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Simple Summary: The aim of this research was to evaluate the effects of three lipid supplements in
ovine diets on milk healthy fatty acid composition. Rations provided a source of α-linolenic acid,
either protected or unprotected from ruminal biohydrogenation (linseed oil and Ca-salts of linseed
oil) or long-chain n-3 fatty acids (algae oil). Algae oil supplementation generated the highest levels of
n-3 fatty acids in ewe’s milk. However, dry matter intake, milk yield and fat content declined with the
inclusion of algae oil in the diet. The fatty acid profiles of milk from both linseed oil supplemented
rations did not significantly differ, and both were effective to diminish saturated fatty acids.

Abstract: Increasing the levels of n-3 fatty acids (FA) in dairy products is an important goal in terms
of enhancing the nutritional value of these foods for the consumer. The purpose of this research was
to evaluate the effects of linseed and algae oil supplements in ovine isoenergetic diets on healthy
milk fatty acid composition, mainly n-3. Seventy-two Churra dairy ewes were divided and randomly
assigned to four experimental treatments for 6 weeks. The treatments consisted of a TMR (40:60
forage:concentrate ratio) that varied according to the inclusion of different types of fat (23 g/100 g
TMR): hydrogenated palm oil (control), linseed oil (LO), calcium soap of linseed oil (CaS-LO) and
marine algae oil (AO). The most effective lipid supplement to increase n-3 FA in milk was AO. 22:6
n-3 and total n-3 PUFA content increased from 0.02 and 0.60% (control) to 2.63 and 3.53% (AO),
respectively. All diets supplemented with n-3 FA diminished the content of saturated FA in milk and
its atherogenic index, while the levels of trans-11 18:1 and cis-9 trans-11 18:2 significantly increased.
Overall, the enhancement of n-3 FA in ewe’s milk would be advantageous for the manufacture of
nutritionally improved cheeses.

Keywords: dairy fat; omega-3 fatty acids; sheep milk; linseed oil; calcium salts; algae oil

1. Introduction

The nutritional importance of n-3 fatty acids (FA), such as 18:3 (α-linolenic acid, ALA),
20:5 (eicosapentaenoic acid, EPA), 22:6 (docosahexaenoic acid, DHA) and more recently,
22:5 (docosapentaenoic acid, DPA), in human nutrition is widely documented [1]. They
are essential for normal physiological function and are associated with multiple health
benefits [2]. This evidence has created great interest in the development of functional foods
that incorporate n-3 FA in their composition [3]. The amounts of n-3 FA in dairy fat from
ruminants are very low [4–6]. This fact, together with the relevant contents of saturated
(SFA) and trans FA, has caused some nutritionists to advise against the consumption of
milk fat and whole dairy products.
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Most of the sheep’s milk in the world is processed into cheese. It is well known that
cheese making and ripening do not modify the FA profile of dairy fat; thus, the most
suitable strategy to enhance the FA composition in ewe cheese is to increase healthy FA in
raw milk [7,8]. In this line, there is currently a great interest in adding value to sheep milk
by reducing its SFA content while increasing the levels of n-3 FA.

The content of n-3 FA in milk fat can be naturally enhanced by supplementing the diet
of ruminants with a lipid source enriched in polyunsaturated fatty acids (PUFA) [9]. The
inclusion of linseed in rations [8,10] or the use of diets based on fresh pastures [11] have been
shown to increase the ALA content in ewe’s milk. However, ALA increases were modest
and its content did not exceed 2% of total milk FA. Regarding long-chain n-3 FA, EPA and
DHA increases have been reported when adding algae oils of marine origin to lactating ewe
rations [12–14]. Microalgae stand out as a sustainable source of DHA and their inclusion in
ruminants’ diet enhances n-3 FA content in animal products [15]. Notwithstanding, the
percentage of n-3 PUFA reached in milk fat seldom exceeded 1% [12,14,16].

The limited incorporation of n-3 FA in milk fat is mainly related to the high biohy-
drogenation (BH) rates of n-3 FA in the rumen, which drastically reduce their intestinal
absorption, limiting their availability to the mammary gland and milk fat secretion [17].
Minimizing ruminal BH of PUFA is the major challenge in dietary supplement formula-
tions, which try to enhance the post ruminal supply of PUFA. A proposed fat protection
technology is the use of calcium salts (Ca-salts) of selected FA that would reduce the neg-
ative effects of fat on ruminal fermentation [18]. As linseed oil is rich in ALA, Ca-salts
of linseed oil would be a suitable option to increase n-3 FA concentration in milk. To the
best of our knowledge, no information is available comparing the effects of free linseed
oil with Ca-salts from linseed oil as feed ingredients for dairy sheep. On the other hand,
few data are available on the BH pathways of DHA and the in vivo effects of the inclusion
of unprotected microalgae oils in the diet of ewes [19]. Since the BH of dietary PUFA is
usually incomplete, we hypothesized that the incorporation of high levels of microalgae
oil may enhance the outflow of FA to reach the duodenum and, after absorption, n-3 FA
could be available in the mammary gland and incorporated into milk fat. Some authors
have pointed out that lipids can reduce the activity or proliferation of rumen bacteria,
modulating the pathways of fatty acid BH in the rumen and allowing PUFA to pass the
rumen and be absorbed at the intestinal level [20,21]. Likewise, it has been pointed out
that algae can produce toxins and reduce the activities of some microorganisms, inhibiting
BH processes at the ruminal level and increasing the possibilities of reaching the intestine
for absorption.

It is difficult to select the appropriate lipid supplement to increase n-3 FA content in
milk and improve the nutritional characteristics of dairy fat, mainly because the experimen-
tal conditions of the available literature vary greatly (e.g., using unequal basal diets, the
type of n-3 supplements, amounts added to the rations, lactation period, animal parity . . . ).
Therefore, the objective of this work was to evaluate the in vivo effects of isoenergetic diets
providing the same amount of fat but differing in the n-3 FA source (either rich in ALA
(linseed oil or Ca-salts of linseed oil) or long-chain n-3 FA (algae oil) on animal performance
and healthy milk FA composition.

2. Materials and Methods
2.1. Animals and Dietary Treatments

Seventy-two Churra dairy ewes (58.0 kg ± 8.11 kg of body weight) in the sixth
week of lactation (40.2 ± 2.74 days of lactation) were divided into twelve homogenous
lots of 6 animals each, and randomly assigned to 4 experimental treatments (3 lots per
treatment). The experiment was carried out in a commercial sheep farm. All three lots
were fed at the same time on the farm from May to June. The trial lasted 5 weeks and
all animal handling practices followed the recommendations of the European Council
Directive 2010/63/EU for the protection of animals used for experimental and other
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scientific purposes. The experimental procedures were approved by the Institutional
Animal Care and Use Committee of the University of Valladolid.

Treatments consisted of a total mixed ration (TMR, 40:60 forage:concentrate ratio) that
varied according to the inclusion of different types of fat (2.3 g/100 g TMR): hydrogenated
palm oil (control), linseed oil (LO), calcium soap of linseed oil (CaS-LO) and marine
algae oil (AO). Experimental diets were formulated to be isoenergetic and isoproteic and
were supplied ad libitum twice a day (9:00 and 18:00). Fresh water was always available.
Ingredients and chemical composition of the experimental diets are presented in Table 1.
During a two-week adaptation period (before the beginning of the trial), all animals
received the same TMR composed of dehydrated alfalfa hay (37%), barley straw (9%),
soybean meal (14%), whole corn grain (11%), oat grain (9%), whole barley grain (8%), beet
pulp (7%), molasses (4%) and vitamin-mineral premix (1%); 93.2% DM; ash, 6.9% DM;
neutral detergent fiber, 34.9% DM; acid detergent fiber, 22.8% DM; crude protein, 17.5%
DM; and ether extract, 2.2% DM.

Table 1. Ingredients and chemical composition of the experimental diets.

Diet 1

Item Control LO CaS-LO AO

Ingredients (g/100 g of fresh matter)
Dehydrated alfalfa hay 35.0 35.0 34.8 35.0
Barley straw 9.0 9.0 8.9 9.0
Soybean meal 14.0 14.0 13.9 14.0
Whole corn grain 10.4 10.4 10.3 10.4
Oat grain 9.0 9.0 8.9 9.0
Whole barley grain 8.0 8.0 8.0 8.0
Beet pulp 7.0 7.0 7.0 7.0
Molasses 4.3 4.3 4.3 4.3
Hydrogenated palm oil 2 2.3 - -
Linseed oil 3 - 2.3 - -
Calcium salts of linseed oil 4 - - 2.9 -
Algae oil 5 - - - 2.3
Vitamin mineral premix 1.0 1.0 1.0 1.0
Chemical composition (g/100 g of DM)
Organic matter 93.1 92.9 93.3 93.9
Crude protein 17.4 17.3 17.2 17.3
Ether extract 4.6 4.5 4.6 4.5
NDF 34.1 34.3 34.8 34.5
ADF 22.3 22.5 22.1 22.6

1 Diets: Control = TMR supplemented with 2.3% of hydrogenated palm oil (PROFAT, Mateos S.L.); LO = TMR
supplemented with 2.3% of linseed oil (ECOFLAX FEED OMEGA-3, BTSA); CaS-LO = TMR supplemented with
2.3% of fat from calcium salts of linseed oil (LINOFAT, Nutrion International SLU); AO = TMR supplemented
with 2.3% of algae oil (BIOMEGA TECH A 40 FEED, BTSA). 2 Contained (g/100 g total fatty acids): 12:0 (0.12),
14:0 (1.3), 16:0 (66.2), 16:1 (<0.1), 18:0 (31.0), cis-9 18:1 (<0.1). 3 Contained (g/100 g total fatty acids): 16:0 (5.2),
18:0 (3.5), cis-9 18:1 (21.1), 18:2 (14.4), 18:3 (55.5). 4 Contained 805 g of total fatty acids/kg and (g/100 g total fatty
acids): 16:0 (5.2), 18:0 (3.2), cis-9 18:1 (18.4), 18:2 (15.0), 18:3 (58.0). 5 Contained (g/100 g total fatty acids): 14:0 (9.0),
16:0 (19.3), cis-9 16:1 (5.3), 18:0 (0.7), cis-9 18:1 (7.8), 18:2 (0.4), 18:3 (0.2), EPA (1.7), DPA (7.8), DHA (43.8).

During the whole experimental period, dry matter intake (DMI) was recorded weekly.
The amounts of offered diet and refusals were weighed daily and samples of each lot of ewes
were pooled weekly for subsequent analyses. The chemical composition of feed and refusal
samples was determined by using the procedures described by AOAC International [22].
Dried feed samples were analyzed for NDF and ADF using filter bag equipment (Ankom
Technology Corp., Fairport, NY, USA).

2.2. Milk Sampling and Composition

Ewes were machine-milked twice a day (8:00 and 17:00 h) during the whole exper-
imental period using a 2 × 18 low-line Casse system milking parlor (Alfa-Laval Iberia,
S.A., Madrid, Spain) with 12 milking units and 2 milkers. The milking machine was set to
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provide 180 pulsations per minute in a 50:50 ratio with a vacuum level of 36 kPa. After the
two-week adaptation period, individual ewe milk production was recorded weekly and
samples were taken in milk collection jars. One subsample of milk was kept at 4 ◦C until it
was analyzed for fat and protein content in accordance with International Dairy Federation
recommendations [23] using a MilkoScan-400 analyzer (Foss Electric, Hillerød, Denmark).
Milk samples were collected from individual ewes every two weeks of the experimental
period and stored at −80 ◦C for subsequent FA analysis.

2.3. Fatty Acid Analysis

Lipids extraction was carried out by two consecutive centrifugations from 30 mL of
raw milk using the method proposed by Luna et al. [24]. Dried dairy fat was stored in
amber vials, blanketed with a stream of N2 and kept at –20 ◦C until analysis. Fatty acid
methyl esters (FAME) were prepared by base-catalyzed methanolysis of glycerides with
KOH in methanol [25]. Each transesterification mixture (0.2 mL) was reacted with 25 mg of
milk fat at room temperature.

Two Agilent models (6890 N Network Gas Chromatograph and 7820A GC System)
(Agilent, Palo Alto, CA, USA) equipped with autoinjectors, fitted with flame-ionization
detectors and CP-Sil 88 fused silica capillary columns (100 m × 0.25 mm i.d., Varian,
Middelburg, The Netherlands), were used to determine the FAME profile. The injector
and detector temperature was 250 ◦C. Helium was the carrier gas at an inlet pressure of
193.9 kPa and a split ratio of 1:100. GC analysis was performed with two complementary
oven temperature programs. In the first GC program, initial oven temperature was set at
45 ◦C. After 4 min, it was raised at 13 ◦C/min to 165 ◦C and held for 35 min, then increased
to 215 ◦C at 4 ◦C/min and maintained for 30 min. In the second GC program, the initial
oven temperature was set at 195 ◦C and, after 45 min, it was raised at 4 ◦C/min to 215 ◦C
and held for 30 min. The combination of both GC analyses allowed the resolution of all iso
and anteiso FA present in dairy fat, which was not possible with a single GC run.

The identification of FAME was carried out by comparison with commercial standard
mixtures from Nu-Chek Prep Inc. (Elysian, MN, USA) and analogous milk fat samples from
previous research. Individual FAME quantification was performed using response factors
calculated from a milk fat with a certified composition (CRM 164; European Community
Bureau of Reference, Brussels, Belgium) according to ISO-IDF [26].

2.4. Statistical Analysis

Data regarding DMI, milk production and chemical and FAME composition were
analyzed using the MIXED procedure of SAS (version 9.4; SAS Institute Inc., Cary, NC,
USA). The model took into account the fixed effects of dietary treatment (D), week of
sampling (T), and their interaction (D × T). Time on diet was considered a repeated factor,
lot as a blocking factor and animal nested within treatment was subjected to a compound
symmetry-covariance structure. Significant differences were declared at p < 0.05. As
the interaction was not significant in most cases, only means for the principal effects are
presented in the tables.

3. Results and Discussion
3.1. Animal Performance and Milk Composition

Table 2 shows the data of DMI, milk yield and milk composition of ewes fed the four
assayed diets. Average DMI changed significantly (p < 0.01) when the rations incorporated
n-3 lipid supplements and all milk-related parameters also with time on diet. In contrast,
the diet × time interaction was less pronounced.
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Table 2. Dry matter intake (DMI), and milk yield and composition in ewes fed a TMR containing
2.3% of different lipid supplements.

Diet 1 p-Value 3

Item Control LO CaS-LO AO SED 2 D T D × T

DMI (g/d) 2691 a 2759 a 2736 a 1601 b 80.9 <0.001 <0.001 0.847
Yield (g/d)
Milk 1359 a 1376 a 1435 a 1013 b 58.0 <0.001 <0.001 0.398
Fat 72.5 b 79.4 ab 80.4 a 51.2 c 3.59 <0.001 <0.001 0.196
Protein 69.8 a 70.1 a 73.0 a 52.4 b 2.76 <0.001 <0.001 0.335
Lactose 68.1 a 68.8 a 72.5 a 48.3 b 3.05 <0.001 <0.001 0.436
Total solids 222.6 a 230.7 a 238.8 a 161.0 b 9.54 <0.001 <0.001 0.319
Composition (g/100 g)
Fat 5.32 b 5.69 a 5.61 a 5.11 b 0.12 <0.001 <0.001 0.540
Protein 5.19 b 5.11 b 5.12 b 5.35 a 0.08 0.010 0.003 0.012
Lactose 4.99 a 4.97 a 5.03 a 4.69 b 0.04 <0.001 0.002 0.001
Total solids 16.29 a 16.68 a 16.67 a 16.04 b 0.15 <0.001 0.006 0.270

1 Diets: Control = TMR supplemented with 2.3% of hydrogenated palm oil (PROFAT, Mateos S.L, Valladolid,
Spain); LO = TMR supplemented with 2.3% of linseed oil (ECOFLAX FEED OMEGA-3, BTSA, Alcalá de Henares,
Madrid, Spain); CaS-LO = TMR supplemented with 2.3% of fat from calcium salts of linseed oil (LINOFAT,
Nutrion International SLU, Madrid, Spain); AO = TMR supplemented with 2.3% of algae oil (BIOMEGA TECH A
40 FEED, BTSA, Alcalá de Henares, Madrid, Spain). 2 Standard error of the difference. 3 Probability of significant
effect of lipid supplement (D), week of lactation during the experimental period (T), and their interaction (D × T).
a–c Means with different superscripts differ significantly (p < 0.05).

AO supplementation strongly reduced DMI (p < 0.01) and milk yield (p < 0.01), when
compared to the control, LO and CaS-LO diets. Previous studies have reported decreases
in feed intake when marine algae were administered to cows [27], goats [28] and dairy
sheep [13]. The drop in DMI caused by AO treatment may be justified by some aspects
related to long-chain PUFA, such as the lower acceptability of AO due to its palatability [12]
or reductions in microbial activity and fiber fermentation. In fact, disturbance of rumen
fermentation through very long chain PUFA could explain most of the reduced DMI. On
the other hand, marine lipids could also be toxic to ruminal microbiota and, therefore,
negativezly affect ruminal fermentation processes and animal feed consumption [29]. The
high dose of unprotected AO administered in the current experiment (2.3%) should be
taken into account, since smaller doses (<1.5%) of marine algae did not decrease DMI in
dairy sheep [16]. The lower DMI observed in ewes from AO (p < 0.001) would explain the
reduction of milk yield in animals following this treatment (p < 0.001).

In comparison to the control diet, average DMI and milk yield did not change (p > 0.05)
in ewes fed diets supplemented with LO and CaS-LO, and no remarkable changes were
observed between LO and CaS-LO rations. Previous experiments [7,30] have reported
that ewes readily accept LO and that feeding up to 3% of LO (DM basis) would have no
effect on DMI and milk yield. Similarly, Côrtes et al. [31] observed no effect on DMI or
milk production when cows were fed with whole flaxseed or calcium salts of flaxseed
oil. In the present experiment, although milk yield did not significantly differ among
LO and CaS-LO, numerically, CaS-LO treatment showed the highest milk yield. It has
been pointed out that improvements in milk yield could be accounted for by the greater
digestibility of fiber and digestible energy content of the diet when calcium soaps of fatty
acids were fed in comparison to free oil [32]. The controversies between studies on animal
performance affected by oil and calcium soaps could also be explained by differences in the
lipid dosage [33].

The lowest milk fat yield and fat percentage were found in the AO treatment (Table 2).
However, the reduction of milk fat percentage was limited despite the high level of AO
(2.3%) included. Decreased fat contents in milk caused by algae supplementation has been
previously reported in several studies [14,16,27]. The reduction in milk fat content has been
associated with a negative energy balance as a result of low feed intake or to a low fat
syndrome related to the action of EPA and DHA on rumen microbiota, favoring alternative
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BH pathways that produce antilipogenic metabolites [34]. In the present research, BH
intermediates that could explain marine lipid-induced milk fat depression, such as trans-
10 18:1, remained low. Therefore, their roles as milk fat synthesis inhibitors could not
be justified and the reduction in dairy fat production would suggest that other FA or
mechanisms might have an additional role in milk fat secretion [35]. In this line, the low fat
syndrome of AO animals could be caused by a reduced synthesis of cis-9 18:1. Oleic acid
has been proposed as one of the principal FA responsible for the maintenance of milk fat
globule fluidity in the mammary gland and, consequently, for their secretion [16,36]. On the
other hand, several BH intermediates derived from AO could also reduce the expression of
enzymes involved in de novo FA synthesis in the mammary gland, as it has been reported
in molecular studies [34]. The role of ruminal volatile FA, such as in the decrease in ruminal
acetate, also deserves attention in this matter, as de novo FA synthesis is stimulated by
acetate and marine oils may reduce its production [35]. The present results show that
long-chain PUFA may be able to inhibit acetate producing bacteria and therefore the de
novo lipogenesis as observed in many in vivo and in vitro investigations [31]. Apart from
that, the concentration effect linked to the decrease in milk yield could explain the limited
milk fat reduction despite the high level of AO, prevailing over the effect of AO on de novo
FA synthesis [13].

The addition of fat to ruminant diets generally reduces the protein content of milk
due to an increase in milk production [37]. However, in the present study, milk yield was
reduced in AO diets and a concentration effect could explain the observed increase in milk
protein and also the reduction in lactose concentration. These findings are in line with
previous research in lactating cows [27], goats [28] and sheep [12,13] fed with Schizochytrium
sp. diets.

No remarkable changes were observed in daily fat, protein, lactose or total solids
production among control and LO and CaS-LO treatments (Table 2), due to the lack of
changes in DMI and milk yield. LO and CaS-LO diets increased (p < 0.01) milk fat concen-
tration when compared to the addition of hydrogenated palm oil (control). The intestinal
absorption of fat consumed by ewes following the LO and CaS-LO treatment could be
higher than in the control and this is probably the reason that explains its higher milk
fat content. Changes in total solids in milk reflected the main changes in fat, protein and
lactose content (Table 2).

3.2. Saturated Fatty Acid Profile

Tables 3–5 show the detailed FA profile of milk from ewes fed the four diets assayed.
Dairy fat composition was substantially modified when rations incorporated different
n-3 FA sources. In contrast, the effects associated with time on diet or the interaction
diet × time were less prominent.

Total non-branched SFA levels in milk were significantly reduced (p < 0.01) due to
the replacement of SFA with n-3 FA in diets. Linseed oil treatment showed the lowest
contents (65.07%), followed by CaS-LO (68.15%) and AO (69.87%). The steepest declines
were observed for even FA from 10 to 18 C atoms. LO and CaS-LO feeding diminished
(p < 0.01) 12:0, 14:0 and 16:0, whose sum was reduced by 26% (LO) and 20% (CaS-LO),
when compared to the control diet (Table 3). This reduction was not as drastic with AO (9%
drop) but this supplement showed a critical effect on 18:0 milk content.
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Table 3. Saturated fatty acid (SFA) profile (g/100 g of total fatty acid methyl esters) of milk fat from
ewes fed with 2.3% of different lipid supplements.

Diets 1 Probability 3

Item Control LO CaS-LO AO SED 2 D T D × T

4:0 3.47 b 3.93 a 3.81 a 3.16 c 0.137 <0.001 0.261 0.138
5:0 0.02 a 0.03 a 0.03 a 0.02 b 0.003 0.001 0.267 0.680
6:0 3.19 b 3.31 ab 3.39 ab 3.49 a 0.126 0.119 0.117 0.429
7:0 0.07 a 0.05 b 0.05 b 0.05 b 0.007 0.014 0.248 0.324
8:0 3.23 b 3.19 b 3.31 b 3.77 a 0.153 0.001 0.092 0.800
9:0 0.12 a 0.08 b 0.09 b 0.08 b 0.011 0.001 0.376 0.265
10:0 11.82 a 9.15 c 10.30 b 10.90 ab 0.499 <0.001 0.348 0.285
11:0 0.16 a 0.07 b 0.10 b 0.07 b 0.022 <0.001 0.189 0.154
12:0 7.74 a 4.86 c 5.69 b 5.83 b 0.382 <0.001 0.864 0.018
13:0 0.13 a 0.07 b 0.08 b 0.08 b 0.012 <0.001 0.084 0.291
14:0 13.97 a 10.81 c 11.59 b 12.19 b 0.381 <0.001 0.010 0.572
15:0 1.13 a 0.77 b 0.82 b 0.80 b 0.054 <0.001 0.046 0.488
16:0 26.88 a 19.81 c 21.25 b 27.27 a 0.705 <0.001 0.346 0.071
17:0 0.71 a 0.47 c 0.52 bc 0.54 b 0.023 <0.001 0.001 0.034
18:0 4.57 c 7.97 a 6.69 b 1.31 d 0.484 <0.001 0.698 0.991
19:0 0.05 b 0.09 a 0.09 a 0.06 b 0.006 <0.001 0.467 0.109
20:0 0.14 c 0.19 a 0.16 b 0.10 d 0.009 <0.001 0.117 0.475
21:0 0.04 b 0.14 a 0.10 a 0.04 b 0.014 <0.001 0.474 0.639
22:0 0.05 b 0.06 a 0.06 a 0.04 b 0.004 <0.001 0.708 0.110
23:0 0.02 c 0.02 bc 0.02 b 0.03 a 0.002 <0.001 0.216 0.003
24:0 0.01 b 0.01 b 0.01 b 0.04 a 0.002 <0.001 0.996 0.186
TOTAL SFA (non-branched) 77.52 a 65.07 c 68.15 b 69.87 b 0.974 <0.001 0.447 0.806
iso 13:0 0.01 c 0.01 b 0.01 c 0.02 a 0.001 <0.001 0.022 0.994
anteiso 13:0 0.11 a 0.06 b 0.05 b 0.05 b 0.008 <0.001 0.007 0.186
iso 14:0 0.08 a 0.07 ab 0.06 c 0.07 bc 0.005 0.007 0.004 0.000
iso 15:0 0.13 c 0.15 b 0.13 c 0.19 a 0.009 <0.001 0.009 0.051
anteiso 15:0 0.35 b 0.33 bc 0.31 c 0.38 a 0.017 0.001 0.632 0.044
iso 16:0 0.23 0.22 0.21 0.24 0.021 0.714 0.087 0.404
iso 17:0 0.16 c 0.21 b 0.18 c 0.27 a 0.015 <0.001 0.363 0.972
anteiso 17:0 0.38 0.28 0.27 0.27 0.062 0.254 0.644 0.149
iso 18:0 0.05 b 0.04 c 0.04 c 0.06 a 0.003 <0.001 0.235 0.221
TOTAL SFA (branched) 1.49 ab 1.37 bc 1.26 c 1.55 a 0.085 0.005 0.185 0.170
TOTAL SFA 79.00 a 66.44 d 69.41 c 71.42 b 0.976 <0.001 0.521 0.813
HSFA 4 48.58 a 35.48 d 38.53 c 45.29 b 0.898 <0.001 0.055 0.920

1 Diets: Control = TMR supplemented with 2.3% of hydrogenated palm oil (PROFAT, Mateos S.L., Valladolid,
Spain); LO = TMR supplemented with 2.3% of linseed oil (ECOFLAX FEED OMEGA-3, BTSA, Alcala de Henares,
Madrid, Spain); CaS-LO = TMR supplemented with 2.3% of fat from calcium salts of linseed oil (LINOFAT,
Nutrion International SLU, Madrid, Spain); AO = TMR supplemented with 2.3% of algae oil (BIOMEGA TECH A
40 FEED, BTSA, Alcala de Henares, Madrid, Spain). 2 Standard error of the difference. 3 Probability of significant
effect of lipid supplement (D), time on diet (T), and their interaction (D × T). a–d Means with different superscripts
differ significantly (p < 0.05). 4 The hypercholesterolemic saturated fatty acids, HSFA = 12:0 + 14:0 + 16:0 [38].

The group of medium-chain SFA that includes 10:0, 12:0, 14:0 and 16:0 is mostly
synthesized de novo in the mammary gland. It is well established that increases in the
supply of long-chain PUFA alter the synthesis of those medium-chain SFA [37,39]. Dietary
PUFA compete for esterification with synthesized medium-chain SFA in the mammary
gland and the accumulation of such FA may lead to feedback inhibition of lipogenic
enzymes [40].
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Table 4. Monounsaturated fatty acid (MUFA) profile (g/100 g of total fatty acid methyl esters) of
milk fat from ewes fed with 2.3% of different lipid supplements.

Diets 1 Probability 3

Item Control LO CaS-LO AO SED 2 D T D × T

10:1 0.51 a 0.37 b 0.32 b 0.37 b 0.031 <0.001 0.025 0.690
cis-11 12:1 0.23 a 0.10 b 0.11 b 0.10 b 0.019 <0.001 0.042 0.065
cis-9 14:1 0.37 a 0.23 b 0.21 bc 0.17 c 0.030 <0.001 0.000 0.245
cis-7 16:1 0.23 a 0.23 a 0.22 ab 0.20 b 0.014 0.075 0.112 0.335
cis-8 16:1 0.03 b 0.06 a 0.05 a 0.05 a 0.007 0.002 0.155 0.569
cis-9 16:1 1.09 a 0.77 b 0.71 b 0.95 a 0.070 <0.001 0.051 0.949
Other cis 16:1 0.08 0.11 0.12 0.17 0.646 0.534 0.3947 0.488
cis-13 16:1 0.02 b 0.03 a 0.02 a 0.02 b 0.002 <0.001 0.760 0.296
cis-9 17:1 0.17 a 0.12 b 0.13 b 0.09 c 0.009 <0.001 0.917 0.277
cis-9 18:1 11.46 c 15.37 a 13.17 b 5.97 d 0.623 <0.001 0.093 0.794
cis-11 18:1 0.48 b 0.54 b 0.55 b 1.07 a 0.038 <0.001 0.207 0.353
cis-12 18:1 0.19 b 0.53 a 0.58 a 0.07 c 0.047 <0.001 0.003 0.136
cis-13 18:1 0.02 b 0.04 a 0.04 a 0.02 b 0.003 <0.001 0.433 0.125
cis-15 18:1 0.04 b 0.25 a 0.19 a 0.03 b 0.032 <0.001 0.446 0.684
cis-11 20:1 0.07 c 0.09 b 0.10 a 0.09 ab 0.005 <0.001 0.125 0.308
Other 20:1 0.04 c 0.07 a 0.06 b 0.06 b 0.004 <0.001 0.006 0.129
22:1 n-9 0.01 c 0.01 b 0.01 bc 0.01 a 0.001 <0.001 0.069 0.676
TOTAL MUFA cis 15.05 c 18.93 a 16.61 b 9.44 d 0.651 <0.001 0.218 0.803
trans 15:1 0.09 b 0.09 b 0.09 b 0.14 a 0.008 <0.001 0.051 0.858
trans-5 16:1 0.02 a 0.02 b 0.02 b 0.01 b 0.002 <0.001 0.154 0.083
trans-6/7 16:1 0.02 0.02 0.02 0.02 0.001 0.699 0.039 0.816
trans-8 16:1 0.06 b 0.10 a 0.09 a 0.09 a 0.006 <0.001 0.346 0.544
trans-9 16:1 0.11 c 0.31 b 0.26 b 0.48 a 0.032 <0.001 0.758 0.924
trans-10 16:1 0.03 b 0.05 b 0.04 b 0.08 a 0.010 <0.001 0.818 0.731
trans-11 + trans-12 16:1 0.02 c 0.09 a 0.09 a 0.06 b 0.005 <0.001 0.932 0.981
trans-4 18:1 0.01 d 0.02 b 0.03 a 0.00 c 0.002 <0.001 0.082 0.273
trans-5 18:1 0.02 d 0.02 b 0.02 a 0.02 bc 0.002 <0.001 0.295 0.041
trans-6+trans-7+trans-8 18:1 0.13 b 0.39 a 0.39 a 0.11 b 0.022 <0.001 0.169 0.080
trans-9 18:1 0.15 c 0.40 a 0.39 a 0.24 b 0.025 <0.001 0.310 0.556
trans-10 18:1 0.25 b 0.77 a 0.69 ab 0.66 ab 0.235 0.128 0.067 0.335
trans-11 18:1 0.42 c 3.55 b 3.55 b 5.20 a 0.423 <0.001 0.169 0.481
trans-12 18:1 0.23 c 0.78 a 0.80 a 0.65 b 0.045 <0.001 0.172 0.138
trans-16 18:1 + cis-14 18:1 0.16 b 0.43 a 0.39 a 0.06 c 0.025 <0.001 0.479 0.944
TOTAL MUFA trans 1.71 b 7.04 a 6.89 a 7.85 a 0.517 <0.001 0.582 0.341
TOTAL MUFA 16.76 c 25.97 a 23.50 b 17.29 c 0.773 <0.001 0.161 0.878

1 Diets: Control = TMR supplemented with 2.3% of hydrogenated palm oil (PROFAT, Mateos S.L. Valladolid,
Spain); LO = TMR supplemented with 2.3% of linseed oil (ECOFLAX FEED OMEGA-3, BTSA, Alcala de Henares,
Madrid, Spain); CaS-LO = TMR supplemented with 2.3% of fat from calcium salts of linseed oil (LINOFAT,
Nutrion International SLU, Madrid, Spain); AO = TMR supplemented with 2.3% of algae oil (BIOMEGA TECH A
40 FEED, BTSA, Alcala de Henares, Madrid, Spain). 2 Standard error of the difference. 3 Probability of significant
effect of lipid supplement (D), time on diet (T), and their interaction (D × T). a–d Means with different superscripts
differ significantly (p < 0.05).

The low levels of 18:0 in AO diet milk is related to the inhibitory effect that oils from
marine origin could exert on the last step of ruminal BH: the formation of 18:0 from MUFA
in the rumen. Altogether, the decrease in 18:0 and the increase in trans-18:1 in milk from
ewes fed the AO diet reflect the action of the long chain n-3 PUFA present in marine algae,
mainly DHA [41], on trans-18:1 ruminal accumulation [42].

The hypercholesterolemic SFA (12:0 + 14:0 + 16:0) was significantly diminished
(p < 0.01) in the three n-3 FA supplemented diets, but in higher proportion in the LO
diet (Table 3). A major concern of consuming whole milk is the high proportion of SFA in
dairy fat and, thus, the observed reduction of hypercholesterolemic SFA should be consid-
ered positive from a nutritional standpoint. In this line, it has been reported that reducing
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SFA at the expense of increasing monounsaturated fatty acids (MUFA) in dairy products
would be an effective strategy to improve endothelial function and LDL cholesterol levels
in patients with cardiovascular risk [43].

The proportion of branched-chain fatty acids (BCFA) was about 1.5% (Table 3). BCFA
are an emerging group of bioactive FAs sparking growing research interest within the
scientific community due to their biological effects and potential pro-health benefits [44].
Because BCFA are principally derived from rumen bacteria, milk and dairy products pose
unique dietary sources. Overall, in the current research, only CaS-LO decreased the total
content of this FA group in milk fat. Regarding the most abundant individual BCFA, iso
16:0 and anteiso 17:0 contents were not affected by lipid supplementation (Table 3) whereas
anteiso 15:0 levels were higher in AO experimental treatment.

3.3. Monounsaturated Fatty Acid Profile

Table 4 shows the contents of monounsaturated FA (MUFA) in milk fat obtained
with the assayed diets. As can be seen, total MUFA with the cis configuration differed
among treatments. Percentages in the LO and CaS-LO treatments were higher (p < 0.01)
than the control, whereas a substantial reduction was observed when ewes were fed with
AO. These trends should be principally attributed to the behavior of cis-9 18:1 (oleic acid),
quantitatively the most abundant 18:1 isomer in dairy fat. An increase of oleic acid in
milk tends to be closely linked to the levels of 18:0. The 18:0 generated in the rumen, after
complete BH of unsaturated lipids, can be subsequently converted into cis-9 18:1 in the
mammary gland via ∆9-desaturase, contributing to increase in the contents of oleic acid
in milk.

In contrast, oleic acid levels were reduced by half when AO was included in ewe
rations (Table 4). As mentioned above, this decrease would be indirectly derived from
the inhibitory action of long-chain n-3 PUFA present in AO, mainly DHA, on the ruminal
microorganisms involved in the conversion of MUFA to 18:0. Subsequently, the low supply
of 18:0 to the mammary gland would reduce the formation of oleic acid in this organ.

Other 18:1 isomers such as cis-12 and cis-15 experienced a strong rise with LO diets,
multiplying their contents in milk fat. Both 18:1 isomers have been documented as interme-
diates of the ALA BH processes [4,6]. In comparison, the presence of AO, a lipid substrate
very poor in ALA (Table 1), did not increase the content of these 18:1 cis isomers in ewe
milk fat.

Regarding trans FA, 18 C atoms isomers were the most prominent in all diets. The rest
of the trans MUFA were measured in much smaller quantities (Table 4). Overall, total trans
MUFA detected in PUFA supplemented diets quadrupled the control milk values, without
significant differences among them. However, the behavior of the most abundant isomers,
trans-10 and trans-11 (vaccenic acid, VA), was influenced by the type of lipid supplement.
LO and CaS-LO multiplied the VA content by eight, whereas AO sharply increased the level
of this trans isomer from 0.42 (control) to 5.20%. Concerning trans-10 18:1, only the LO diet
significantly modified (p < 0.01) the content of this isomer with respect to the control value.

The increment of VA in ewe milk fat is quite characteristic of diets enriched in
ALA [7,8,11] and, therefore, it was expected. This trans MUFA is an important inter-
mediate in the process of ALA BH [4,6]. Regarding the VA levels detected in AO diet milk,
its presence may be associated to the action of the long chain n-3 PUFA present in AO,
mainly DHA, a potent inhibitor of trans-18:1 ruminal final reduction, which induced the
accumulation of VA in the rumen [45].

Apparently, the gain of a trans FA should be considered negative from a nutritional
point of view. Nevertheless, since more than a decade ago, a number of positive health
effects have been ascribed to VA [5]. The greatest interest in increasing VA concentration
in dairy fat has come from its role as substrate for the endogenous synthesis of cis-9
trans-11 18:2 (rumenic acid, RA) via ∆9-desaturase, not only in the ruminant mammary
gland but also in human tissues [45]. RA is one of the most relevant bioactive compounds
present in milk fat. It exhibits, both in vivo and in vitro, antitumor, anti-atherosclerosis
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and antidiabetic effects, and also modulates the immune system [5]. As can be seen in the
current research, those diets inducing the largest accumulation of VA, AO principally, also
resulted in the highest RA concentrations.

Other trans 18C MUFA did not experience changes with the different lipid supplements
or their increases were moderated in comparison to VA. The lack of an increase in trans-10
18:1 when supplementing AO in the current study (Table 4) is particularly remarkable
because this FA has been associated with the risk of cardiovascular disease in humans [46].
The main reason for the absence of trans-10 18:1 changes may be linked to the source of
lipid supplementation. Trans-10 18:1 milk content has been reported to increase in ewes
when supplementing ewe diets with a source of linoleic acid [14,16] and its concentration
was low (LO and CaS-LO) or very low (AO) in our assayed lipid supplements (Table 1).
Trans-10 18:1 was only augmented in the LO treatment by 0.25 to 0.77%, very far from the
percentage reached by VA.

It is also striking that no differences were observed in the contents of any trans 18C
MUFA between LO and CaS-LO diets. These results would be evidence supporting the
poor efficiency of calcium salts to protect ALA present in LO when they pass through the
digestive tract.

3.4. n-3 Fatty Acid Profile

Table 5 reports the percentages of the PUFA obtained in milk fat with the four diets
assayed. The highest levels of ALA were found in LO and CaS-LO supplemented diet
milks, 0.82 and 0.70%, respectively, doubling the values of the palm-oil-supplemented diet
animal milk samples. In comparison, ALA contents in control and AO treatments did
not significantly differ. These results are a clear consequence of the presence of ALA in
the rations (Table 1). Adding either linseed or linseed oil, not marine substrate which is
poor in this FA, has been demonstrated as the best way to increase ALA in ovine dairy
products [7,8].

Table 5. Polyunsaturated fatty acid (PUFA) profile (g/100 g of total fatty acid methyl esters) of milk
fat from ewes fed with 2.3% of different lipid supplements. ALA (α-linolenic acid); DHA (22:6 n-3);
DPA (20:5 n-3); EPA (22:3 n-3).

Diets 1 Probability 3

Item Control LO CaS LO AO SED 2 D T D × T

trans-11 trans-15 18:2 0.02 b 0.02 ab 0.04 a 0.03 b 0.003 0.004 0.020 0.347
trans-9 trans-12 18:2 0.01 d 0.12 a 0.08 b 0.03 c 0.009 <0.001 0.132 0.186
Other trans trans 18:2 0.04 b 0.12 a 0.12 a 0.04 b 0.006 <0.001 0.184 0.100
cis-9 trans-13 18:2 0.21 b 0.62 a 0.62 a 0.16 b 0.031 <0.001 0.039 0.103
trans-8 cis-13 18:2 0.12 c 0.25 a 0.21 b 0.05 d 0.017 <0.001 0.016 0.100
cis-9 trans-12 18:2 0.04 b 0.08 a 0.08 a 0.04 b 0.008 <0.001 0.663 0.730
trans-9 cis-12 18:2 0.01 b 0.03 a 0.03 a 0.03 a 0.002 <0.001 0.571 0.771
trans-11 cis-15 18:2 0.03 c 0.76 a 0.46 b 0.40 b 0.068 <0.001 0.768 0.806
cis-9 cis-12 18:2 2.05 a 1.65 b 1.90 a 1.25 c 0.099 <0.001 0.826 0.451
cis-9 cis-15 18:2 0.03 b 0.06 a 0.04 b 0.02 c 0.006 <0.001 0.976 0.245
cis-12 cis-15 18:2 0.01 c 0.17 a 0.08 b 0.01 c 0.018 <0.001 0.746 0.407
cis-9 trans-11 18:2 0.32 c 1.78 b 1.61 b 2.68 a 0.211 <0.001 0.315 0.721
TOTAL 18:2 2.88 c 5.65 a 5.26 ab 4.71 b 0.283 <0.001 0.201 0.571
18:3 n-6 0.09 a 0.03 b 0.04 b 0.03 b 0.006 <0.001 0.287 0.263
18:3 n-3 0.40 c 0.82 a 0.70 b 0.30 c 0.051 <0.001 0.103 0.216
cis-9 trans-11 trans-15 18:3 0.04 c 0.06 ab 0.07 a 0.05 b 0.006 <0.001 0.000 0.124
cis-9 trans-11 cis-15 18:3 0.05b 0.15 a 0.14 a 0.02 b 0.016 <0.001 0.144 0.205
20:2 n-6 0.03 a 0.01 b 0.02 a 0.02 a 0.002 <0.001 0.359 0.526
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Table 5. Cont.

Diets 1 Probability 3

Item Control LO CaS LO AO SED 2 D T D × T

20:3 n-6 0.02 b 0.02 b 0.02 b 0.04 a 0.002 <0.001 0.456 0.759
20:3 n-3 <0.01 b <0.01 b <0.01 b 0.03 a 0.002 <0.001 0.891 0.975
20:4 n-6 0.14 b 0.08 c 0.09 c 0.34 a 0.017 <0.001 0.994 0.634
22:2 n-6 0.01 b 0.01 b 0.01 b 0.04 a 0.001 <0.001 0.014 0.059
20:5 n-3 0.03 b 0.03 b 0.03 b 0.46 a 0.025 <0.001 0.815 0.956
22:4 n-6 0.02 b 0.01 b 0.01 b 0.10 a 0.007 <0.001 0.498 0.368
22:5 n-6 <0.01 b <0.01 b <0.01 b 0.58 a 0.029 <0.001 0.905 1.000
22:5 n-3 0.06 b 0.07 b 0.07 b 0.39 a 0.016 <0.001 0.041 0.037
22:6 n-3 0.02 b 0.02 b 0.02 b 2.63 a 0.149 <0.001 0.869 0.992
TOTAL PUFA 0.90 b 1.32 b 1.23 b 5.03 a 0.228 <0.001 0.799 0.952
TOTAL n-3 0.60 c 1.15 b 1.04 b 3.87 a 0.189 <0.001 0.674 0.924
TOTAL n-6 2.35 a 1.82 c 2.09 b 2.40 a 0.117 <0.001 0.712 0.559
n-6/n-3 3.98 a 1.63 c 2.07 b 0.65 d 0.096 <0.001 0.038 0.411
AI 4 4.66 a 2.39 d 2.78 c 3.53 b 0.187 <0.001 0.043 0.477
TI 5 3.95 a 2.17 c 2.44 b 1.82 d 0.121 <0.001 0.062 0.714
mg of ALA/100 g of milk 20.4 c 48.2 a 38.0 b 14.6 c 3.23 <0.001 0.089 0.225
mg of DPA/100 g of milk 1.7 b 1.9 b 1.7 b 22.1 a 1.21 <0.001 0.658 0.841
mg of EPA/100 g of milk 3.0 b 4.0 b 3.7 b 19.0 a 0.93 <0.001 0.113 0.928
mg of DHA/100 g of milk 1.1 b 1.3 b 1.3 b 127.5 a 7.25 <0.001 0.792 0.970

1 Diets: Control = TMR supplemented with 2.3% of hydrogenated palm oil (PROFAT, Mateos S.L., Valladolid,
Spain); LO = TMR supplemented with 2.3% of linseed oil (ECOFLAX FEED OMEGA-3, BTSA, Alcala de Henares,
Madrid, Spain); CaS-LO = TMR supplemented with 2.3% of fat from calcium salts of linseed oil (LINOFAT, Nutrion
International SLU, Madrid, Spain); AO = TMR supplemented with 2.3% of algae oil (BIOMEGA TECH A 40 FEED,
BTSA, Alcala de Henares, Madrid, Spain). 2 Standard error of the difference. 3 Probability of significant effect of
lipid supplement (D), time on diet (T), and their interaction (D × T). a–d Means with different superscripts differ
significantly (p < 0.05). 4 Atherogenic Index (AI) = (12:0 + 4 × 14:0 + 16:0)/(MUFA + PUFA) [47]. 5 Thrombogenic
Index (TI) = (C 14:0 + C16:0 + C18:0)/[(0.5 × MUFA) + (0.5 × ∑ n-6) + (3 × ∑ n-3) + (∑ n-3/∑ n-6)] [47].

The similarity in milk ALA contents between CaS-LO and LO diets indicates that
Ca-salts of LO were not very useful to protect and increase the levels of this n-3 FA in
milk fat. Even more, ALA was higher with unprotected LO (Table 5). The raising of cis-9,
trans-11 cis-15 18:3 and cis-9 trans-11 trans-15 18:3 in both ALA enriched diets would be
additional evidence supporting this idea. Both 18:3 isomers are intermediates of the BH
process of ALA [48]. If the use of Ca-salts were effective to avoid the degradation of ALA in
the digestive tract, both 18:3 BH intermediates should have been found in lower percentage
in CaS-LO when compared to LO supplemented diet milks.

The presence of AO in the diet of lactating ewes significantly increased (p < 0.01)
the contents of all long-chain n-3 FA (DPA, EPA and DHA) in milk (Table 5), whereas
feedings based on LO did not modify them. The most relevant increase was achieved for
DHA (2.63%). Microalgae are the original source of DHA in the marine food chain, and
its presence in animal feeds has been considered as a means of enhancing the level of this
long-chain n-3 PUFA in foods of animal origin [15,49]. Previous studies have demonstrated
that the inclusion of microalgae improved the nutritional properties of ewe´s milk with
regard to DHA composition [12,13,16].

Therefore, despite ruminal BH, a proportion of the dietary DHA would have reached
the small intestine intact and would have subsequently been absorbed and deposited
in the mammary gland when ewes were fed with AO. Several reasons could be behind
this non-altered DHA growth (Table 5). Maia et al. [50] suggested that the inclusion of
microalgae may exert toxic effects on ruminal bacteria, mainly in the Butyrivibrio group,
considered to be the dominant species responsible for PUFA BH. Marine algae are a source
of phenolic compounds that possess antioxidant and antibacterial properties [51]. It has
also been reported that ruminants fed with high tannin levels show greater PUFA contents
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in their tissues, in comparison to animals fed with plants containing lower levels of these
compounds [52].

On the other hand, BH is not the only mechanism that could affect the transfer to
milk fat of DHA from the diet. n-3 FA is preferably transported in plasma phospholipids,
which limits their transfer to the mammary gland [4]. However, there seems to be some
evidence that when the absorbed amount of DHA is high, the capacity of its transport
by phospholipids may be saturated and part of the available DHA would be transported
as triglycerides, resulting in a higher transfer efficiency from the blood to milk fat [53].
Nevertheless, the maximal proportion of DHA that ewe milk fat can accommodate still
remains unclear. Despite the high DHA content of the AO supplement (44% of total FA),
increases in milk fat were limited and represented an average transfer efficiency (g in
milk/100 g consumed) of only 4.9%, in line with or lower than previous transferences
reported in dairy ewes [12–14,16].

The second most abundant n-3 FA in the AO diet was EPA, with 0.46% (Table 5).
Despite its very low amount in AO (Table 1), its levels were multiplied by 15 with respect to
control milk. These results could be a consequence of the retroconversion of DHA to EPA in
the tissues, previously observed by Alvarenga et al. [54] when lambs were fed with algae.

Based on the milk fat content reported in Table 2, the calculated sum of EPA plus DHA
in the AO experimental group rendered a total of 147 mg/100 g of milk. According to
the European Union regulations [55], which define a food ‘high in omega-3 fatty acids’ if it
contains 80 mg of EPA + DHA per 100 g food, the inclusion of 2.3% AO in the assayed
experimental diets would allow this standard to be met in ewe milk. In comparison, milk
from animals fed LO and CaS-LO diets provided barely 48 and 38 mg of ALA, respectively,
per 100 g of milk. These values are very far from the claim that a food is ‘high in omega-3
fatty acids’ or even a ‘source of omega-3 fatty acids’. These claims may only be made when
the product contains at least 0.6 (high) or 0.3 g (source) of ALA per 100 g of food [55]. It is
therefore evident that AO supplementation in the present trial was the most efficient way
to contribute towards meeting n-3 FA requirements.

The percentages of DPA in AO diet milk were six times higher than in the control diet,
whereas control and LO supplemented diets did not statistically differ (Table 5). Although
DPA is not considered in the regulations as a source of health-claimable n-3 FA [55], different
beneficial properties have been reported in human nutrition. Among other effects, DPA is
the precursor for oxylipins and anti-inflammatory and neuroprotective compounds, and
it stimulates endothelial cell migration much more efficiently than EPA [1,52]. Thus, the
presence of DPA in ewe’s milk would enhance the actual n-3 FA content to higher values
and could improve its composition from a nutritional perspective.

The ratio n-6/n-3 is generally considered to be essential when judging the nutritional
composition of foods from the point of view of human health. It is desirable that the
ratio is below a maximum recommended level of four [56]. In the present research, the
lowest n-6/n-3 ratio (0.65) was obtained in milk derived from the AO diet and reflects the
greater dietary concentration and tissue uptake of long-chain n-3 PUFA in this treatment.
The use of LO supplemented diets (LO and CaS-LO) also decreased this ratio but algae
supplementation was demonstrated to be more effective (Table 5). The lowest thrombogenic
index (TI) was also obtained for AO samples (1.82), reduced by half in comparison to control,
which evidences the nutritional advantage of AO supplemented diet milk. In contrast, the
lowest values of the atherogenic index were observed in samples derived from linseed oil
supplemented diets (Table 5).

4. Conclusions

In dairy ewes, the replacement of a fat enriched in SFA by 2.3% with fat from different
sources of n-3 FA (linseed oil, calcium salts of linseed oil and algae oil) contributed to
increasing n-3 FA, VA and RA levels in milk and to decreasing the content of SFA in different
degrees. In relation to health implications, AO was an effective strategy to enrich ewe milk
with DPA, EPA and DHA and to decrease the TI index and the n6/n3 ratio. This effect may
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have important implications for the manufacture of dairy products with a healthier FA
profile. However, ruminal protected forms of AO should be considered in order to prevent
its negative effects on DMI, milk yield and quality. The few differences observed between
LO and CaS-LO in the milk FA profile reject the hypothesis that supplementation with
CaS-LO could avoid the BH of n-3 FA, such as ALA, in the rumen. Finally, the consequences
that may arise, in terms of oxidative stability, when ewes’ milk cheese has a high content of
long-chain n-3 PUFA deserve to be studied further
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chemical and sensory properties of goat cheeses and their fatty acid profile in relation to the geographic region of production. Int.
J. Dairy Technol. 2018, 71, 699–708. [CrossRef]

39. Kadegowda, A.K.G.; Bionaz, M.; Piperova, L.S.; Erdman, R.A.; Loor, J.J. Peroxisome proliferator-activated receptor-γ activation
and long-chain fatty acids alter lipogenic gene networks in bovine mammary epithelial cells to various extents. J. Dairy Sci. 2009,
92, 4276–4289. [CrossRef]

40. Palmquist, D.L. Milk fat: Origin of fatty acids and influence of nutritional factors thereon. In Advanced Dairy Chemistry, 3rd ed.;
Fox, P.F., McSweeney, P.L.H., Eds.; Springer: New York, NY, USA, 2006; Volume 2, pp. 43–92.

41. AbuGhazaleh, A.A.; Jenkins, T.C. Short Communication: Docosahexaenoic Acid Promotes Vaccenic Acid Accumulation in Mixed
Ruminal Cultures When Incubated with Linoleic Acid. J. Dairy Sci. 2004, 87, 1047–1050. [CrossRef]

42. Or-Rashid, M.M.; Kramer, J.K.G.; Wood, M.A.; McBride, B.W. Supplemental algal meal alters the ruminal trans-18:1 fatty acid and
conjugated linoleic acid composition in cattle. J. Anim. Sci. 2008, 86, 187–196. [CrossRef]

43. Vasilopoulou, D.; Markey, O.; Kliem, K.E.; Fagan, C.C.; Grandison, A.S.; Humphries, D.J.; Todd, S.; Jackson, K.G.; Givens, D.I.;
Lovegrove, J.A. Reformulation initiative for partial replacement of saturated with unsaturated fats in dairy foods attenuates
the increase in LDL cholesterol and improves flow-mediated dilatation compared with conventional dairy: The randomized,
controlled Replacement of Saturated fat in dairy on Total cholesterol (RESET) study. Am. J. Clin. Nutr. 2020, 111, 739–748.
[CrossRef]

44. Taormina, V.M.; Unger, A.L.; Schiksnis, M.R.; Torres-Gonzalez, M.; Kraft, J. Branched-Chain Fatty Acids—An Underexplored
Class of Dairy-Derived Fatty Acids. Nutrients 2020, 12, 2875. [CrossRef]

45. Palmquist, D.L.; Lock, A.L.; Shingfield, K.J.; Bauman, D.E. Biosynthesis of conjugated linoleic acid in ruminants and humans.
In Advances in Food and Nutrition Research; Taylor, S.L., Ed.; Elsevier Academic Press: San Diego, CA, USA, 2005; Volume 50,
pp. 179–217.

46. Chardigny, J.-M.; Destaillats, F.; Malpuech-Brugère, C.; Moulin, J.; Bauman, D.E.; Lock, A.L.; Barbano, D.M.; Mensink, R.P.;
Bezelgues, J.-B.; Chaumont, P.; et al. Do trans fatty acids from industrially produced sources and from natural sources have the
same effect on cardiovascular disease risk factors in healthy subjects? Results of the trans Fatty Acids Collaboration (TRANSFACT)
study. Am. J. Clin. Nutr. 2008, 87, 558–566. [CrossRef]

47. Ulbricht, T.L.; Southgate, D.A. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [CrossRef]
48. Gómez-Cortés, P.; Tyburczy, C.; Brenna, J.T.; Juárez, M.; de la Fuente, M.A. Characterization of cis-9 trans-11 trans-15 C18:3 in

milk fat by GC and covalent adduct chemical ionization tandem MS. J. Lipid Res. 2009, 50, 2412–2420. [CrossRef] [PubMed]
49. Ponnampalam, E.N.; Lewandowski, P.A.; Fahri, F.; Burnett, V.F.; Dunshea, F.R.; Plozza, T.; Jacobs, J.L. Forms of n-3 (ALA, C18:3n-3

or DHA, C22:6n-3) Fatty Acids Affect Carcass Yield, Blood Lipids, Muscle n-3 Fatty Acids and Liver Gene Expression in Lambs.
Lipids 2015, 50, 1133–1143. [CrossRef]

50. Maia, M.R.G.; Chaudhary, L.C.; Figueres, L.; Wallace, R.J. Metabolism of polyunsaturated fatty acids and their toxicity to the
microflora of the rumen. Antonie Van Leeuwenhoek 2007, 91, 303–314. [CrossRef] [PubMed]

51. Vasta, V.; Mele, M.; Serra, A.; Scerra, M.; Luciano, G.; Lanza, M.; Priolo, A. Metabolic fate of fatty acids involved in ruminal
biohydrogenation in sheep fed concentrate or herbage with or without tannins. J. Anim. Sci. 2009, 87, 2674–2684. [CrossRef]

52. Alvarenga, T.I.R.C.; Chen, Y.; Furusho-Garcia, I.F.; Perez, J.R.O.; Hopkins, D.L. Manipulation of Omega-3 PUFAs in Lamb:
Phenotypic and Genotypic Views. Compr. Rev. Food Sci. Food Saf. 2015, 14, 189–204. [CrossRef] [PubMed]

53. Stamey, J.A.; Shepherd, D.M.; de Veth, M.J.; Corl, B.A. Use of algae or algal oil rich in n-3 fatty acids as a feed supplement for
dairy cattle. J. Dairy Sci. 2012, 95, 5269–5275. [CrossRef]

54. Alvarenga, T.I.R.C.; Chen, Y.; Lewandowski, P.; Ponnampalam, E.N.; Sadiq, S.; Clayton, E.H.; van de Ven, R.J.; Perez, J.R.O.;
Hopkins, D.L. The expression of genes encoding enzymes regulating fat metabolism is affected by maternal nutrition when lambs
are fed algae high in omega-3. Livest. Sci. 2016, 187, 53–60. [CrossRef]

55. European Union. Amending Regulation (EC) No 1924/2006 of the European Parliament and of the Council with Regard to the
List of Nutrition Claims. Commission Regulation (EU)No116/2010 of 10 February 2010. Off. J. Eur. Union 2010, L37, 16–18.

56. Simopoulos, A.P. The Importance of the Omega-6/Omega-3 Fatty Acid Ratio in Cardiovascular Disease and Other Chronic
Diseases. Exp. Biol. Med. 2008, 233, 674–688. [CrossRef]

http://doi.org/10.3168/jds.2018-14632
http://www.ncbi.nlm.nih.gov/pubmed/29705417
http://doi.org/10.1017/S1751731114000238
http://www.ncbi.nlm.nih.gov/pubmed/24576480
http://doi.org/10.1016/j.anifeedsci.2006.05.023
http://doi.org/10.1111/1471-0307.12506
http://doi.org/10.3168/jds.2008-1932
http://doi.org/10.3168/jds.S0022-0302(04)73250-6
http://doi.org/10.2527/jas.2007-0085
http://doi.org/10.1093/ajcn/nqz344
http://doi.org/10.3390/nu12092875
http://doi.org/10.1093/ajcn/87.3.558
http://doi.org/10.1016/0140-6736(91)91846-M
http://doi.org/10.1194/jlr.M800662-JLR200
http://www.ncbi.nlm.nih.gov/pubmed/19542528
http://doi.org/10.1007/s11745-015-4070-4
http://doi.org/10.1007/s10482-006-9118-2
http://www.ncbi.nlm.nih.gov/pubmed/17072533
http://doi.org/10.2527/jas.2008-1761
http://doi.org/10.1111/1541-4337.12131
http://www.ncbi.nlm.nih.gov/pubmed/33401793
http://doi.org/10.3168/jds.2012-5412
http://doi.org/10.1016/j.livsci.2016.02.013
http://doi.org/10.3181/0711-MR-311

	Introduction 
	Materials and Methods 
	Animals and Dietary Treatments 
	Milk Sampling and Composition 
	Fatty Acid Analysis 
	Statistical Analysis 

	Results and Discussion 
	Animal Performance and Milk Composition 
	Saturated Fatty Acid Profile 
	Monounsaturated Fatty Acid Profile 
	n-3 Fatty Acid Profile 

	Conclusions 
	References

