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Abstract

Background: Expression of the oestrogen receptor (ER) in breast cancer predicts benefit from endocrine therapy.
Minimising the frequency of false negative ER status classification is essential to identify all patients with ER positive breast
cancers who should be offered endocrine therapies in order to improve clinical outcome. In routine oncological practice ER
status is determined by semi-quantitative methods such as immunohistochemistry (IHC) or other immunoassays in which
the ER expression level is compared to an empirical threshold[1,2]. The clinical relevance of gene expression-based ER
subtypes as compared to IHC-based determination has not been systematically evaluated. Here we attempt to reduce the
frequency of false negative ER status classification using two gene expression approaches and compare these methods to
IHC based ER status in terms of predictive and prognostic concordance with clinical outcome.

Methodology/Principal Findings: Firstly, ER status was discriminated by fitting the bimodal expression of ESR1 to a mixed
Gaussian model. The discriminative power of ESR1 suggested bimodal expression as an efficient way to stratify breast
cancer; therefore we identified a set of genes whose expression was both strongly bimodal, mimicking ESR expression
status, and highly expressed in breast epithelial cell lines, to derive a 23-gene ER expression signature-based classifier. We
assessed our classifiers in seven published breast cancer cohorts by comparing the gene expression-based ER status to IHC-
based ER status as a predictor of clinical outcome in both untreated and tamoxifen treated cohorts. In untreated breast
cancer cohorts, the 23 gene signature-based ER status provided significantly improved prognostic power compared to IHC-
based ER status (P = 0.006). In tamoxifen-treated cohorts, the 23 gene ER expression signature predicted clinical outcome
(HR = 2.20, P = 0.00035). These complementary ER signature-based strategies estimated that between 15.1% and 21.8%
patients of IHC-based negative ER status would be classified with ER positive breast cancer.

Conclusion/Significance: Expression-based ER status classification may complement IHC to minimise false negative ER
status classification and optimise patient stratification for endocrine therapies.
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Introduction

Breast cancer is classified into clinically relevant subtypes based

on the expression of the oestrogen receptor (ER), classifying

tumours into ER positive and ER negative cases. These subtypes

are characterized by fundamentally different clinical risk for

disease-specific survival and response to various therapies[3]. ER

positive tumours are generally associated with better prognosis

than ER negative tumours and respond well to endocrine

therapies affecting oestrogen receptor activity. On the other hand,

ER negative tumours are highly proliferative and insensitive to

endocrine therapies. Consequently, the correct classification of ER

status, with particular attention to minimising the false negative

rate, has far reaching clinical implications in prognostication and

patient stratification for treatment. In current clinical practice, ER

expression levels are measured by semi-quantitative methods such

as immunohistochemistry (IHC) or enzymatic immunoassay (EIA).

To determine the ER status of a given tumour, an empirical,

subjectively chosen threshold has to be set. There are major

drawbacks of such a method; firstly, the analytical set-up is difficult
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to standardize across laboratories. Secondly, aspects of the staining

protocols such as the length of antigen retrieval and tissue fixation

differ from centre to centre resulting in a significant level of

variation in ER status classification[4]; thirdly, the ER status

derived from immunostaining approaches remains a subjective

judgement[5]; finally, the relationship between the empirical

threshold of ER positivity and the true underlying biological

function of the receptor, which is likely to determine endocrine

therapy sensitivity, is poorly elucidated[4]. These factors together

may result in a significant level of discordance of ER status

classification with a major impact on treatment choice and clinical

outcome in breast cancer.

Clinical studies of breast cancer have suggested that microarray-

based gene expression profiling may serve as a robust alternative to

immunohistochemistry to determine ER status in breast can-

cer[5,6,7,8]. Furthermore, the abundance of genes quantified by

high throughput profiling has led to the discovery of a complex

molecular network regulated by ER[9]. However, determination

of the optimal threshold for gene expression-based ER predictors

still remains problematic. One approach is to compare microarray

based expression measurements of the ER to those of IHC and

define the threshold value as the probe level that best separates ER

positive from ER negative tumours, determined according to

conventional methodologies[5]. Another approach is to select

genes highly correlated with ESR1 and define molecular subtypes

corresponding to pathological ER status based on the bimodal

distribution of the expression levels of a selected gene set[10,11].

These expression-based methods yield generally consistent

classifications in most of the samples tested between selected

ESR1 probe levels and the corresponding ER expression

measured by IHC. However, the concordance of the two methods

varies from one data set to another. Indeed, for a significant

proportion of samples, gene expression based classification and

IHC based classification differ, and it is currently unclear whether

these cases behave clinically more like true ER positive or true ER

negative cases[5]. Furthermore, both methods may produce false

predictions due to experimental deficiencies: for IHC-based

classification, false negatives may arise from experimental or

subjective errors detailed above. In fact it is possible that the

observed discordance between ER status calls in primary and

recurrent breast cancer is in some cases due to errors in IHC based

classification rather than a reflection of a true change in tumour

biology[12]. Direct comparison of the two methods reveals

discrepancies but does not establish which method is more

accurate.

We have chosen to investigate whether ER status defined by

gene expression-based approaches or IHC produces more

homogeneous patient cohorts in terms of clinical behaviour and

outcome. We focus on clinical outcome in patients treated with

and without endocrine therapy with discrepant ER classification in

order to estimate and define the potential impact of false negative

ER classification status on prognosis.

Materials and Methods

This study was conducted in compliance to Dana Farber/

Harvard Cancer Center, Institutional Review Board, protocol 93-

085 with appropriated patient consent.

Expression data sets and clinical annotation
For derivation of the genes specifically expressed in epithelium,

we performed gene-expression profile analysis in breast cancer cell

lines and sorted tumour epithelial cells. The data is publicly

available from ‘‘Gene Expression Omnibus’’ (GEO) with accession

number GSE23640 (http://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc = GSE23640).

For meta-analyses, we chose ten data sets with pathological

annotation of ER status based on IHC, EIA or both, incorporating

a total of 1975 breast cancer specimens to derive and validate the

classifiers for ER status (Table 1). These data sets were from

independent studies and all publicly available[8,10,13–20].

Redundant samples were excluded according to the annotated

sample origins.

We used the DFCI data sets as the reference data for derivation of

both expression-based ER classifiers. For the meta-analysis and

Kaplan-Meier survival curves, we used selected samples from six

validation sets (EMC, JBI1, GIS, NKI, TAM and VDX)

[8,15,16,18,21,22], of which both the treatment and follow-up data

were available from the original studies. The survival analyses were

performed separately for patients received systematic treatment and

patients did not.

Table 1. Summary of breast cancer cohorts used in this study.

Number of
patients

ER positive
tumors (%)

Experiments for
detecting ER expression

Received hormone/
adjuvant therapy (%)

Follow-up time
Median (range) in years

DFCI 175 100 (57.14) IHC NA NA

MSK 99 57 (57.58) IHC NA NA

EMC 286 209 (73.08) 10%, IHC;
10 fmol/mg, EIA

0 (0) 7.17 (0.17–14.25)

JBI1 189 149 (78.84) IHC 64 (33.86) 6.02 (0.02–14.53)

JBI2 120 0 (0) IHC 120 (100.00) NA

GIS 289 211 (73.01) 0.05 fmol/mg, EIA 147 (50.87) 9.92 (0–12.75)

JBI3 198 134 (67.68) IHC 198 (100.00) 12.50 (0.40–24.95)

MDA1 133 82 (61.65) 10%, IHC 133 (100.00) NA

MDA/MAQC 100 61 (61.00) 10%, IHC 100 (100.00) NA

NKI 295 226 (76.61) 10%, IHC 130 (44.07) 7.22 (0.05–18.34)

TAM 155 155 (100%) IHC 155 (100.00) 5.32 (0.12–13.76)

VDX 136 136 (100%) IHC 136 (100.00) 6.98 (0.63–15.83)

doi:10.1371/journal.pone.0015031.t001
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ER classification based on mixed Gaussian model
We used the Affymetrix HGU133a/HGU133plus2 probe set

‘‘205225_at’’ to represent the expression level of ESR1. We first

verified the bimodal distribution using coefficient of bimodality

with a threshold of 0.555. Then we decomposed the bimodal

distribution into two Gaussian distributions, which correspond to

two specific ER expression statuses. Based on the two inferred

distributions we derived a cohort-specific cut-off value for ESR1

using Mahalanobis distance which minimizes the estimated false

positive rate (FPR) and the false negative rate (FNR).

ER classification based on gene expression signature
In order to derive a multi-gene expression signature for ER

status, we collected nine cell lines (mostly ER negative) and five

primary tumours samples enriched for epithelial cells by digesting

tissue and sorting cells using BerEp4 antibody coated beads and

profiled mRNA expression using microarray[23]. Next we selected

17256 genes which were classified as ‘‘present calls’’ in more than

50% of the samples by ‘‘dChip’’ [24]. In order to exclude possible

confounding effects, we removed a further 1142 genes which are

highly expressed in stromal tissue from laser-capture microdis-

sected data sets using mix-effects linear model. From the

remaining genes we selected 258 genes of which the coefficient

of bimodality was larger than 0.555. Finally we selected 23 genes

of which the estimated false positive and false negative rates of

discrimination were both below 0.05 in the DFCI data set. We

assigned weights for these 23 genes by the signs of correlation

coefficients between each gene and the IHC based ER status, +1

or 21, and defined this as an ER expression signature. When

predicting a given microarray data set, we took the expression

profile of the 23 genes, determined their cut-off values based on

the bimodal distribution in the data set and compared the

weighted expression level of the 23 genes to the cut-off values. If 12

or more genes exceed the pre-defined cut-off values the sample

was then classified as ER positive and ER negative if 11 or fewer

genes exceeded the pre-defined cut-off values.

Survival analysis
We first performed meta-analyses in the subsets of the four

reference cohorts (EMC, JBI1, GIS, NKI) which received no

chemotherapy or endocrine therapy for IHC-based and expres-

sion-based ER statuses. Then with same method we assessed the

prognostic power of MKI67 in five-year disease-free survival

within ER positive and negative tumours in the four untreated

reference cohorts based on the IHC-based and expression-based

ER classifiers. In order to assess the clinical relevance of

misclassified ER positive or ER negative samples, we combined

the ER calls in the four reference cohorts and estimated the

hazard-ratios of expression-based ER status within IHC-based ER

positive and ER negative subsets, respectively. In order to assess

prognostic relevance in tamoxifen treated cohorts, we combined

three reference cohorts (JBI1, TAM and VDX) in which patients

were classified as IHC ER positive and all received endocrine

therapy (Tamoxifen). We estimated the hazard-ratio for ESR1-

based and signature-based ER status, respectively.

Results

An ER classifier based on ESR1 expression level
The expression profiles of many of the known breast cancer

gene markers such as ESR1, ERBB2 and AR have been shown to

follow a strong bimodal distribution, which corresponds to

different tumour subtypes[11,25,26]. Previous studies have

demonstrated that bimodal distribution of gene expression can

be used to stratify breast cancers into subtypes of distinct

prognoses and associated to known pathological risk-covariates

[27,28]. Two important issues remain to be addressed system-

atically: firstly, how can bimodality and a corresponding optimal

threshold be quantitatively defined, to select gene markers from

expression profiles enabling patient stratification; secondly, how

can the false negative rate be defined and minimised using these

techniques and what is its resultant impact upon clinical

outcome?

To resolve these questions, we have examined the distribution of

the ESR1 gene in ten datasets (Table 1). In nine datasets

containing both IHC-based ER positive and ER negative tumours,

we observed a bimodal distribution of ESR1 expression, with

coefficients of bimodality ranging from 0.619 to 0.776, whereas in

the data set with only IHC ER negative tumours (JBI2) there was

no visible bimodal distribution of ESR1 (coefficient of bimodality

= 0.412, Supplement Figure S1).

For each of the nine data sets, we used mixed Gaussian models

to decompose the density of ESR1 expression into two normal

distributions and then derived a dataset-specific, optimal

threshold value by Mahalanobis distance-based discrimination

(Supplement Figure S2 showing the distribution of ESR1 levels

for the DFCI cohort, other data not shown). We compared the

predicted ER status based on thresholding for ESR1 expression

value to the annotated ER status based on IHC for the ten data

sets and found that the two methods generated significantly

concordant classification of ER status (90.7%, Fisher exact test

P,2.20E-16, Table 2).

Table 2. Comparison of ER status determined by microarray-based classifiers to the ER status based on conventional IHC method
in 1846 samples from 10 published data sets.

Expression-based ER status ESR1 based ER+ ESR1 based ER- P value
23-gene signature
based ER+

23-gene signature
based ER- P value

IHC ER+ 93.0% 7.0% ,2.20E-16 90.9% 9.1% ,2.20E-16

IHC ER- 15.1% 84.9% ,2.20E-16 21.8% 78.2% ,2.20E-16

Overall concordance 90.7% 87.3%

Basal 7.2% 92.8% ,2.20E-16 3.9% 96.1% ,2.20E-16

Luminal A 99.8% 0.2% ,2.20E-16 98.6% 1.4% ,2.20E-16

Luminal B 99.4% 0.6% ,2.20E-16 96.3% 3.7% ,2.20E-16

Her2 36.3% 63.7% ,2.20E-16 48.7% 51.3% ,2.20E-16

doi:10.1371/journal.pone.0015031.t002
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An ER classifier based on epithelial-specific genes with a
bimodal distribution

Relying exclusively on the expression of a single gene (ESR1) or

genes which are co-regulated with ESR1 may have at least three

limitations. Firstly, the measurement of any single gene transcript can

be corrupted by experimental artefacts such as cross hybridization of

microarray probes[29]. Secondly, the detection of ESR1 transcripts

does not necessarily indicate a fully functional ER protein or ER

signalling pathway; and finally, epithelial cell ER expression status is

transient rather than constant, therefore determining ER status by its

expression in a relatively small subset of cells may introduce

additional bias[30]. Instead, the identification of genes following a

bimodal distribution, reflecting ESR1 expression in breast cancer

cohorts, which are epithelial-compartment specific, may present a

more robust strategy to develop an ER classifier.

Since ESR1 is only expressed in a proportion of epithelial cells,

the identification of epithelial-specific genes is a prerequisite to

define ER associated genes and a specific ER classifier. Therefore

we first identified a list of genes that are expressed in a wide variety

of breast cancer epithelial cell lines and tumour epithelial cells but

not in cells usually associated with breast stroma, such as

adipocytes, fibroblasts or lymphocytes. Since ESR1 alone may

not be the only component which determines the status of the

entire signalling pathway and may be subject to random effects, we

further hypothesized that genes in an ER status dependent

‘‘signature’’ will show a similar tendency to bimodality. Therefore,

we performed an exhaustive search of the entire epithelial gene list

to identify a cohort of genes with independent bimodal

distribution, of which ESR1 is also a member.

We started with a set of 17256 genes with ‘‘present calls’’ in

epithelial cell lines and enriched breast cancer epithelial cells. To

improve the specificity of these genes, we eliminated 1142 genes

which were found to be significantly over-expressed in tumour

stromal cells relative to epithelial cells from microdissected

biopsies[31]. Then we verified the bimodal distribution of these

genes in the DFCI data set using standard deviation and

coefficient of bimodality. Through this approach, we identified

258 genes for which the standard deviation across the samples is

larger than 1 and the coefficient of bimodality is larger than

0.555[32]. These 258 genes included several epithelial markers

such as KRT16, KRT23, KRT86 and MUC1 as well as several

genes related to proliferation and the cell cycle, such as CDC20,

CCNE2, CENPA, FOXA1 and FOXC1 (Figure 1).

To maximize discriminative power, we next estimated the false

positive rate (FPR) and false negative rate (FNR) for each of the 258

genes based on their binary expression status determined by the

bimodal distribution and the optimal threshold value, in the DFCI

data set (Supplement Text S1). This filtering step yielded 23 genes

with both FPR and FNR below 0.05. When combined into an ER

status-associated gene expression signature, the weights of each gene

were set to equal the sign of the correlation coefficient between the

expression level of each individual gene and that of ESR1 expression.

To validate the epithelial-specific gene selection approach and to

confirm that the correlation of the 23 genes with ESR1 expression is

unique to the epithelial gene list, we performed a similar procedure

for bimodal expression of non-epithelial genes, the resulting gene list

had a significantly lower correlation to IHC-based ER status in

comparison to our 23 gene signature (Supplement Figure S3).

Concordance between gene expression based ER
classification and IHC based ER status

Using these approaches, we have developed two gene

expression-based classifiers for ER status, the first was derived

from the expression of ESR1 and the second was derived from a

set of 23 genes specifically expressed within epithelial cells that

were selected based on their bimodal distribution. We compared

the ER status determined by these two classifiers to those based on

IHC in the ten data sets. We found that both classifiers yielded

highly concordant classifications with IHC-based ER status

(Table 2). The classifier based on ESR1 expression level was

concordant with IHC based ER status in 90.7% of the cases, and

the classifier based on the 23-gene ER signature in 87.3% of the

cases. On the other hand, both expression-based ER classification

methods produced a notable level of discrepancy with IHC-based

ER status; 9.3% and 12.7% of the samples are classified

discordantly by ESR1 and 23-gene expression-based classifiers,

respectively, compared to IHC-based ER status.

We also compared our two gene expression-based ER classifiers

to the expression profiling-based classes of Perou et al[7]. As

Figure 1. Schematic of deriving the 23-gene ER signature from
epithelial specifically expressed genes.
doi:10.1371/journal.pone.0015031.g001
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expected, tumours classified as ER negative by our gene

expression classification methods showed overlap with the basal-

like subtype of breast cancer (92.8%–96.1%). Moreover, expres-

sion-based ER positive tumours are significantly enriched for

luminal A (98.6%–99.8%) and luminal B (96.3%–99.4%) subtypes

(Table 2).

Gene expression-based ER status classification as a
prognostic tool

Since both IHC-based and expression-based ER classifiers may

produce false predictions due to possible technical limitations, an

evaluation of each classification method can be performed based

on their association with clinical outcome. We performed a meta-

analysis for ER status determined by IHC and by expression-based

classifiers in four publicly available data sets including patients

with both ER positive and ER negative breast cancer who received

no hormone or adjuvant chemotherapy. Since the hazard ratio

associated with ER status is time-dependent, we confined our

analysis to a maximum follow up time of 2 years in which ER

negative status is associated with a significantly higher clinical risk

than ER positive status, especially when adjuvant chemotherapy is

not implemented[33].

ER negative tumours are associated with worse clinical outcome

compared to ER positive disease. Accurate estimate of the hazard

ratio between ER negative tumours and ER positive tumours

remains difficult to estimate due to the potential for misclassifi-

cation by different classifiers. However, if the discordance in

expression-based ER classification is due to real biological

differences, the corresponding hazard ratio should be statistically

significant compared to hazard ratios estimated from random

flipping of original IHC ER calls. Our meta-analysis based on

bootstrapping four reference data sets suggested that this is indeed

the case. Both gene-expression-based ER classifications yielded

higher hazard ratios in ER negative compared to ER positive

tumours than IHC based ER status when assessing risk of disease

recurrence (disease-free survival) (IHC based ER status HR = 1.84,

95% CI: 1.16–2.93, Figure 2a; ESR1 based: HR = 1.98, 95% CI:

1.26–3.12, Figure 2b; 23-gene ER signature based: HR = 2.31,

95% CI: 1.47–3.63, Figure 2c). The improved prognostic power

by the 23-gene signature-based ER classification was significant

based on the distribution of hazard ratios resulting from random

re-sampling of the reference data sets (P = 0.006), but the one by

ESR1 expression-based ER status was not (P = 0.053).

Another important clinical feature specific to ER status is the

prognostic power associated with markers of proliferation which

prognosticate in ER positive tumours but not in ER negative

tumours [10]. Therefore an ideal ER classification system should

maximize the difference between hazard-ratios for proliferation

between ER positive and ER negative tumours. To assess this we

performed a meta-analysis of the four reference cohorts for the

prognostic power of proliferation in five-year disease-free survival.

We estimated the hazard ratios of MKI67 expression, as a

surrogate index of proliferation, in ER positive and ER negative

subsets of the cohorts separately, based on both IHC-based and

expression based ER classification. The hazard ratios of MKI67

expression are consistently higher in both ESR1 expression-based

(HR = 3.45, 95% CI: 2.08–5.73) and 23-gene signature based ER

positive tumours) (HR = 3.99, 95% CI: 2.31–6.89) compared to

IHC-based ER positive tumours (HR = 2.33, 95% CI: 1.48–3.68)

(Supplement Table S1); Bootstrapping results suggested that the

improved prognostic power of MKI67 was significant for both

ESR1-expression defined ER positive tumours (P,0.001) and for

the 23-gene expression signature defined ER positive tumours

(P,0.001). In ER negative tumours however, regardless of the

classifiers applied, MKI67 manifested no significant prognostic

power. To verify that the ER status-dependent prognostic power

of proliferation is not affected by bias in tumour stage, we

combined the ER calls in the four reference cohorts and

performed a multivariate Cox regression based on lymph-node

status, ER status, MKI67 expression and their interaction. The

results were highly consistent with our previous analyses; ER

negative status and MKI67 expression each holds independent,

significant prognostic power in five-year disease-free survival, as

well as the interaction between the two, which corresponds to the

dependence of the prognostic power of MKI67 on ER receptor

status. Moreover, the estimated hazard ratios of ER negative

Figure 2. Prognostic power of IHC-based and expression-based ER status. Meta-analysis in four cohorts suggests that ER-statuses based on
expression profile indicates stronger prognostic power than IHC based ER-status. The hazard ratios were estimated based on ER status determined by
IHC (a.), ESR1 expression (b.) and 23-gene signature (c.), separately.
doi:10.1371/journal.pone.0015031.g002
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status, MKI67 expression and their interaction are consistently

higher when expression-based ER status is used compared to IHC-

based ER status (Table 3).

Minimising False Negative ER classification using
complementary ER status expression-based classifiers

Data presented here indicate a discrepancy between expression-

based and IHC-based ER classifiers that affects between 9.3% and

12.7% of patients (Table 2). In order to assess the clinical impact of

this potential false negative IHC discrepancy on clinical outcome,

we compared disease-free survival in this subset of patients defined

by expression-based or IHC-based ER status. Patients stratified

with IHC-based ER negative disease but with 23 gene ER

signature-based ER positive disease, had a significantly better

outcome than those that were ER negative by both methods

(Figure 3a, b). Next we assessed the outcome of patients classified

as ER positive by IHC but as ER negative by expression-based

classifiers. Patients stratified with IHC-based ER positive disease

but 23 gene ER signature-based ER negative disease had a

significantly worse outcome than their counterparts with matching

IHC and 23-gene signature based ER positive status (Figure 3c, d).

These results, together with the previous survival analyses, support

the occurrence of false positive and negative ER status

classification by IHC, which may be more efficiently classified

with respect to prognosis using the 23-gene ER expression

signature.

Gene expression based ER status classification is
associated with breast cancer outcome in patients that
received tamoxifen treatment

An important clinical implication of ER status is the benefit

patients derive from endocrine therapies such as tamoxifen. Given

the discrepancy between IHC-based ER status and expression-

based ER status, we reasoned that some of the variation seen in

the clinical benefit from tamoxifen treatment may be partially

attributable to true ER negative tumours being misclassified as ER

positive. To test this, we collected three cohorts of IHC-defined

ER positive patients with a total of 458 patients who had also

received tamoxifen. We examined the ability of our expression-

based classifiers to define outcome in these cohorts by meta-

analysis and KM curves.

In the meta-analysis of IHC-defined ER positive patients, whilst

ESR1 based ER classification was not associated with significant

higher risk of relapse (HR = 1.39, 95% CI: 0.86–2.23), 23-gene

signature-based ER negative tumours within this cohort were

correlated with a poorer distant-metastasis-free survival over 5

years relative to the ER positive tumours defined by both IHC and

the 23-gene signature (HR = 1.98, 95% CI: 1.19–3.28) (Supple-

ment figure S4). KM curves combining all three cohorts suggested

the same tendency, where 23-gene signature-based ER negative

but IHC based ER positive tumours were associated with a poorer

clinical outcome compared to ER positive tumours predicted by

both methods (HR = 2.20, 95% CI: 1.40–3.30, P = 0.00035)

(Figure 4b). Therefore ER status defined by the 23-gene signature

may identify IHC ER positive tumours at higher risk of relapse

following tamoxifen therapy. Taken together, these data suggest

that expression-based ER status classifiers identifies clinically

relevant associations with patient outcome both with and without

endocrine therapy in those patients with discrepancy between

immunohistochemistry and gene expression-based ER classifica-

tion methods.

Discussion

Improving the molecular classification of tumours with respect

to predictive or prognostic biomarkers is essential for appropriate

stratified and personalised medical approaches. False ER positive

or false ER negative calls will result in futile or insufficient therapy

for patients subject to tumour misclassfication. Given the

substantial benefit of adjuvant endocrine therapies in ER positive

disease, strategies to minimise the false negative ER status call rate

are of paramount importance to prevent patients being denied

such effective therapy[34]. Therefore, it is important to consider

additional classification methods that might contribute to

improving the reliability of ER testing in parallel with immuno-

histochemistry. Here we have presented one such approach that

relies on the expression of a group of rationally selected, ER status

associated genes. The implications of this work are that in these

historical retrospective cohorts between 15.1% and 21.8% patients

of IHC-based negative ER status would be classified with ER

positive breast cancer using expression-based methods. It is likely

that with improvements in contemporary ER assessment protocols

and standardised immunohistochemistry procedures that this

represents a significant over-estimation of the true false negative

rate.

We are not suggesting that our method should replace

traditional ER classification techniques, nor that this expression-

based should be considered for re-stratifying IHC-defined ER

positive disease as ER negative. Instead we suggest that expression-

based methods should be considered for prospective assessment as

a strategy, complementary to IHC, to minimise the potential for

Table 3. Multivariate Cox regression of lymph node status, ER status, proliferation (MKI67) and their interaction in four reference
cohorts with regard to IHC-based, ESR1-expression based and 23-gene signature based ER status.

ER classification
IHC-based ER
(N = 995) ESR1 expression based (N = 1004) 23-gene signature based (N = 1004)

LN positive 0.98 (0.73–1.31)
P = 0.87

0.97 (0.72–1.29)
P = 0.82

0.96 (0.72–1.29)
P = 0.79

ER negative 1.67 (1.25–2.24)
P = 0.00059

1.78 (1.36–2.35)
P = 5.11E-5

1.98 (1.51–2.61)
P = 9.05E-7

MKI67 expression 2.76 (1.76–4.06)
P = 2.82E-7

3.35 (2.15–5.23)
P = 9.80E-8

3.58 (2.25–5.70)
P = 7.94E-8

ER-:MKI67 interaction 0.32 (0.16–0.63)
P = 0.0011

0.24 (0.12–0.47)
P = 2.80E-5

0.20 (0.10–0.39)
P = 3.47E-6

LN: lymph node status.
doi:10.1371/journal.pone.0015031.t003
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false negative ER status classification. Prospective analyses might

investigate the potential benefit of tamoxifen in patients with ER

IHC negative breast cancer whose disease is classified as ER

positive by the 23-gene ER signature.

One of the major advantages of IHC-based ER status

determination is that false negative ER calls, due to stromal

contamination and the lack of cancer cells in the material

examined, can be minimized[35,36,37]. In an attempt to minimise

the risk of false negative ER calls from our gene signature methods

due to stromal contamination, we have taken advantage of the fact

that in ER negative tumours, not only is the set of ER regulated

genes down-regulated but a well defined set of epithelial genes,

such as FOXC1 and GABRP are overexpressed as well.

Therefore, the combined set of genes that correlate and

anticorrelate with ER status may provide a reliable way of

determining ER status in tumour cells whilst minimizing the risk of

false negative calls due to excessive stromal contamination. In

order to further reduce the risk of false ER calls by the 23-gene

test, metagenes specifically measuring different tissue types could

be used to correct for bias caused by other contaminations in the

tumour samples[28].

The utility of PCR based multigenic outcome predictors has

been demonstrated previously[38]. When considering practical

realization it is important to note that the number of genes used in

our ER status classifier is comparable to that used, for example,

in the case of Oncotype recurrence score[38]. Therefore, if

Figure 3. Expression-based ER classifiers reveal misclassification of IHC-based ER status which associated with clinical outcome. KM
curves of disease-free survival showing IHC based ER- tumours separated by (a.) ESR1 expression-based and (b) 23-gene signature-based ER status;
false ER- (23-gene signature based ER+, IHC based ER-) showed significantly better outcome which is close to true ER+ (23-gene signature based ER+,
IHC based ER+, black dashed-line). And IHC based ER- tumours are separated by (c.) ESR1 expression and (d.) 23-gene signature based ER status; false
ER+ (23-gene based ER-, IHC based ER+) showed significantly worse outcome which is close to true ER- (23-gene signature based ER-, IHC based ER-,
red dashed-line).
doi:10.1371/journal.pone.0015031.g003
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prospective studies of this multigene predictor in combination with

IHC determine clinical utility that is complementary with IHC-

based classification methods, it is reasonable to expect that this

gene expression based method, especially in the case of

questionable cases, may be added to the histopathological and

molecular classification of breast cancer. We are currently

planning to prospectively evaluate the benefit of such a test to

minimise immunohistochemistry-defined false negative oestrogen

receptor status classification.

Conclusions
We have demonstrated that ER expression status determined

from microarray data enables more accurate determination of

clinical outcome of breast cancer in multiple reference cohorts.

Our methods provided a set of gene markers which stratify breast

cancer in terms of hormone receptor expression status and may

further help to understand the biological background of hetero-

geneity of breast cancer. Moreover, with this 23-gene signature

based ER classification method we have distinguished a subset of

IHC ER positive breast cancer patients that have a poorer

outcome following endocrine therapy that may be attributable to

false positive classification of ER status by current histopatholog-

ical methods. With future efforts, our approach may provide a new

multi-gene assay to improve clinical stratification of hormone

receptor positive breast cancer.
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Figure S1 Verification of bimodal distribution of ESR1
mRNA expression. a. DFCI; b. MSK; c. MDA1; d. MDA/

MAQC; e. UCSF; f. NKI; g. EMC; h. IJB1 and i. GIS.
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Figure S2 Bimodal distribution of ESR1 is associated
with IHC ER status. ESR1 (‘‘205225_at’’) expression levels

follow a bimodal distribution in DFCI data set (left) and the

inferred cutoff value based on the bimodal distribution is highly

consistent with ER status determined by IHC (right).
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Figure S3 Epithelial genes with bimodal distribution
indicated higher correlation to IHC-based ER status.

(EPS)

Figure S4 23-gene signature based ER status is associ-
ated with clinical outcome of tamoxifen-treated breast
cancers. Meta-analysis in three cohorts suggests that ER-statuses

based on 23-gene expression signature indicate stronger predictive

power than IHC based ER-status. The hazard ratios were

estimated based on ER status determined by (a.) ESR1 expression

and (b.) 23-gene ER signature, separately.

(EPS)

Table S1 Meta-analyses of four reference cohorts for
the prognostic power of proliferation (MKI67) within ER
positive and negative tumours as classified by IHC-
based, ESR1-expression based and 23-gene signature
based classifiers.
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