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With the rapid development of sequencing technology, completed genomes of microbes
have explosively emerged. For a newly sequenced prokaryotic genome, gene functional
annotation and metabolism pathway assignment are important foundations for all
subsequent research work. However, the assignment rate for gene metabolism
pathways is lower than 48% on the whole. It is even lower for newly sequenced
prokaryotic genomes, which has become a bottleneck for subsequent research. Thus,
the development of a high-precision metabolic pathway assignment framework is urgently
needed. Here, we developed PPA-GCN, a prokaryotic pathways assignment framework
based on graph convolutional network, to assist functional pathway assignments using
KEGG information and genomic characteristics. In the framework, genomic gene synteny
information was used to construct a network, and ideas of self-supervised learning were
inspired to enhance the framework’s learning ability. Our framework is applicable to the
genera of microbe with sufficient whole genome sequences. To evaluate the assignment
rate, genomes from three different genera (Flavobacterium (65 genomes) and
Pseudomonas (100 genomes), Staphylococcus (500 genomes)) were used. The initial
functional pathway assignment rate of the three test genera were 27.7% (Flavobacterium),
49.5% (Pseudomonas) and 30.1% (Staphylococcus). PPA-GCN achieved excellence
performance of 84.8% (Flavobacterium), 77.0% (Pseudomonas) and 71.0%
(Staphylococcus) for assignment rate. At the same time, PPA-GCN was proved to
have strong fault tolerance. The framework provides novel insights into assignment for
metabolism pathways and is likely to inform future deep learning applications for
interpreting functional annotations and extends to all prokaryotic genera with sufficient
genomes.
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INTRODUCTION

With the rapid development of sequencing technology, the number of newly released prokaryotic
genomes has exploded, providing an important foundation for subsequent research work (Doerks et al.,
2004). Functional annotation and pathway assignment are important components of understanding the
details of metabolism. Accordingly, a series of reference genome databases and functional annotation
platforms have been developed (Benson et al., 2012; Federhen, 2012; Keegan et al., 2016; Chen et al., 2019;
Bazgir et al., 2020). The Kyoto Encyclopedia of Genes and Genomes (KEGG) is one of the most widely
used and reliable functional platforms, and it provides three annotation software tools, namely,
BlastKOALA, GhostKOALA, and KofamKOALA, for functional annotation (Suzuki et al., 2014;
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Kanehisa et al., 2016a; Kanehisa et al., 2016b; Aramaki et al., 2020).
Currently, only 48% of the protein sequences are assigned to
pathways in the KEGG GENES database (Aramaki et al., 2020).
It is even lower for newly sequenced prokaryotic genomes, which has
become a bottleneck for subsequent research (Suzuki et al., 2014).
Thus, the development of a high-precision metabolic pathway
assignment framework is urgently needed.

Here, we propose PPA-GCN, a framework based on graph
convolutional network (GCN) that uses genomic gene synteny
information within specific genus, from which the graph
topological pattern and gene node characteristics can be learned,
to disseminate node attributes in the network and provide assistance
to the assignment of metabolic pathways. Synteny is defined as two
or more pairs of homologous genes occupying the same

FIGURE 1 | PPA-GCN architecture. The input to the framework is the metabolic pathway network extracted from the KEGG metabolic pathways and the gene
synteny network composed of the prokaryotic genomes. The graph convolutional layer attempts to construct a mapping relationship between the two input networks
and iteratively uses the training results to update the input inspired by self-supervised learning until a steady state is reached and the final assignment output is obtained.

FIGURE 2 | Schematic diagram of the use of multiple genomes to construct a gene synteny network. First, all genomic genes are compared for sequence similarity,
and genes that share high reciprocal similarity and cover ratios are assigned the same node id. Then, positional relationship pairs between two genes from each genome
were constructed. Finally, all gene position relationship pairs are connected into a gene synteny network.
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chromosomal segment, where homologous loci are defined
based on the similarity of function of the products of the
corresponding genes (Nadeau and Taylor, 1984). Analyzing
synteny can provide insight regarding the evolution and
function of genes (Zhang et al., 2016). As an inherent
biological attribute, bacteria of different genera have
different synteny patterns. In general, bacterial genomes
have two different pan-genome types. The pan-genome
refers to all genes detected in a whole group of genomes
(Wang L. et al., 2020). Some prokaryotes have genomes
with highly conserved gene content (closed pan-genomes),
while others are more flexible (open pan-genomes). Since the
concept of a “pan-genome” was first proposed in 2005, pan-
genome analysis has revealed the diversity and evolution of
bacterial genomes (Tettelin et al., 2005). In present, there is
currently no deep learning framework for direct assignment of
functional pathways against KEGG database. To evaluate PPA-
GCN, genome datasets of three different genus were used, and
on all of them, the proposed framework had achieved excellent
performance. PPA-GCN enables novel insights into
assignment for functional pathways and is likely to inform
future deep learning applications for interpreting functional
annotations.

RELATED WORK

The study of gene location in the genome is one of the classic fields
of genetics (Rogozin et al., 2004). In prokaryotes, genes encoding
functional linked proteins are usually organized into gene clusters
(Shmakov et al., 2019). There weremethods assign protein function
using neighborhood properties (Saha et al., 2012; Jun et al., 2017;
Saha et al., 2018). It has been shown that the neighborhoodmilieu of
genes in a network can assist in predicting the probable function of a
gene for which no function is known (Hao et al., 2012). However,
there is almost no method to assign KEGG pathways using gene
neighborhood information.

In recent years, deep learning has been widely used in the field of
life science, for example, for identifying and interpreting the
contextual features of transcription factors (Zheng et al., 2021),
generating functional protein sequences (Repecka et al., 2021), and
identifying cell types (Lukassen et al., 2020;WangM. et al., 2020). At
present, the applications of graph neural networks in the medical
and biology fields show strong representation and integration
capabilities (Wu et al., 2020), including neuroimage analysis
(Zhang et al., 2018), disease gene identification (Li et al., 2019;
Schulte-Sasse et al., 2021), drug combination synergy prediction
(Zitnik et al., 2018; Jiang et al., 2020; Manoochehri and Nourani,
2020), discovery of disease pathways (Agrawal et al., 2018),
prediction of tissue cell function (Zitnik et al., 2017), pseudogene
function prediction (Fan and Zhang, 2020), conducting taxonomic
classification for phage contigs (Shang et al., 2021) and identifying
missing protein–phenotype associations (Liu et al., 2021). The graph
convolutional network (GCN) is a type of graph neural network that
can learn the structure of a graph. This networkmodel was originally
proposed for semi-supervised classification (Kipf et al., 2016). A

FIGURE 3 | The performance of PPA-GCN on three genera (in terms of the PRA) and the node scale distribution of the node set at each PRA level (10% as one
level). From left to right are Flavobacterium, Pseudomonas, and Staphylococcus.

TABLE 1 | Performance under 5-fold cross-validation for the three genera.

Species PRA TLPR WPRA KC HD JS

Flavobacterium 0.848 0.846 0.829 0.842 0.008 0.751
Pseudomonas 0.770 0.728 0.736 0.721 0.014 0.609
Staphylococcus 0.710 0.691 0.698 0.689 0.008 0.651
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GCNmodel can extensively integrate graph topological features and
node information by defining each node as a computational graph
and using neural networks to integrate neighbor node information.

MATERIALS AND METHODS

Problem Statement
Given an undirected graph G = (Vtr, Vte, E), where Vtr is the set of
nodes that assigned function pathway, Vte is the set of nodes that
unassigned function pathway, V = {Vtr, Vte}. E is the set of edges and
the edge represents two genes belonging to different nodes are
connected in the genome. A label set L = {l1, l2...lk} is formed
according to the KEGG secondary class. The relationship between
the node set and the label set is represented by amatrix YNxK. Yij = 1,
if there is a gene in node i has assigned to label j. Our goal is to assign
the possible pathway labels to those nodes that have no labels.

Framework
PPA-GCN is a deep learning framework based on a graph
convolutional model (Figure 1). Gene synteny information
from the selected genome is used to construct edges in a
network, while genes sharing high sequence similarity and
cover ratio are grouped into nodes. All node and edge
information are used to construct the gene synteny network.
PPA-GCN applies a three-layer graph convolutional architecture.
Input features include node encoding, node scale and adjacency
probability matrix. The KEGGmetabolic pathway information of
the secondary class is used as the node labels for initial training.
Improve performance with inspiration from self-supervised
learning. The final outputs are ranked in accordance with the
stability of the assignment during the training process.

Graph Construction
Node Construction
Blast (Altschul et al., 1990) was used to compare the sequence
similarity of all genome genes in one genus. In order to quickly
and strictly find the similar genes, we directly adopted the
reciprocal best hits comparison and controlled the identities

and cover ratios to 65%. Taking Flavobacterium as an
example, a total of 16,830 orthologs were obtained using
OrthoFinder 2.0 (Emms and Kelly, 2019), and 51,247 nodes
were obtained using our method, of which 50,998 nodes
contained only one orthologs (99.5%). Therefore, our method
is stricter than directly using orthologs. Node2vec algorithm
(Grover and Leskovec, 2016) was used to generate graph
embeddings for each node.

Edge Construction
Positional relationship pairs between two genes from each genome
were constructed using the data of coding DNA sequence (CDS)
(Figure 2). Through the correspondence between genes and nodes,
all positional pairs were connected into a single gene synteny
network, in which there could be more than one connection
between two nodes. The adjacency matrix was constructed in
accordance with the number of connections between nodes.

Construction of the Adjacency Probability
Matrix
The adjacency probability is defined as the probability that two nodes
form a certain number of connections in the network. First, the degree
of each node in the gene synteny network (the number of connections
by which a node is directly connected to surrounding nodes) was
calculated. Then, the probability Pi that an edge is connected to a
specific node i was calculated. Finally, the probability that there are k
edges between node i and node j was defined as:

Pi � degree(i)
∑N

n�1degree(n)
(1)

Pij � Ck
degree(i) P

k
j(1 − Pj)

degree(i)−k
(2)

where N is the total number of nodes in the gene synteny graph
and degree(i) is the degree of node i, C is the combination symbol.

After the adjacency probabilities of all nodes had been formed
into an N*N adjacency probability matrix, because there are no
connections between most nodes, the node2vec algorithm was
used to densify the adjacency probability matrix.

The GCN Model
Framework Architecture
Given an undirected graph with node feature matrix X and
adjacency matrix A, the graph convolution operation (Kipf
et al., 2016) is defined as:

TABLE 2 | Performance comparison under 5-fold cross-validation

Methods PRA TLPR WPRA KC HD JS

deepNF 0.562 0.365 0.339 0.511 0.273 0.379
Mashup 0.562 0.446 0.479 0.529 0.108 0.450
Pseudo2GO 0.578 0.470 0.466 0.513 0.051 0.433
SVM 0.483 0.304 0.319 0.506 0.118 0.414
DNN 0.402 0.365 0.339 0.501 0.063 0.429
PPA-GCN (without self-supervised learning) 0.607 0.570 0.539 0.522 0.034 0.402
PPA-GCN 0.710 0.691 0.698 0.689 0.008 0.651

TABLE 3 | Performance under the new data set.

Metrics Flavobacterium Pseudomonas Staphylococcus

PRA 0.637 0.613 0.798
TLPR 0.606 0.538 0.723
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H � σ(D1
2 ÂD−1

2XW) (3)
Â � A + I, Dii � ∑

j

Âij (4)

where I is the identity matrix,W is the matrix of trainable weights
in the neural network, X is the feature matrix before the update,H
is the feature matrix after the update, and σ is the activation
function (ReLU). The graph convolution operation iteratively
calculates the weighted average of the node attributes of the
neighbors of the current node to obtain the new feature matrix of
the node. In this framework, the features of unlabeled nodes
(nodes without assigned functional pathways) and the features of
nearby labeled nodes (nodes with assigned functional pathways)
are mixed to be propagated through the synteny network
diagram. If two nodes have the same neighbor structure and
neighbor features, their embedded feature matrix H will be
exactly the same.

Python’s PyTorch Geometric Module was used to implement
PPA-GCN. Multiple graph convolutional layers can be stacked to
enable learning on a larger domain structure. After testing, a
three-layer stack was found to perform the best. The two-class
cross entropy was used as the loss function because of the
multilabel nature of the problem.

Self-Supervised Learning Inspiration
The original input was fed into the framework, and 50 epochs of
random sampling verification training were performed with the
test set. The nodes with an average cross-validation accuracy rate
of less than 30% are removed from the training set, and nodes and
labels with a assignment stability of 90% in the test set (that is, the
same label is assigned more than 45 times) are added to the
training set. After many iterations, when the number of nodes in
the training set reached more than 90% of the total number of

nodes in the gene synteny network, the training was considered to
have reached a stable state, and the final assignment results were
output.

Topological Analysis
Degree and Degree Distribution
The degree is defined as the number of all edge connections of a
node in a graph, describing the first-order connection degree of
the node. The degree distribution is an overall description of the
nodes in a network, that is, the probability distribution or
statistical distribution of the node degrees.

Clustering Coefficient
The clustering coefficient is used to describe the degree of
clumping among the vertices of a network. Specifically, it is
the degree of interconnection among the adjacent nodes of a
node, describing the second-order connection degree of the node.
For node i with degree ki, the local clustering coefficient is
defined as:

Ci � 2Li

ki(ki − 1) (5)

where Li is the number of connections among the ki neighbors of
node i. The overall aggregation coefficient of the network is
characterized as the average value of the aggregation
coefficients of all nodes.

RESULT

Data
All training genomes were downloaded from the National Center
for Biotechnology Information (NCBI) database in June 2021

FIGURE 4 | Framework fault tolerance evaluation. On the three datasets, the performance was tested with the accumulation of 5–20% incorrectly labeled data in
each epoch; the horizontal axis is the number of iteration, and the vertical axis is the performance indicator (current PRA/original PRA). This result shows that PPA-GCN
has strong fault tolerance.
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(https://www.ncbi.nlm.nih.gov/genome/browse#!/overview/).
The datasets include Flavobacterium (Gram-negative, 65
genomes), Pseudomonas (Gram-negative, 100 genomes) and
Staphylococcus (Gram-positive, 500 genomes). Staphylococcus
has a closed pan-genome. The 500 genomes selected for this
study contain 1,332,382 genes grouped into a gene synteny
network of 10,074 nodes. Flavobacterium and Pseudomonas
have open pan-genomes. The 65 Flavobacterium genomes and
100 Pseudomonas genomes selected for this study contain
243,834 and 550,752 genes grouped into 51,247 and 79,941
nodes, respectively.

KEGG internal annotation tool KofamKOALA (version 100.0,
updated October 1, 2021) was used to assign genes to functional
pathways. The pathway labels belonging to the global and
overview maps category were removed. Staphylococcus had
400,478 genes (1,324 nodes) assigned to metabolic pathways,
Flavobacterium had 67,529 genes (3,694 nodes) assigned to
metabolic pathways, and Pseudomonas had 272,388 genes
(12,429 nodes) assigned to metabolic pathways
(Supplementary Table S1). The original assignment rates for
the three genera were 7.2% (Flavobacterium), 15.5%
(Pseudomonas) and 13.1% (Staphylococcus).

In order to verify the performance of the model, the new
genome data of the three genera were downloaded from the
National Center for Biotechnology Information (NCBI) database
in October 2021 (newly released genomes were downloaded first).
The datasets include Flavobacterium (30 genomes), Pseudomonas
(50 genomes) and Staphylococcus (200 genomes).

Evaluation Metrics
Pathway label assignment is essentially a multilabel classification
problem. Hence, some commonly used evaluation indicators for
binary classification problems are not suitable for PPA-GCN. We
use six indicators to measure the effectiveness of the framework:

Prediction Rate of Assignment
PRA is the accuracy at the node level and is defined as the
proportion of genes with at least one label assigned correctly.

Total Label Prediction Rate
The TLPR is the accuracy at the label level and is defined as the
number of correctly assigned labels divided by the total number of
labels.

Weighted Prediction Rate of Assignment
When a label is predicted for a node, we assign weights in
accordance with the assignment probability, sum the WPRA
of each label of a node to obtain the WPRA of that node, and
divide by the total number of nodes to obtain the overall WPRA:

wprediction � 1
N

∑
k∈Ti

2(I + 1 − k)
I (I + 1) (6)

where N is the total number of nodes, I is the number of labels for
node i, Ti is the order of the correct label probabilities assigned for

FIGURE 5 | (A) Feature importance assessment of the node scale.
Comparison of performance changes before (standard) and after removing
node scale (no scale). (B) Feature importance evaluation of the probability
adjacency matrix. Comparison of performance changes before
(standard) and after removing probability adjacency matrix (no pro). (C)
Feature importance assessment of the gene synteny network. The horizontal
axis represents standard training and training using random networks
generated with three strategies: not including any adjacency probability matrix
(with no pro), including the adjacency probability matrix of the newly generated
network (with pro), and including the adjacency probability matrix of the real
network (with true pro). The three graphs all use the prediction rate of
assignment (PRA) as the evaluation index. The results show that node scale,
adjacency probability matrix and network are very important features of
PPA-GCN.
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node i (from large to small), and k is the k-th ranked probability
label that was assigned correctly.

Kappa Coefficient
The kappa coefficient is often used for testing consistency, that is,
whether the assignment effect of the model is consistent with the
actual classification effect. Its value is between -1 and 1. When the
value is greater than 0.6, it is considered substantial, and when it is
greater than 0.8, it is considered almost perfect. The calculation of
the kappa coefficient is based on the confusion matrix:

kappa � p0 − pe

1 − pe
(7)

p0 � ∑iMii

∑ijMij
, pe � ∑iMi.M.i

(∑ijMij)
2 (8)

where M is the confusion matrix of the assignment results.

Hamming Distance
The Hamming distance is measure of the distance between the
assigned and real labels, with a value between 0 and 1. A distance
of 0means that the assigned results are exactly the same as the real
results, and a distance of 1 means that the model’s results are
completely opposite to the desired results. This indicator is
calculated as the number of erroneously assigned labels
divided by the total number of labels.

Jaccard Similarity Coefficient
This coefficient is an indicator for comparing the similarity of two
finite sets, defined as the size of the intersection of two label sets

(the true label set and the assigned label set) divided by the size of
the union. When this coefficient is 1, the assigned results are
completely consistent with the actual situation; when the
coefficient is 0, the assigned results are completely inconsistent
with the actual situation.

Results of Experiments
Results of Cross-Validation
We tested PPA-GCN with 5-fold cross-validation on three data
sets. PPA-GCN achieved prediction rates of assignment (PRAs)
of 84.8% (Flavobacterium), 77.0% (Pseudomonas) and 71.0%
(Staphylococcus) on the three prokaryotic bacterial genera
(Figure 3). According to the evaluation index results
(Table 1), PPA-GCN is well adapted to all three genera.

In addition, we compared PPA-GCN with five other machine
learning methods. deepNF (Gligorijevic et al., 2018), Mashup
(Cho et al., 2016) and Pseudo2GO (Fan and Zhang, 2020) are
three deep learning methods that use graph information for
function prediction. Support vector machines (SVM) and deep
neural networks (DNN) are two machine learning models that
are not based on graph information. Using the Staphylococcus
genome as the test data set, all methods use the same features in
PPA-GCN as input, and use 5-fold cross-validation to test
performance. The results (Table 2) show that, PPA-GCN
achieves the best performance among all indicators.

Results of Test
In order to evaluate the adaptability of PPA-GCN to new data, the
genes of the new genome were classified into network nodes. The
test set node of the newly assigned functional path label in the

FIGURE 6 | Self-supervised learning iteration results for the three genera. In each iteration, training was performed for 50 epochs, nodes with an average PRA of
less than 30% were removed from the training set, and nodes with stably assigned labels in the test set (with assignment consistency over more than 90% of epochs)
were added to the training set. When the proportion of the total number of nodes included in the training set exceeded 90%, the final results were output.
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network was used as the evaluation object, and the difference
between the assigned output label and the real label is directly
compared. The results are shown in Table 3, which proves that
the results of PPA-GCN is reliable.

Fault Tolerance Evaluation
Because functional pathway assignment for bacterial genomes is
still in the development stage, there will inevitably be some false
pathway labels on the bacterial genes. Hence, we needed to test
the fault tolerance of PPA-GCN. All assigned labels were
assumed to be correct. In each epoch of training, some
unlabeled nodes were given random labels to also participate
in the training process. Two sets of experiments were
conducted. In one, a certain percentage (5–20%) of
incorrectly labeled samples were added in each epoch
independently, and in the other, incorrectly labeled samples
were added accumulatively. The PRA without the addition of
incorrect labels was taken as the standard, and the PRA after the
addition of incorrect labels was divided by the standard PRA to
serve as the performance indicator. The results (Figure 4,
Supplementary Table S2) show that PPA-GCN can still
maintain more than 75% performance with the addition of
incorrect labels at a rate of up to 100% (that is, the incorrectly
labeled samples compose up to 50% of the training set). Because
the distribution of wrong labels is random, and the distribution
of correct labels is ordered, the influence of correct labels on the
training results is greater than that of wrong labels, which
enhances the fault tolerance of the framework. With an
increasing proportion of incorrect labels, the efficiency of the
framework did not drop sharply. This result shows that PPA-
GCN has strong fault tolerance.

Feature Importance Test
A graph neural network can achieve excellent prediction
accuracy, but it is difficult to give practical meaning to
features. To evaluate the importance of the selected features,
the PRAs before and after feature removal were compared
(Figure 5, Supplementary Table S3). There are three
important features in the PPA-GCN input: the node scale, the
adjacency probability matrix and the gene synteny network.

The node scale is defined as the number of genes grouped into
one node. The node scale was selected as an input feature because
it can reflect the characteristics of a group of genomes.
Staphylococcus has a closed pan-genome with an average node
scale of 132.3, that is, an average of approximately 132 genes
grouped into one node. Flavobacterium and Pseudomonas have
open pan-genomes with average node scales of only 4.8 and 6.9,
respectively. The node scale was one of the major observed
differences between the labeled (training set) and unlabeled
(test set) node sets in the gene synteny network. PPA-GCN
showed no significant difference in performance when the
node scale information was removed from the input
(Figure 5A). The node scale has no effect on framework
training, and this is beneficial for the applicability of the
framework to unlabeled nodes.

The locations of genes in genomes are often specific, and the
gene synteny network extracted from the same genus could reflect
the intrinsic properties of the genus. The adjacency probability
matrix is defined as the probability that two specific nodes can
achieve a certain number of connections in a specific genome
synteny network. Adding the adjacency probability matrix to the

FIGURE 7 | Degree distribution curves describing the degree
distributions of the overall network, the training set network and the test set
network for each of the three genera [(A) Flavobacterium, (B) Pseudomonas
(C) Staphylococcus]. The horizontal axis is the degree (truncated to
100), and the vertical axis is the probability distribution (The sum of the
probabilities is 1). The results show that the degree distributions of the initial
training set and the test set for the three genera are different, reflecting the
genome characteristics of each genus to a certain extent.
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input was found to greatly improve the performance of the
framework (Figure 5B). The adjacency probability matrix
provides PPA-GCN with an information dissemination pattern
for a specific bacterial genus in the gene synteny network.

Since the adjacency probability matrix can be used to extract
synteny information patterns for specific microbial species, we
wished to verify whether the gene synteny network could be
replaced. Two types of random networks were designed while
keeping the degree distribution constant. In one case, the
arrangement of the gene positions in each sample genome
was disrupted, and in the other, the positional relationships of
all genomes were disrupted. Three strategies were considered
for feature selection: not including any adjacency probability
matrix, including the adjacency probability matrix of the
newly generated network, and including the adjacency
probability matrix of the real network. The training results
show that (Figure 5C), regardless of which random network
was used, the training performance when using a random
network was much lower than that achieved using the real
network. Interestingly, the true probability adjacency matrix
can improve the framework training performance, while
including the matrix of a random network actually impairs
performance. This further shows that the adjacency
probability matrix can capture specific information patterns
of bacterial genomes. The gene synteny network and the
adjacency probability matrix can provide the framework

with different information patterns, and neither can replace
the other.

Effectiveness of Self-Supervised Learning
Inspiration
Currently, the assignment rate for gene metabolism pathways is
lower than 50% in the KEGG GENES database. For the tested
genera of three prokaryotes, the assignment rate for metabolic
pathways is less than 20% of all nodes in the network, which
greatly limits the training performance. The inspiration of self-
supervised learning was adopted to extend the training set. Nodes
with low PRAs in the validation set were temporarily excluded
from the training set, and nodes with highly stable assigned labels
in the test set were temporarily added to the training set. After
several iterations, the performance eventually stabilized and
showed a great improvement over the initial performance
(Figure 6).

We speculate that PPA-GCN’s performance could be
significantly improved because labeled nodes spread node
attributes in a certain pattern, ultimately causing the entire
gene synteny network to present a genus-specific information
pattern. The question of whether this kind of propagation can be
universally applied to different types of gene synteny networks or
is suitable only for network structures with a more “uniform”
topology should be considered. Labeled and unlabeled nodes were

FIGURE 8 | The impact of MGEs on PPA-GCN performance. The horizontal axis represents standard training for the three genera (left), training with the MGEs as
negative samples (middle) and training with theMGEs removed from the gene synteny network (right). The vertical axis uses PRA as an evaluation index. The results show
that when the MGE nodes are removed from the networks, the performance of PPA-GCN is significantly reduced. When they are used as negative samples, the
performance of the framework is only slightly reduced.
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extracted to construct training and test networks, respectively,
and the topological structures of the two new networks were
compared. Because PPA-GCN iteratively extracts information
from the first- and second-order neighbors of nodes, the
tightness of the first- and second-order connections in the
network, as measured in terms of the degree distribution and
clustering coefficient, need to be considered. The results
(Figure 7, Supplementary Table S4) show that the degree
distributions of the initial training set and the test set for the
three genera are different, reflecting the genome characteristics
of each genus to a certain extent. The degree distribution curves
and clustering coefficients for the closed pan-genome
(Staphylococcus) are not significantly different between the
initial training set and the test set; in contrast, the initial
training set networks of the open pan-genomes
(Flavobacterium and Pseudomonas) are more closely
connected than the test set networks, and the overall
networks exhibit some level of inhomogeneity. These
findings show that the self-supervised inspiration can
effectively adapt to gene synteny networks with different
topologies.

The Impact of Different Types of Genomes
on Training
Synteny has been used to filter, organize and process local
similarities between genome sequences of related organisms
to build a coherent global chromosomal context (Deb et al.,
2020). Each genus of prokaryotes possesses characteristic
genomic gene synteny information, and its patterns are
broadly associated with many bacterial functional traits
(Brbić et al., 2016). Integrating gene synteny data from one
genus can provide assistance to the functional pathway
assignments of all genes.

Whether different types of genomes would affect training
results should be considered. In addition to the node scale,
the run number of self-supervised iterations needed to reach
convergence can also reflect differences between different types
of genomes. Staphylococcus requires more iterations to reach a
steady state than Flavobacterium or Pseudomonas. This suggests
that the information pattern of a closed pan-genome is
relatively conservative and cannot be easily extended, while
the information pattern of an open pan-genome is easier to
spread. PPA-GCN could provide insights for judging genome
types in accordance with the number of iterations needed for
self-supervised learning when analyzing the genome of an
unknown species.

The Role of Hyperlink Nodes in the Gene
Synteny Network
There are several nodes with a “super connection number” in the
gene synteny network of each genus. Further analysis revealed
that these hyperlinked nodes have certain similarities in function.
A large proportion of such nodes is assigned to mobile genetic
elements (MGEs), which have the potential to disrupt the synteny
of the involved genomes and are considered to cause gradual

changes (sometimes mutations) in biological genes and promote
biological evolution (Muszewska et al., 2019; Richards et al.,
2019).

We investigated whether the insertion of MGEs into the
genomes is random and has an impact on the pattern of
functional labels. Two sets of experiments were designed. In
the first set, all MGE nodes were removed from the gene
synteny network to verify whether the insertion of the MGEs
disrupted the information pattern of the original gene synteny
networks. In the second set, all MGE nodes were added to the
training set as negative samples to verify whether the intervention
of the MGEs affected the distribution of functional labels. The
results show (Figure 8) that when the MGE nodes are removed
from the networks, the performance of PPA-GCN is significantly
reduced. When they are used as negative samples, the
performance of the framework is only slightly reduced. This
indicates that from the perspective of gene location, MGEs
may constitute an important part of the gene synteny network
of a specific genus, and removing them will destroy the
information pattern of the existing gene synteny network.
Moreover, MGEs do not interfere with the distribution pattern
of gene function.

DISCUSSION

In present, PPA-GCN is the first deep learning framework that
uses genomic structure information to directly assist metabolic
pathway assignments of prokaryotic genomes against KEGG
information. Datasets representing three genera
(Flavobacterium, Pseudomonas and Staphylococcus) were used
to evaluate the assignment rate of the framework, and on all of
them, good performance and strong fault tolerance were
achieved. These results support the broad application of PPA-
GCN to prokaryotic genomic research. For example, it can
provide support for the mechanism research of pathogenic
bacteria and the design of synthetic biology elements, modules
and pathways.

Although all bacterial genome had been fragmented and
shuffled by the endless genomic reconstruction and horizontal
gene transfer, the localized genome structure was conserved
within specific genus of bacteria. Gene synteny structure is
intrinsic and stable under genus level and PPA-GCN relies on
it. PPA-GCN captures the graph structure and node attributes
from the gene synteny information through a graph
convolutional network. To maximize the given pathway
information of genomes of a genus, PPA-GCN obtains and
mines as many possibilities for label assignment through the
network as possible. Then PPA-GCN constructs the adjacency
probability matrix to evaluate all possibilities, improving the
certainty of all assigned labels. The idea of self-supervised
learning is adopted to expand the training set and reinforce
the training process.

PPA-GCN has the potential for further improvement. The
runtime and memory usage of PPA-GCN will be optimized
(Supplementary Table S5). At present, only one kind of
graph information (the gene synteny network) is used to make
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assignments. In the future, some other information networks
could be incorporated to improve the performance of PPA-GCN,
potentially providing the perfect complement to the existing
framework, such as a protein-protein interaction network and
gene co-expression network.

PPA-GCN exhibits good performance and shows promise to
help guide experimental verification and provide considerable
additional space for downstream analysis. PPA-GCN could be
applied to more genera of prokaryotes with sufficient whole
genome sequences and used to build a database of consensus
sequences from the perspective of functional pathway
assignment, that could describe the differences in
prokaryotes of various genera. In short, we present a deep
learning framework with great potential to explain the
relationship between gene synteny and KEGG pathway
information in prokaryotes, which can provide novel insights
into functional pathways assignments and is likely to inform
future deep learning applications for interpreting functional
annotations.
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