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Abstract: We reveal the significance of plasmonic nanoparticle’s (NP) shape and its surface morphol-
ogy en route to an efficient self-assembled plasmonic nanoparticle cluster. A simplified model is
simulated in the form of free-space dimer and trimer nanostructures (NPs in the shape of a sphere,
cube, and disk). A ~200% to ~125% rise in near-field strength (gap mode enhancement) is observed
for spherical NPs in comparison with cubical NPs (from 2 nm to 8 nm gap sizes). Full-width three-
quarter maximum reveals better broad-spectral optical performance in a range of ~100 nm (dimer)
and ~170 nm (trimer) from spherical NPs as compared to a cube (~60 nm for dimer and trimer). These
excellent properties for sphere-based nanostructures are merited from its dipole mode characteristics.

Keywords: self-assembly; metallic nanoparticles; plasmonic modes; simulations; surface charge
mappings; full-width three-quarter maximum

1. Introduction

Plasmonic nanoparticles (NPs) have received various attention as they introduce
interesting optical properties at sub-wavelength scale [1–5]. NPs, either by ordered or self-
assembled distribution, can manipulate light–matter interactions and generate enhanced
near-field properties leading to various applications in the field of surface-enhanced Ra-
man spectroscopy (SERS), non-linear optics, sensors, non-classical light sources, energy,
artificial magnetism, and so on [6–12]. The local field or near-field enhancement opens up
an attractive optical property strongly relying upon the optical resonance of metallic nanos-
tructures. These significantly enhance the electromagnetic field, mainly due to surface
plasmon resonance (SPR) [13–17]. The electromagnetic field or near-field enhancement in
plasmonic materials has generated significant interest in understanding various plasmonic
modes [18–21].

Even though recent advances in top-down fabrication approaches can lead to highly
efficient plasmonic devices, it involves multiple/complex processing steps alongside cost
burdens [22–24]. In addition to the above, uniformity in achieving mass production or
distribution of plasmonic nanostructures with identical gap sizes will be difficult. However,
on the other side, the self-assembly approach provided an opportunity to build these
nanostructures in a versatile, low-cost path [25–30]. Self-assembled plasmonic NP clusters
and SERS substrates are few such examples developed through this strategy. Factors
such as geometrical shape, size, material choice, doping, and surroundings (ex., such as
a coated surface layer with different refractive index material) play a vital role in manip-
ulating plasmonic properties in self-assembled nanostructures based upon application
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requirements [1,4–7,13,16–20]. It is essential to consider that this generated near-field is not
uniformly distributed all over nanostructures but relatively highly localized in spatially
narrow regions such as interparticle nanogaps, nanotips, or NP-spacer nanogaps, which
were called hot-spots [1,5–7,16–20,31,32]. One of the critical properties in effectively op-
timizing the hot-spot region will be the NP shape or surface morphology. In optimizing
hot-spot, NP shapes such as sphere, disk, and cube play an essential role, as reported
in the vast literature [5,6,13–18,25–28,33–37]. In particular, NP shapes such as spheres
and cubes can help to fabricate self-assembled plasmonic nanostructures, owing to their
commercial availability. In developing an efficient design guideline, simulating large area
self-assembled nanostructures (considering nanoscale meshing size for accurate results)
will be a hectic and complex task, as it will take an enormous amount of time alongside
costlier super-sized server build(s). We can consider simplified models that can quickly
bring precise solutions without relying on super-computers to solve this issue.

In this work, we numerically investigated the sphere-, disk-, and cube-based NP’s
plasmonic properties ranging from dimer to trimer and discussed its results. We considered
disk NP (example from top-down approach) as a reference while exploring and evaluating
sphere- and cube-based NP’s (easy to utilize in forming self-assembled clusters) plasmonic
properties. These dimer and trimer nanostructures can act as a simplified model of self-
assembled NP clusters or SERS substrates in understanding the design optimization process
of an efficient plasmonic nanostructure. Our simulation studies reveal that sphere-based
nanostructures can be advantageous considering a self-assembly-based approach. These
results will open insights into the proper utilization of NP shapes and their incorporation
towards highly efficient plasmonic nanostructures.

2. Modeling Information
2.1. Near-Field Calculation

For near-field calculations, a maxwell electromagnetic solver from ANSYS Lumerical
FDTD solutions was employed. This work considered free-space Au nanoparticles (NPs)
with a fixed diameter “D” of 100 nm. Dimer and trimer NPs in the shape of a sphere, disk,
and cube are modeled, as they were extensively studied for various plasmonic applications
(Figure 1, Supplementary Materials or SM Figure S1). Interparticle distance or gap size “g”
is varied from 2 nm to 50 nm. A broadband plane-wave source from normal direction (+Z)
excites free-space metallic NPs to study the optical properties from the nanostructure. A
meshing size of 0.3 nm is employed to extract highly accurate results. A perfectly matched
layers (PML) boundary condition is applied in the XYZ direction. Au’s refractive index
is extracted from Johnson and Christy database [38]. A box-shaped power monitor is
placed close to the nanostructures to record the near-field properties. For the calculation of
near-field properties, we considered an average volume integral of |E/E0| [39–43]:

Near− field enhancement =
˝
|E/E0|dV

V
(1)

From Equation (1), the amplitude of incident electric field is given by E0 (modulus of
incident field |E0| = 1 V/m), generated local electric field is E = (Ex, Ey, Ez) and volume at
a certain distance above the metallic NP surface is given by V.

2.2. Three-Dimensional Surface Charge Mappings

Complicated optical modes in plasmonic nanostructures can be effectively understood
when extracting three-dimensional surface charge mappings (3DSCM). Taking the skin
effect into consideration and applying an integration of Gauss’s law, it is possible to
calculate the surface charge density (ρ). Considering skin depth δ, an induced charge
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density (ρr) at the surface (S) of the metal (r is the depth from the surface) and total
polarization charge Q = 0 within NP, the following equation can be derived:

Q =
˝

ρrdrdS =
˝

ρe−r/δ drdS
=
‚

ρdS
´ R

0 e−r/δdS
= δ (1− e−R/δ)

‚
S ρdS

(2)Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 3 of 12 
 

 

 
Figure 1. Schematic illustration of free-space (a) dimer and (b) trimer NPs separated by gap size “g” 
and diameter “D”. Plane-wave source illuminate plasmonic nanostructures in the normal direction 
with an incident electric field of E0. (c) NP shapes modeled in this work are sphere, disk, and cube. 
Detailed information on modeling conditions is described in Supplementary Materials or SM Figure 
S1. 
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As seen from Equation (4), the surface charge density 𝜌𝜌 is given as (nx·Ex + ny·Ey + 
nz·Ez) [16,20,31,44,45]. Utilizing this surface charge mapping approach, we directly ex-
tracted the 3DSCM from our simulations using the COMSOL Multiphysics tool (Wave 
optics module). 

3. Results and Discussion  
Figure 2 shows modeled gap size-dependent maximum near-field strength (dimer—

Figure 2a, trimer—Figure 2b) properties extracted from its resonance wavelength posi-
tions (dimer—Figure 2c, trimer—Figure 2d). For complete broadband near-field spectra 
related to Figure 2, please see SM Figures S2 (dimer nanostructures) and S3 (trimer 

Figure 1. Schematic illustration of free-space (a) dimer and (b) trimer NPs separated by gap size “g”
and diameter “D”. Plane-wave source illuminate plasmonic nanostructures in the normal direction
with an incident electric field of E0. (c) NP shapes modeled in this work are sphere, disk, and
cube. Detailed information on modeling conditions is described in Supplementary Materials or SM
Figure S1.

Here, radius of NP is given as “R”. Further, utilizing an integral form of Gauss’s law:

ΦE = Q
ε0

=
‚

S(n· E) dS
=
‚

S (nx · Ex + ny· Ey + nz· Ez) dS
(3)

From Equation (3), ΦE is the electric flux through the metal surface S, the outward nor-
mal vector is given as n = (nx, ny, nz), local electric field is E = (Ex, Ey, Ez) and permittivity
of vacuum ε0. Considering above all factors, the surface charge density can be derived
as follows:

ρ =
ε0

(
nx · Ex + ny· Ey + nz· Ez

)
δ
(
1− e−R/δ

) α
(
nx· Ex + ny· Ey + nz· Ez

)
(4)

As seen from Equation (4), the surface charge density ρ is given as (nx·Ex + ny·Ey
+ nz·Ez) [16,20,31,44,45]. Utilizing this surface charge mapping approach, we directly
extracted the 3DSCM from our simulations using the COMSOL Multiphysics tool (Wave
optics module).

3. Results and Discussion

Figure 2 shows modeled gap size-dependent maximum near-field strength (dimer—
Figure 2a, trimer—Figure 2b) properties extracted from its resonance wavelength positions
(dimer—Figure 2c, trimer—Figure 2d). For complete broadband near-field spectra related
to Figure 2, please see SM Figure S2 (dimer nanostructures) and Figure S3 (trimer nanostruc-
tures). We have to consider two scenarios when interpreting dimer versus trimer plasmonic
properties as a function of gap size “g”: (i) resonance wavelength shift and (ii) deterioration
in near-field enhancement |E/E0| strength. For varied gap sizes between 2 nm to 50 nm,
dimer nanostructure’s (Figure 2a) |E/E0| deteriorated as following: 223 to 10 (sphere),
240 to 29 (disk), and 109 to 10 (cube). In addition to the above, resonance wavelength
tuning range as a function of gap size are as follows: 75 nm (635 nm to 560 nm), 128 nm
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(727 nm to 599 nm), 372 nm (988 nm to 616 nm) for sphere, disk, and cube nanostructures,
respectively (Figure 2c). Interestingly, in trimer nanostructure(s), increases in |E/E0|
were not seen as compared to dimer(s), especially at smaller gap sizes (for example, until
g = 8 nm). Alternatively, in other words, an increase in the number of NPs does not directly
relate to a rise in near-field enhancement (for trimer nanostructure, observed |E/E0| at
2 nm gap distance were 175 (sphere), 205 (disk), and 108 (cube), respectively). Nevertheless,
at the same time, relatively more comprehensive resonance wavelength tuning range at
similar gap size differences are noted for trimer: 145 nm (717 nm to 572 nm), 226 nm
(836 nm to 610 nm), 385 nm (1000 nm to 615 nm) for sphere, disk, and cube nanostructures,
respectively (Figure 2d). From this point, we will consider and interpret these nanostruc-
tures’ plasmonic properties until g = 8 nm condition (grey color shaded part, Figure 2a,b)
considering the absence of gap mode in spherical NPs [39,40].
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The differences in |E/E0| for dimer and trimer properties are in good agreement with 
the obtained cross-section electric field profiles (Figure 3). Clearly, dimer structures reveal 
better |E/E0| characteristics when compared with trimers. Therefore, our justification for 
identifying a good design approach for self-assembled plasmonic NP clusters with dimer 
and trimer nanostructures can be reasonable. In general, disk nanostructure is advanta-
geous considering near-field enhancement deterioration rate when “g” is varied from 

Figure 2. Maximum near-field strength |E/E0| obtained from dimer (a) and trimer (b) plasmonic nanostructures for
different NP shapes (sphere, disk, and cube) from its respective resonance wavelength positions (c) and (d), respectively.
These data are extracted from simulated broadband |E/E0| spectra as seen from SM Figures S2 and S3. Grey color region
within blue dotted lines indicates our region of interest on the basis of gap mode enhancement.

The differences in |E/E0| for dimer and trimer properties are in good agreement with
the obtained cross-section electric field profiles (Figure 3). Clearly, dimer structures reveal
better |E/E0| characteristics when compared with trimers. Therefore, our justification
for identifying a good design approach for self-assembled plasmonic NP clusters with
dimer and trimer nanostructures can be reasonable. In general, disk nanostructure is
advantageous considering near-field enhancement deterioration rate when “g” is varied
from smaller to larger size. However, on the contrary, spherical NPs seem to outperform
cubical nanostructures in terms of |E/E0| when considering smaller gap sizes until 8 nm.
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It is necessary to understand the reason behind this nature, as it can play a vital role in
various applications. It is not easy to interpret by only considering electric field profiles.
Therefore, we considered three-dimensional surface charge mappings or 3DSCM, which
will help understand any complex plasmonic properties behind these notable differences.
SM Figure S4 depicts the schematic plasmonic mode charge distribution profiles close to
the cavity or “g” region (not to scale) based on dipole (solid circle) and quadrupole (solid
triangle) modes. These solid circle or triangle symbols apply to all our 3DSCM data in
identifying plasmonic modes.
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Figure 3. Cross-section XZ electric field profiles taken at g = 2 nm, 4 nm, and 8 nm for a dimer (left) and trimer (right)
nanostructures studied in this work. Better near-field enhancement can be observed from sphere- and disk-based nanostruc-
tures when compared to a cube. Electric field profiles are scaled to the same color strength for a fair comparison. All scale
bars measure 100 nm.

The 3DSCM properties of dimer and trimer nanostructures based on a sphere, disk,
and cube are shown in Figure 4a–c for g = 2 nm, 4 nm, and 8 nm sizes. Dipole mode
characteristics (solid circles) were seen from sphere and disk nanostructures. However,
in the case of cubical nanostructures, inconsistent mode properties were observed. In
dimer nanostructures (Figure 4c), quadrupole mode properties (solid triangle) were present
despite different gap sizes. Regarding the trimer, dipole mode was observed at g = 2 nm
but deteriorated to quadrupole mode with increasing gap size. Poor |E/E0| properties in
cubical nanostructures can be understood as they lack the dipole mode characteristics.

Furthermore, |E/E0| properties at shorter wavelength positions (dimer = 699 nm and
trimer = 707 nm, marked as “i” in Figure 4d) were not considered a dominant or primary
gap mode position for cubical NPs. When “g” is increased, resonance wavelength shift
should generally follow from longer to shorter wavelength positions in terms of gap mode,
especially concerning smaller “g” variations. When gap size varied from 2 nm to 8 nm,
|E/E0| resonance wavelength shift from 988 nm (1000 nm) to 690 nm (687 nm) makes
sense in dimer (trimer) nanostructures rather than the position marked as “i” in Figure 4d.
Adding to the above complexity, changes from dipole to quadrupole mode were noted
with an increased number of cubes until five (dipole mode disappeared when there were
five NPs, Figure 4e). Therefore, what can be an issue with cube-based nanostructures
in displaying comparatively lower near-field strength? How do disk and sphere NPs
perform better at smaller gap sizes (2 nm to 8 nm)? The optical background behind this
phenomenon should be studied.

One possible significant interpretation can be envisioned when we see it in terms of
NP facet(s). Facets in an NP will play a vital role in enhancing gap mode-based |E/E0|
characteristics. Dipole mode properties and better |E/E0| strength at resonance position
can be achieved with fewer facets in NPs [45]. The presence of more facets in NP deterio-
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rates the plasmonic properties. Higher |E/E0| performance in disk nanostructures can
be seen as they have only two facets, but in the cube case, four facets were reasonable in
deterioration of its dipole mode properties alongside near-field enhancement. It is well
known that gap mode is absent in sphere-based nanostructures at a larger gap size, but
within smaller gap sizes (for example, g ≤ 6 nm or 8 nm), it is possible to realize better
near-field properties [39,40]. Rather than having more facets, it is possible to extract higher
|E/E0| even with smoother NP surfaces, such as a sphere. Considering these factors, we
can assume the problem lies with more facets in cubical nanostructures compared with
disk or sphere.
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Figure 4. Simulated 3DSCM profiles taken from dimer and trimer nanostructures with different gap sizes for NP shapes of
a sphere (a), disk (b), and cube (c). Solid circle (dipole) and triangle (quadrupole) symbols represent the plasmonic modes.
All 3DSCM profiles are arranged in order of following gap size of 2 nm, 4 nm, and 8 nm. (d) Broadband |E/E0| spectra
taken from cube nanostructures with increasing NP numbers from two to five and respective (e) 3DSCM profiles extracted
from the position marked as “i”.

To understand these differences and further analyze them, we considered the follow-
ing two optical properties: (i) |E/E0| raise% and (ii) full-width three-quarter maximum
or FW3QM (Figure 5a–c). In case of |E/E0| raise%, we fixed g = 8 nm |E/E0| strength
of cube as 100% and calculated the how much increase or decrease in |E/E0| percentage
could be extracted with sphere and disk nanostructures (please note that g = 8 nm fixed
throughout the nanostructures for a fair comparison). Sphere- and disk-based dimer/trimer
nanostructures displayed 125%/127% and 231%/233% increase in |E/E0| strength, respec-
tively (Figure 5a). Please note that for reference, even at g = 2 nm, ~200% |E/E0| raise% is
possible for sphere NPs as compared to a cube.
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Figure 5. (a) Calculated |E/E0| raise% for sphere- and disk-based dimer and trimer NPs at g = 8 nm compared to a cube.
(b) FW3QM results of dimers (b) and trimers (c) for different gap sizes ranging from 2 nm to 8 nm reveals sphere-based
NPs can perform better. The 3DSCM profiles indicating plasmonic mode characteristics of a sphere, disk, and cube NPs
taken at λR ± 50 nm wavelength positions for dimer (d–f) and trimer (g–i) nanostructures. Here λR represents resonance
wavelength position as seen from Figure 1c,d. All 3DSCM profiles are arranged to follow gap sizes of 2 nm, 4 nm, and 8 nm.
Solid circle (dipole) and triangle (quadrupole) symbols represent the plasmonic modes. In 3DSCM profiles, blue represents
negative charge and red denotes positive charge.

For FW3QM, a 75% maximum |E/E0| strength obtained from the respective reso-
nance wavelength position is considered (Figure 2a,b) for the plasmonic nanostructures
(gap sizes from 2 nm to 8 nm). For detailed information, please see SM Figure S5 and SM
Tables S1 and S2 explaining our calculation method. Sphere-based dimer (trimer) nanos-
tructures showed excellent FW3QM ranging 97 nm, 103 nm, 108 nm, and 105 nm (169 nm,
173 nm, 175 nm, and 168 nm), respectively. Disk-based dimer (trimer) nanostructures
showed FW3QM ranging 86 nm, 86 nm, 82 nm, and 82 nm (134 nm, 128 nm, 123 nm, and
119 nm), respectively. Poor FW3QM characteristics from cube-based dimer (trimer) nanos-
tructures can be seen as follows: 51 nm, 35 nm, 42 nm, and 58 nm (61 nm, 44 nm, 45 nm, and
52 nm). Please note that these FW3QM are obtained from “g” sizes of 2 nm, 4 nm, 6 nm, and
8 nm, respectively, in order. A better broad-spectral range in FW3QM can be noted with an
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increased number of NPs for sphere and disk nanostructures compared with a cube. Please
note that by achieving a broader FW3QM spectral range, deterioration in optical efficiency
can be minimized (even with fewer fabrication errors from optimum design point) when
considering cavity-based applications [45–47]. It is critical to have such a broader spectral
range of FW3QM, where various highly efficient optical applications can be realized in the
field of non-classical light emitters, surface-enhanced Raman spectroscopy, sensors, and
quantum dot-based devices [45–48]. From 3DSCM, we can see dipole mode characteristics
for sphere and disk-based nanostructures in a 100 nm wavelength span for different gap
sizes (Figure 5d,e,g,h). Deterioration in cube-based nanostructure’s plasmonic properties
can be seen due to the dominant presence of quadrupole mode at an identical geometrical
condition (Figure 5f,i).

We further studied size-dependent (NP diameter “D”) plasmonic properties for a
sphere-based dimer (Figure 6a–c) and trimer (Figure 6d–f) nanostructures. Figure 6 reveals
the plasmonic properties of sphere-based nanostructures for different NP “D” ranging
from 60 nm to 100 nm. Gap sizes within a range of 2 nm to 8 nm were considered in these
simulations following Figure 1, where we can still observe gap mode-based near-field
enhancement. By increasing NP “D”, we can observe resonance wavelength positions
moving towards longer wavelength regions: from 577 nm to 635 nm (dimer, Figure 6a)
and from 603 nm to 717 nm (trimer, Figure 6d) for a gap size of 2 nm (as an example). In
the case of |E/E0|, dimer nanostructures reveal a steady rise in near-field enhancement
properties until D = 90 nm and gradually become constant after that (Figure 6b). In the case
of trimer nanostructures, rather than a steady increase in |E/E0|, we can see constant and
~ consistent near-field enhancement characteristics (Figure 6e). Maximum broad-spectral
ranges of 105 nm (dimer) and 175 nm (trimer) are possible considering FW3QM calculations
(Figure 6c,f). Considering these results, we believe that dimer- or trimer-based designs can
guide us to approximately design or evaluate self-assembled plasmonic nanoclusters.
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Figure 6. Size-dependent spherical NP’s plasmonic properties for (a–c) dimer and (e,f) trimer nanostructures. NP “D” is
varied from 60 nm to 100 nm. Maximum near-field strength |E/E0| obtained from dimer (a) and trimer (e) plasmonic
nanostructures from its respective resonance wavelength positions (b) and (e), respectively. FW3QM results of dimers
(c) and trimers (f) for different gap sizes ranging from 2 nm to 8 nm as a function for different NP “D” sizes. These data are
extracted from simulated broadband |E/E0| spectra from SM Figures S6 and S7.
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We extended our simulation studies to a simple core-shell satellite structure model
(Figure 7). Bigger NP with D of 100 nm surrounded by smaller NP with D of 10 nm is
modeled. A thin dielectric coating (n = 1.45) over bigger NP with a thickness of 2 nm
is considered (blue colored layer as shown in Figure 7). We observed ~two-fold times
increase in near-field enhancement compared to bare dimer/trimer nanostructures, which
we believe is highly beneficial for various applications. At the same time, it is also possi-
ble to study and understand various super- and sub-radiant modes from these satellite
structures [1,26–29].
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Our results show a critical understanding of metallic NP’s optical properties to deter-
mine which geometrically-shaped NPs are needed in self-assembling efficient plasmonic
nanostructures. The role of NP shape and its surface morphology effectively controls
the enhancement of electromagnetic fields originating from nanoscale features such as
interparticle distance, edges, tips, or crevices. Even though disk-based nanostructures
fared better in achieving |E/E0| raise percentage, we can choose spherical NPs, consider-
ing self-assembly advantages, which facilitates simple, low-cost fabrication. Full-width
three-quarter maximum results prove how sphere-based nanostructures can have a broader
spectral width advantage over the disk or cube-based NPs, which can be important for
applications like non-classical light sources. The deteriorating gap mode strength as a
function of gap size in cubical nanostructures is significantly related to the presence of more
facets (than disk or sphere) alongside quadrupole mode characteristics. In other words,
plasmonic nanostructures with dominant dipole mode characteristics can perform better
than higher-order mode(s). With recent developments in spherical NPs, if we can precisely
synthesize single faceted spherical NPs (rest surface being smoother), near-field strength
can be boosted further with a slower deterioration rate extending to larger gap sizes [45].
This discussion only performed relative comparisons between building blocks (sphere and
cube) of self-assembled plasmonic structures, and plasmon damping due to radiation was
not considered. In addition, future studies involving plasmon damping (related to charge
carriers in metals), can open up further understanding of nanoplasmonics properties [49].
We believe optical insights revealed in this work can open various applications in self-
assembled plasmonic NP clusters, SERS, light-harvesting, ultrafast optoelectronic devices,
and sensors.

4. Conclusions

In summary, our simulation studies reveal how the shape and surface morphology of
plasmonic NPs can influence the near-field enhancement properties. In the presence of gap
mode, spherical NPs can perform better than cubical NPs in terms of |E/E0| raise% (~200%
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and ~25% increase at g = 2 nm and 8 nm). From FW3QM, spherical NPs displayed excellent
broad-spectral range near-field enhancement properties at a maximum of ~160 nm with the
presence of dipole mode across this wavelength range. Poor performance in cube-based
nanostructures can be related to its facet numbers and quadrupole mode characteristics.
Utilizing spherical NPs in making self-assembled NP clusters or SERS substrates can be
advantageous over other NP shapes such as a cube, considering the following advantages:
efficient near-field generation in the presence of broad-spectral dipole mode distribution,
simplicity in fabrication, and low-cost factor supporting large scale self-assembly.
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