early teens.
Later, heart problems develop into dilated cardiomyopathy
with shortness of breath, an irregular heartbeat (arrhythmia),
extreme tiredness (fatigue), and swelling of the legs and feet.
These heart problems progressively get worse over time, and
eventually become life-threatening in most patients (Ryder
et al., 2017). DMD had been recognized as a metabolic
dysfunction (Dreyfus et al., 1954; Hess, 1965; Di Mauro et al.,
1967; Chi et al., 1987; Chinet et al., 1994), and in 1987 the
mutations responsible for the disease were first identified in
the dystrophin gene on the short arm of the X-chromosome
(Koenig et al., 1987). The dystrophin gene is the largest known
human gene containing 79 exons and spanning more than
2,200 kb, accounting for almost 0.1% of the entire human
genome (Gao and McNally, 2015). The most common type
of mutations in this gene are deletions of one or more

TABLE 1 | The mutations in autophagy genes or deregulation of autophagy resulted in skeletal muscle disorders, and the mouse models with impaired autophagy
pathway showed the phenotypes of abnormal skeletal muscles.

Gene/locus Mutation Inheritance Diseases Autophagy association Clinical features KO mouse model

DMD Deletions; Duplications;
Point Mutations (PMID:
19937601)

X-linked recessive Duchenne muscular
dystrophy (DMD)

Lower levels of LC3 II and
significant accumulation of
p62 (PMID: 23152054)

Progressive
degeneration of skeletal
muscle, impaired heart
and respiratory
musculature

Resemble human
phenotypes (PMID:
6583703; 29479480)

LAMP2 Deletions; Point
Mutations (PMID:
20173215; 22695892)

X-linked dominant Danon disease Accumulation of autophagic
vacuoles (PMID: 10972293)

Heart failure, mental
retardation, hypertrophic
cardiomyopathy, and
proximal muscle
weakness

Share many similarities with
human phenotypes (PMID:
10972293)

VMA21 Point Mutations (PMID:
31826868)

X-linked recessive XMEA excessive autophagy (PMID:
23315026; 27916343)

Slowly progressive
muscle weakness

Autophagic myopathy
(PMID: 31826868)

GAA Point Mutations (PMID:
16917947; 14695532)

Autosomal recessive Pompe disease Accumulation of glycogen
(PMID: 14695532)

hypotonic with large
hearts; muscle
weakness

Identical with human (PMID:
9384603)

DYSF Point mutations;
Deletions; Insertions
(PMID: 18853459:
27602406)

Autosomal-
dominant/recessive

LGMD2B Lipid accumulation (PMID:
24685690)

Wasting; myopathic
changes

Mimic human
dysferlinopathies (PMID:
23473732)

TRIM32 Point Mutations (PMID:
17994549)

Autosomal recessive LGMD2H Bind the autophagy proteins
AMBRA1 and ULK1 and
stimulate ULK1 activity
(PMID: 31234693)

Slowly progressive
proximal muscular
dystrophy

Resemble human
phenotypes (PMID:
19155210)

ATG5 Involved in the extension of
the phagophoric membrane
in autophagic vesicles
(PMID: 17331981)

Small size, small muscle
fibers vacuolation and
occasional centrally
nucleated muscle fibers
(PMID: 27693508)

ATG8 Required for fusion of
peroxisomal and vacuolar
membranes (PMID:
21867568)

Accumulation of
ubiquitinated (Ub) proteins
and P62/SQSTM1 (PMID:
17580304)
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exons, accounting for 60–70% of cases. The other mutations
include small deletions, insertions, exonic duplications, splicing
mutations, and point mutations (Flanigan et al., 2009; Tuffery-
Giraud et al., 2009). These mutations may result in reading
frame shift and subsequently produce truncated proteins with
premature stop codons.

It has been shown that autophagy was impaired in DMD
patients and mdx mouse models which closely mimic the
human disease (De Palma et al., 2012). In mdx mice,
mTOR was constitutively activated, leading to the down-
regulation of LC3, Atg12, Bnip3 and Gabarapl1 at the
molecular level. At the same time, a long-term low-protein diet
treatment reactivated autophagy through inactivation of AKT
(De Palma et al., 2012). Consistent with these observations
in mdx mice, the expression and phosphorylation levels of
AKT in the skeletal muscles and cardiac muscles of DMD
patients were largely increased (Pichavant et al., 2011). In
addition to the AKT signaling pathway, ROS generation by
CYBB/NOX2 also led to autophagy deficiency in skeletal
muscles of the mdx mice. Simvastatin treatment suppressed
the generation of ROS and increased autophagy signaling.
These findings suggest that autophagy may serve as a novel
therapeutic target for DMD patients (De Palma et al., 2012;
Whitehead et al., 2016).

It has also been found that P2RX7 (the purinergic receptor
P2X, ligand-gated ion channel, 7) is stimulated in mdx mouse
myoblasts and myofibers (Young et al., 2012). The large-pore
formation of P2RX7 and HSP90 are required for the ATP-
evoked autophagic death of dystrophic muscles (Young et al.,
2015). Administration of Coomassie Brilliant Blue, the P2RX7
antagonist, leads to a reduction of degeneration-regeneration
cycles in mdx mice, suggesting P2RX7 may act as a potential drug
target for the treatment of the disease (Young et al., 2012; Bibee
et al., 2014; Sinadinos et al., 2015).

Another molecule implicated in the pathogenesis of mdx
mice is TNF receptor-associated factor 6 (TRAF6), which
has a role in maintaining skeletal muscle mass. TRAF6 is
upregulated in skeletal muscle of mdx mice. Inhibition of
autophagy through the targeted deletion of TRAF6 in mdx mice
appears to preserve skeletal muscle mass at the initial stage but
exaggerates dystrophic phenotype at the late stage, suggesting the
opposing effect of autophagy on skeletal muscles in mdx mice
(Hindi et al., 2014).

Other approaches increasing autophagy or protein quality
control have also been considered as potential therapeutic
approaches for DMD. Peroxisome proliferator-activated receptor
gamma coactivator 1-alpha (Pgc-1α) gene transfer results in an
increase in Lc3 and Atg12 in mdx mouse muscles, indicating
a beneficial effect of autophagy on dystrophic skeletal muscle
(Hollinger et al., 2013). One recent study has demonstrated
that the modulations of protein quality control mechanisms
have been established in undifferentiated myoblasts derived
from DMD patients, but misfolded/aggregated proteins are
determined to take the path to autophagy rather than to
proteasome. This change is caused by a switch from BAG1
to BAG3, NFκB activation, and up-regulation of BAG3/HSPB8
complexes. Restoration of the established mechanism of protein

quality control may be a potential therapeutical target for DMD
treatment (Wattin et al., 2018).

Ullrich Muscular Dystrophies and
Bethlem Myopathy
Collagen VI is a major extracellular matrix protein of skeletal
muscle involved in cell adhesion and membrane stabilization.
Collagen VI has been shown to be associated with of
numerous physiological and pathological conditions. A number
of mutations in Collagen VI have been identified in disorders
of muscular dystrophy like Ullrich muscular dystrophies and
Bethlem myopathies (Bonnemann, 2011). It has been suggested
that reduced autophagocytic flux played a critical role in the
pathogenesis of collagen VI deficiency (Grumati et al., 2010).
Autophagy induction is impaired after physical exercises in
collagen VI null mice, which has a detrimental effect on muscles
(Grumati et al., 2011). Several molecular changes have been found
in collagen VI null mice, such as reduced autophagosomes and
LC3 lipidation, and impaired induction of BECLIN1 and Bnip3
(Grumati et al., 2010).

Autophagic Vacuolar Myopathies (AVM)
AVM is a group of rare genetic disorders that share common
histopathological features on muscle biopsy with an excess of
autophagic vacuoles and sarcolemmal characteristics (Munteanu
et al., 2015). Mutations in genes related to autophagy have
also been identified among patients with the spectrum of
AVM (Table 1).

Danon Disease
Danon disease, originally named as lysosomal glycogen storage
disease with normal acid maltase, is the best-known AVM and
is characterized by weakening of cardiomyopathy, weakening
of myopathy, and neurological phenotypes like intellectual
disability. Danon disease is caused by mutations in the
gene encoding the Lysosome-associated membrane protein 2
(LAMP2), a membrane glycoprotein known to be related to
autophagy. LAMP2 may play a role in controlling cell–cell or
cell-extracellular matrix adhesion and maturation of autophagic
vacuoles in addition to maintaining lysosomal structural integrity
(Lippincott-Schwartz and Fambrough, 1986; Carlsson et al., 1988;
Saitoh et al., 1992; Lichter-Konecki et al., 1999; Eskelinen, 2006).
There are different splicing forms of LAMP2 in various tissues
(Konecki et al., 1995), among which LAMP2A is the only isoform
with positive amino acid residues at the carboxyl terminus
tail responsible for substrate binding (Cuervo and Dice, 2000).
A recent study has demonstrated that the Asn175 site at the
linker region between N- and C-terminal subdomains of LAMP2
is critical for its role in autophagy. Loss of glycosylation at the
Asn175 disrupts the interaction between Lamp2 and galectin-
9 protein, which impairs endolysosome/lysosome function and
cargo degradation (Sudhakar et al., 2020).

A variety of mutations in LAMP-2 have been reported in
patients with Danon disease. Most of these mutations are
nonsense or frameshift mutations, which result in truncated
protein products (Brambatti et al., 2019; Gurka et al., 2020).
Lack of the transmembrane and cytoplasmic domains at the
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C-terminal tail abolishes its function as a lysosomal membrane
protein (D’Souza et al., 2014). Ample evidence indicates that
deficiency of LAMP-2 causes mistargeting of certain lysosomal
enzymes and impaired capacity for lysosomal degradation
(Tanaka et al., 2000; Eskelinen et al., 2002), leading to disrupted
phagosomal maturation, autophagosome-lysosome fusion, and
accumulation of autophagosomes and resulting in myopathy
and cardiomyopathy (Tanaka et al., 2000; Saftig et al., 2008). In
contrast, overexpression of Lamp2 can alleviate autophagic flux
blockade likely due to stimulation of cathepsin trafficking, which
may improve cardiomyocyte resistance to lysosomal cell death
(Cui et al., 2020).

X-Linked Myopathy With Excessive Autophagy
(XMEA)
X-linked myopathy with excessive autophagy (XMEA) is a rare
disorder characterized by childhood onset of weakness and
wasting, mainly in the proximal muscles of the lower extremities.
Although the muscles including the anterior thigh, the ankle
dorsiflexors, the hip girdles and the shoulder are affected, other
organs, such as the heart appear to be normal in the majority
of patients (Kalimo et al., 1988). Serum creatine kinase levels
are dramatically elevated in the patients. The morphological
abnormalities in muscle cells are easily observed with an optical
microscope (Kalimo et al., 1988; Villanova et al., 1995; Minassian
et al., 2002; Crockett et al., 2014).

XMEA is caused by mutations in the VMA21 gene at Xq28
encoding a chaperone protein for the lysosomal vacuolar ATPase
(Ramachandran et al., 2013). Vacuolar ATPases are rotary
proton pumps across the plasma membrane regulating the pH
of intracellular organelles. VMA21 is required for the proper
assembly of multiple proton pump subunits (Forgac, 2007).
Loss of VMA21 disrupted the interaction between the major
proteolipid subunit of V0 and another V0 subunit, Vph1p
during assembly (Malkus et al., 2004). Loss of appropriate
VMA21 activity results in the formation of autophagic vacuoles
with sarcolemmal features (Crockett et al., 2014). Mechanistic
study showed that reduced VMA21 level leads to increased
lysosomal pH and decreased lysosomal degradative ability.
Meanwhile, feedback upregulation of autophagosome formation
and inhibition of the mTORC1 pathway results in accumulation
of ineffective autolysosomes, cell vacuolation and tissue atrophy
(Ramachandran et al., 2013). A recent study of in vitro
cultured patient-derived myoblast cells revealed the possible
mechanism by which VMA21 mutation triggers autophagy
abnormity may contribute to XMEA development. This
study demonstrated VMA21 mutation-associated autophagy
defect leads to uncontrolled myoblast fusion and altered
myoblast differentiation, which produced functionally inferior
muscle cells. This observation also explains why muscles
are the predominantly involved tissue in XMEA disorder
(Fernandes et al., 2020).

Skeletal muscle of XMEA patients with VMA21 mutations is
the main affected tissue, which may be due to the difference in
V-ATPase demand between skeleton muscles and other organs
(Ramachandran et al., 2013; Munteanu et al., 2015; Saraste

et al., 2015). Additional study has identified a mutation (c.164-
6T > G) resulting in much lower VMA21 expression and
V-ATPase activities than those in classical XMEA; this patient
does have comparatively mild cardiac hypertrophy (Munteanu
et al., 2017). Another study revealed that the mutations c.10C > T,
p.Arg18Gly and p.Asp63Gly in VMA21 were implicated in a
congenital disorder of glycosylation with autophagic liver disease
(Cannata Serio et al., 2020).

Pompe Disease
Pompe disease, also called type II glycogen storage disease, is
a rare, autosomal recessive metabolic disorder characterized by
α-glucosidase deficiency leading to accumulation of glycogen
in the lysosomes (Dasouki et al., 2014). This disease has been
classified into two subtypes according to the disease onset
age. Infantile-onset Pompe disease is the severe subtype with
which children develop symptoms under 12 months of age.
This subtype is characterized by heart muscle malfunction or
severe breathing problems, typically leading to death due to
cardiac failure or respiratory abnormality within the first year
of life without treatments. Late-onset Pompe disease is usually
a mild form in which symptoms may begin at any time from
late childhood to adulthood and progress more slowly than
those in infantile-onset Pompe disease (Dasouki et al., 2014;
Kohler et al., 2018).

Pompe disease is caused by the mutations in GAA gene
encoding acid alpha-glucosidase which breaks down glycogen
to glucose in the lysosome. The GAA gene is located on the
long arm of chromosome 17 (17q25.2-q25.3) and contains 20
exons spanning 18.3 kb. Over 600 mutations in the GAA
gene have been identified in patients with Pompe disease
and missense mutations are the most common type (Pompe
variant database1). Although most of the GAA mutations are
rare, the variant rs386834236 (c.-32-13T > G) is common
among Caucasian patients. The variant leads to the spicing
out of the exon (Huie et al., 1994; Raben et al., 1996). The
c.525delT and the c.2481 + 102_2646 + 31del mutations are
overrepresented in the Dutch population, both of which lead to
a reading frameshift with an early stop codon (Peruzzo et al.,
2019). The severity of the disease depends on the degree of
enzyme deficiency determined by the nature of the mutations
in both alleles.

Dysfunction of acid alpha-glucosidase results in glycogen
accumulation in the lysosomes, followed by lysosomal rupture
in cardiac and skeletal muscles, leading to severe myofibril loss
(Griffin, 1984; Thurberg et al., 2006). Autophagic accumulation
in skeletal muscle was observed in Pompe patients (Fukuda
et al., 2006) and further immunostaining with LAMP1 and
LC3 in muscle fibers revealed extensive accumulation of
autophagosomes, clustering of late endosomes and broken
lysosomes (Raben et al., 2007; Raben et al., 2009). In a mouse
model of Pompe disease, muscle-specific loss of GAA results
in an autophagy defect due to the impaired autophagosomal–
lysosomal fusion, and subsequently the phenotype of muscle

1www.pompevariantdatabase.nl
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atrophy (Murrow and Debnath, 2013). The enzyme acid alpha-
glucosidase is produced as an inactive precursor which has to
be glycosylated in the ER and phosphorylated in Golgi before
maturation through proteolysis in the endosome/lysosomes
(Moreland et al., 2005; Meena and Raben, 2020). Any
mistake during this process would result in an acid alpha-
glucosidase deficiency. The defective autophagic pathway in
patients with Pompe Disease also leads to mitochondrial
abnormalities detected in muscle biopsies. A number of
therapeutic approaches have been developed to improve enzyme
replacement for Pompe disease (Spampanato et al., 2013;
Tian et al., 2019).

Limb Girdle Muscular Dystrophy Type 2B
(LGMD2B) and Miyoshi Muscular
Dystrophy 1 (MMD1)
LGMD2B is an autosomal recessive disease characterized by
proximal muscle weakness and wasting affecting shoulder girdles
and pelvises with slow progression (Aoki, 1993). MMD1 is
characterized by distal muscle weakness affecting the upper
and lower limbs (Miyoshi et al., 1986). Both LGMD2B and
MMD1 are caused by mutations in the gene dysferlin (DYSF)
(Liu et al., 1998), which contains 55 exons, spanning a
230 kb genomic region located on chromosome 2p13.2. The
protein product dysferlin is a type II transmembrane protein
expressed mainly in muscle sarcolemma. It is involved in muscle
contraction, calcium-mediated membrane fusion, and membrane
regeneration. Dysferlin contains seven C2 domains (C2A to
C2G) and two DysF domains, among which the C2A domain is
responsible for Ca2+and phospholipid binding.

Different types of DYSF mutations have been uncovered
in LGMD2B and MMD patients, and the most frequently
observed pathogenic variant is rs28937581 (c.2997 G > T;
p.Trp999Cys) located in a DysF domain (Izumi et al.,
2020). Crystal structures of the DysF domain indicate that
mutations like p.Arg959Trp, p.Trp999Cys, and p.Arg1046His
may disrupt an aromatic/arginine stack motif, leading to
instability of the protein (Sula et al., 2014). DYSF mutations
result in mRNA instability and degradation which further
stimulates the autophagy and proteasome pathways (Barthelemy
et al., 2011). Muscles from dysferlinopathy patients show
elevated MuRF-1, LC3-II, p62/SQSTM1 and Bnip3 levels, and
fiber atrophy phenotypically. Protein aggregates are found in
these muscle fibers which is stained positive for p62. These
observations suggest that altered proteasomal degradation of
mutant dysferlin and autophagy level (Fanin et al., 2014).
Insufficient membrane fusion and accumulation of vesicles
have been observed in SJL/J mice carrying a splice-site
mutation in the Dysf gene, implicating the role of dysferlin
in autophagy process (Hino et al., 2009). Excessive mutant
dysferlin may have a detrimental effect on muscle cells. Mutant
dysferlin aggregates in the ER and induces autophagosome
formation through eukaryotic translation initiation factor 2a
(eIF2α) phosphorylation, therefore autophagy/lysosome is an
important alternative to the ubiquitin proteasome system for
the degradation of excess mutant dysferlin in ER-associated

protein degradation (ERAD). Defects in the autophagy pathway
lead to a more severe phenotype, exemplified by the increased
aggregation of mutant dysferlin in the ER caused by Atg5
deficiency and dephosphorylation of eIF2α (Fujita et al., 2007).
In myocytes developed from induced pluripotent stem cells
from a patient carrying p.Trp999Cys mutation, nocodazole
treatment increases dysferlin levels and improves membrane
resealing, suggesting that dysferlin degradation may be a
potential drug target for the treatment of dysferlinopathy
(Kokubu et al., 2019).

Limb Girdle Muscular Dystrophies Type
2H (LGMD2H)
LGMD2H is a relatively mild form of myopathies caused by
mutations in the gene encoding Tripartite motif-containing
protein 32 (TRIM32), a well-known E3 ubiquitin ligase
(Shieh et al., 2011). A recent study showed that TRIM32 is
required for autophagy induction in response to atrophic
stimuli in vivo in mouse models. At the molecular level,
TRIM32 interacts with the autophagy proteins AMBRA1
and ULK1, and thereby stimulates ULK1 activity through
K63-linked ubiquitin chains. The pathogenic TRIM32
mutant p.Val591Met found in LGMD2H patients disrupts
the interaction between TRIM32 and ULK1, therefore
inhibiting autophagy induction, which leads to the exacerbated
atrophy exhibited by an elevated level of ROS production
and MuRF1 expression (Di Rienzo et al., 2019a,b). Another
study showed that the disease-associated mutants p.Pro130Ser,
p.Asp487Asn, p.Arg394His, and p.Val591Met inhibit autophagic
degradation of p62/SQSTM1 in muscle cells (Overa et al.,
2019). These studies link the stress of muscle inactivity caused
by defects in ubiquitination to the impaired induction of
autophagy machinery.

Sporadic Inclusion Body Myositis (sIBM)
Sporadic inclusion body myositis (sIBM) is the most common
form of acquired myopathy among adults aged over 50 years.
Similar to Alzheimer’s disease, sIBM patients present the
pathological feature of sporadic inclusion body myositis, which
is characterized by abnormal accumulation of amyloid precursor
protein (APP) and its proteolytic fragment, amyloid-β (Aβ).
It has been shown that APP colocalizes with Atg8/LC3, and
APP/beta-amyloid-containing autophagosomes are increased in
muscle fibers of sIBM muscle biopsies, suggesting that the
autophagy pathway is essential for the degradation of APP/beta-
amyloid (Lunemann et al., 2007). sIBM tissues demonstrate
damaged myofibres with obvious accumulation of p62/SQSTM1
and TDP-43 (Weihl et al., 2008; Salajegheh et al., 2009).
Mechanistic study shows that the altered binding of the p62-
ubiquitinated protein complex to LC3 in sIBM patients results
in the early termination of autophagy at initiation stage,
resulting in p62 protein aggregates (Nakano et al., 2017).
Study of an animal model shows that resistance exercise may
induce a hypertrophy signal, and alleviate autophagy and
muscle atrophy, suggesting a preventive approach for sIBM
(Jeong et al., 2017).
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CONCLUSION AND FUTURE
DIRECTIONS

In summary, skeletal muscle is the most abundant tissue type
in the human body, maintaining a finely tuned metabolism
balance between catabolic and anabolic processes. Autophagy
is an essential catabolic process responsible for the degradation
of proteins and cellular organelles through the autophagosome-
lysosome system with the involvement of evolutionally conserved
ATG proteins. Autophagy plays a central role in maintaining
cellular homeostasis through complex interactions with diverse
signaling pathways under physiological conditions and metabolic
stress in skeleton muscles. A basal level of autophagy is
required for homeostasis in skeletal muscles due to the frequent
turnover of protein and cytoplasmic components. Both deficient
and excessive autophagy result in a pathological cascade and
lead to muscular weakness and atrophy symptoms. Abnormal
autophagy levels may also contribute to cell damage. Both
increased formation of autophagosomes and inhibition of
lysosome-autophagosome fusion cause myopathy. Mutations
in autophagy genes and deregulation of autophagy pathways
have been identified as one of the major causes of various
muscle disorders.

Although advances have been made in understanding the
role of autophagy in skeletal muscle disorders over the past
two decades, much remains to be elucidated regarding the
molecular mechanisms underlying abnormal autophagy activity
in skeletal muscle disorders. Traditional experimental techniques
employed in studies of other cell and tissue types can be
utilized further to examine the contribution of autophagy to
skeletal muscle disorders, especially to investigate whether the
contribution is cell-type and tissue-type specific. Multi-omics
techniques achieved astonishing advancement during the past
10 years and have been widely applied to the studies of complex
human diseases. Future studies of skeletal muscle diseases can
adopt these omics approaches. High-throughput sequencing at

the DNA level can be applied to identify additional causal
mutations, which may help to elucidate the underlying mutation
landscape of skeletal muscle diseases. RNA sequencing of patient
biopsies will generate altered expression profiling under different
disease conditions compared to normal physiological conditions.
For skeletal muscle diseases, proteomics studies to examine
protein modification changes such as phosphorylation and
ubiquitination levels, and metabolomics studies are particularly
important. As we can see from the literature that we have
reviewed, skeletal muscle disorders are clearly related to cellular
metabolism. The change in autophagy and its interaction with
other signaling pathways is reflected not only in gene expression
but also in post-translational modification at the protein level.
The application of multi-omics techniques will give a broader
view of the influence of autophagy on skeletal muscle disorders
and a deeper understanding of the contribution of autophagy to
the pathogenesis of the diseases. Further understanding of the
molecular and biochemical mechanisms underlying the role of
autophagy in skeletal muscle disorders will help to develop new
interventional and therapeutic strategies for the diseases.
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