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Multiple organs involved 
in the pathogenesis of non‑alcoholic fatty liver 
disease
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Abstract 

Non-alcoholic fatty liver disease (NAFLD) represents the leading cause of chronic liver disease worldwide and the 
anticipated health burden is huge. There are limited therapeutic approaches for NAFLD now. It’s imperative to get a 
better understanding of the disease pathogenesis if new treatments are to be discovered. As the hepatic manifesta-
tion of metabolic syndrome, this disease involves complex interactions between different organs and regulatory 
pathways. It’s increasingly clear that brain, gut and adipose tissue all contribute to NAFLD pathogenesis and develop-
ment, in view of their roles in energy homeostasis. In the present review, we try to summarize currently available data 
regarding NAFLD pathogenesis and to lay a particular emphasis on the inter-organ crosstalk evidence.

Keywords:  Non-alcoholic fatty liver disease, Energy metabolism, Lipid, Hormone, Inter-organ crosstalk

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​cdoma​in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Non-alcoholic fatty liver disease (NAFLD), has been 
commonly considered as the leading cause of chronic 
liver diseases in Western countries over the last decade 
[1]. In the meantime, urbanization in many developing 
countries has recently led to a sedentary lifestyle and 
overnutrition, which contribute to obesity, metabolic 
syndrome and the emerging condition of NAFLD [2]. 
NAFLD currently has a reported prevalence of 12–38% 
worldwide and the number is growing inexorably and 
steadily along with the unprecedented levels of obesity 
in human society [3]. On account of the radical cure of 
hepatitis C, the imminent disappearance of hepatitis 
B and the uncontrolled energy-dense lifestyle, NAFLD 
would undoubtedly become the mainspring for liver 
related morbidity and mortality very soon. As estimated, 
NAFLD should be the most frequent indication for liver 
transplantation by 2030 [4]. To date, no drug for NAFLD 

has received FDA approval, giving rise to insufficient 
pharmacotherapeutic interventions in clinical practice 
[5]. These alarming situations necessitate the extension 
of our understanding towards pathogenic mechanisms of 
NAFLD.

NAFLD could be simply interpreted as the condition 
where excess fat is stored in the liver, and this second-
ary fat accumulation is not the consequence of other fac-
tors like heavy alcohol consumption, drug side effects or 
genetic variations [6]. Whether liver inflammation exists 
is the basis to subdivide NAFLD into two types, fatty 
liver and non-alcoholic steatohepatitis (NASH), and the 
latter is the progressive phenotype of NAFLD spectrum 
[7]. Persistent inflammation will jeopardize liver homeo-
stasis and activate the repair processes. Activated hepatic 
stellate cells (HSCs) secrete extracellular matrix (ECM), 
including type 1 collagen, to support the injured region 
and structure the regeneration scaffold for subsequent 
hepatocyte proliferation (i.e., liver fibrosis formation), 
along with the clearance of necrotic tissues by infiltrated 
leukocytes [8]. This ‘wound-healing’ process will end 
with the settlement of activated HSCs, ECM resolution 
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and revascularization, given the detrimental effects are 
only transient [9]. Hence, it’s objective to regard liver 
fibrosis as a well-orchestrated advantageous response 
towards hepatic injury, while the ongoing insults against 
liver should be to blame for disease progression to cir-
rhosis or hepatocellular carcinoma (HCC) [10]. Specifi-
cally, for NAFLD, the persistence of liver steatosis derives 
from the overload of free fatty acids (FFAs) influx, which 
is the coefficient result of high fat diet, obesity, IR, gut 
microbiota alteration, and other potential risk factors. 
Furthermore, high levels of FFAs will exert the lipotoxic 
effects, causing endoplasmic reticulum (ER) stress and 
mitochondrial dysfunction (oxidative stress, production 
of reactive oxygen species (ROS), etc.) in the liver [11]. 
IR not only motivates hepatic de novo lipogenesis (DNL), 
but also causes adipose tissue dysfunction with conse-
quent adipokines and inflammatory cytokines produc-
tion [12]. Gut microbiota dysregulation could lead to 
the increase of intestine permeability and the release of 
proinflammatory cytokines into circulation [13]. Multi-
ple pathways synergistically create a vicious cycle which 
slowly exacerbates the disbalance of liver homeostasis 
and induces the shift from simple steatosis to chronic 
inflammatory state of NASH. Based on evidences above, 
NAFLD is definitely not a single-organ disease, but more 
like the hepatic manifestation of a variety of complicated 
metabolic disorders involving different organs and sys-
tems. Here we will review recent findings about brain, 
gut, adipose tissue and liver interactions in NAFLD 
pathogenesis and try to get a relatively comprehensive 
understanding of the disease mechanism.

Hepatic pathogenesis of NAFLD
The initiating events in NAFLD arise from the develop-
ment of obesity and IR at the level of the adipose tissue 
and liver. The dysregulation of peripheral lipolysis, DNL, 
and dietary fat cause the increased FFA flux within the 
liver and then place hepatocytes under the lipotoxic con-
dition. These lipotoxic FFAs are partitioned into inert 
intracellular triacylglycerol (TAG) for storage via acyl-
CoA synthetic activity and mitochondrial β-oxidation, 
and the accumulation of TAG in hepatocyte cytoplasm, 
which is also called steatosis, is the generally accepted 
histological hallmark of NAFLD [14]. Many patients 
could stay in the NAFL stage for years, while the chronic 
insults would ultimately exceed the hepatic capacity to 
deal with the overload of fatty acids (FA) [5]. Significant 
hepatocyte injury leads to cell injury and inflammation, 
subsequently bringing Kupffer cells and other immune 
cells to the battlefield. Uncontrollable lipotoxicity facili-
tates ROS formation, ER stress, and hepatocellular dys-
function. Immune and apoptotic pathway activation 

results in cell death, which further drives fibrosis devel-
opment over time [15].

Two important enzyme systems, acetyl-CoA car-
boxylase (ACC) and fatty acid synthase (FAS), play vital 
roles in Hepatic FA synthesis. Insulin and glucose could 
regulate both enzymes by activating sterol regulatory 
element-binding protein 1c (SREBP-1c) and carbohy-
drate-responsive element-binding protein (ChREBP), two 
important transcriptional factors in DNL, respectively. 
Liver X receptor (LXR), a nuclear receptor, also directly 
controls the activity of both SREBP-1c and ChREBP by 
binding to response elements in the promoters of genes 
[16]. Deletion of LXR leads to decreased SREBP-1c 
expression and less lipogenesis in mice. The induction 
effects of LXR on ACC and FAS could also be indirectly 
influenced by insulin and glucose [17]. As hyperinsu-
linemia and hyperglycemia is commonly seen in NAFLD 
population, the link between glucose and lipid metabo-
lism is conspicuous. Excess glucose is usually stored 
as glycogen, mediated by insulin, while it could also be 
esterified into TAGs via DNL. Hepatic IR in NAFLD is 
found mediated by proinflammatory cytokines, ER stress, 
apoptosis pathways, and even lipid metabolites. Accumu-
lation of diacylglycerol (DAG), a lipotoxic intermediate 
of FA synthesis, within cytosolic lipid droplets induces 
translocation of protein kinase C (PKC)-ε to the plasma 
membrane and inhibits the intracellular kinase domain of 
the insulin receptor. In a NAFLD cohort, DAG content 
and PKCε activation are the most significant predictors 
for hepatic IR and associate with 60% of the variability in 
hepatic insulin sensitivity [18]. Glucocorticoid receptor 
(GR) of hepatocyte is found critical for both direct and 
indirect transcriptional regulations of IR, hyperglyce-
mia, gluconeogenesis and fatty liver [19]. A recent study 
targeting 17-hydroxyprogesterone (17-OHP), an inter-
mediate product of steroid synthesis, pointed out the 
involvement of hepatic Cyp17A1/17-OHP/GR pathway 
in the development of IR [20].

The FA β oxidation process includes three major steps, 
activation, transportation and oxidation. Fatty acids are 
activated by cytosolic and ER acyl-CoA-synthetase to 
acyl-CoA for β oxidation or TAG synthesis. In charge of 
transporting acyl-CoA to mitochondria, carnitine pal-
mitoyl transferase 1 (CPT1) serves as the rate-limiting 
enzyme for FA β oxidation and it could be inhibited by 
an important DNL intermediate, malonyl-CoA. This pro-
cess could be inhibited by insulin and activated by per-
oxisome proliferator-activated receptor (PPAR)-α. In 
mitochondria, fatty acids are oxidized to produce energy 
for vital activities, and incidentally, to provide fatty acids 
with shorter chains and acetyl-CoA for other metabolic 
processes. Long-chain fatty acids are re-esterified in 
hepatocytes to produce TAG and stored in lipid droplets 
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(LDs) or coupled to apolipoproteins and further secreted 
as very low-density lipoprotein (VLDL) [21]. When the 
TAG incorporation into VLDL is blocked by microso-
mal TAG transport protein (MTTP) and apolipopro-
tein B (APOB) mutations in patients, TAG accumulates 
in the liver and consequently causes hepatic steatosis 
and NASH development [22]. Another mechanism to 
remove heatic fatty acids is TAG synthesis. In this pro-
cess, stearoyl-CoA desaturase 1 (SCD1), diglyceride acyl-
transferase (DGAT), ACC, and FAS are major enzymes 
whose expressions and activities account for disturbed 
TAG, fatty acids accumulation and NAFLD development. 
In the methionine-choline deficient (MCD) diet NASH 
model, the deletion of Scd1 gene impairs TAG synthesis 
and induces hepatocyte apoptosis [23]. It’s also reported 
that inhibition of DGAT also leads to lipotoxicity [24] 
and liver specific DGAT overexpression increases VLDL 
secretion [25].

ROS production in hepatocyte is an incidental con-
sequence of FAs oxidation. FAs overloading leads to 
upregulation of minor pathways (such as peroxisomal 
oxidation, microsomal oxidation and ER ω-oxidation) 
and mitochondrial respiratory chain. Consequent 
increase of ROS production surpasses normal antioxi-
dative mechanisms like superoxide dismutase or glu-
tathione, leading to oxidative stress and the initiation of 
NASH. NAFLD patients have lower hepatic expressions 
of genes related to mitochondrial biogenesis, peroxiso-
mal proliferator-activated receptor gamma coactivator 1α 
(PGC1α), nuclear respiratory factor 1 (NRF1), and mito-
chondrial transcription factor A (mtTFA), which paves 
the way for disease progression [26]. ROS induces lipid 
peroxidation, damages plasma/intracellular membranes, 
and causes cell necrosis. 4-hydroxynonenal (4-HNE) and 
malondialdehyde (MDA) produced by lipid peroxidation 
promote inflammation and influence the posttransla-
tional modifications (PTMs) of multiple hepatic pro-
teins [27]. Many studies have discussed the ameliorating 
effects of radical-scavenging antioxidants in hospitalized 
NASH patients [28], backward suggesting the critical role 
of oxidative stress in NAFLD.

Evidence suggests that ER stress is among the most 
important factors for NAFLD pathogenesis [11]. The 
ER, an intracellular organelle, is sensitive to lipotox-
icity. Dysregulation of ER function is represented by 
disturbed unfolded protein response (UPR), an adap-
tively orchestrated arrest of protein synthesis, which 
can further perpetuate ER stress. Subsequent oxi-
dative and inflammatory signaling pathways trigger 
apoptosis and autophagy via PERK-mediated C/EBP 
homologous protein (CHOP), inositol-requiring enzyme 
1α (IRE1α)-mediated recruitment of tumor necro-
sis factor receptor-associated factor 2 (TRAF2) and 

signal-regulated kinase 1/c-Jun N-terminal kinase (JNK). 
IRE1 also splices the transcription factor X-box bind-
ing protein 1 (XBP1), which activates JNK and inhibitor 
of κB kinase (IKK)-NFκB signaling, to modulate inflam-
matory cascades and ROS production [29]. Liver biopsy 
samples from NAFLD patients show a specific associa-
tion between disease severity, spliced XBP1 mRNA and 
JNK phosphorylation. Compared with healthy individu-
als, NAFLD patients have a variable degree of UPR acti-
vation [30].

Apoptosis signal‐regulating kinase 1 (ASK1) is a mem-
ber of the mitogen‐activated protein kinase kinase kinase 
(MAP3Ks) family and could activate downstream JNK 
and p38 mitogen-activated protein kinase (MAPK) sign-
aling cascades to regulate autophagy, apoptosis, and 
inflammation. ASK1 itself could be activated by oxida-
tive stress, ER stress and inflammatory cytokines [31]. 
Hepatic ASK1 activation is a key process in the progres-
sion of NASH and a promising target for treatment of the 
condition [32]. By modulating downstream p38-JNK1 
and JNK2 signaling, ASK1 aggravates metabolic dys-
regulation of lipid and glucose, and precipitates hepatic 
inflammation [33, 34]. In the murine NASH model, one 
selective ASK1 inhibitor improves not only metabolic 
parameters but also hepatic steatosis, inflammation, and 
fibrosis [35]. A recent publication reported that ablation 
of p38 gene in the liver could increase simple steatosis 
but attenuate oxidative stress-induced injury and fibrosis 
during NAFLD [36]. The detrimental and protective roles 
of p38 in different disease stages remind us that NAFLD 
therapies targeting ASK1-p38 pathway have to proceed 
with caution.

Hepatokines have also received considerable atten-
tion from researchers, considering their role in NAFLD 
pathogenesis [37]. Fetuin-A has long been considered 
as a liver-derived regulator for metabolic balance and is 
reported correlated with NAFLD in humans [38]. Fetuin-
A contributes to the activation of Toll-like receptor 4 by 
fatty acids, which induces inflammation and IR. Hepatic 
fetuin-A binds to peripheral insulin receptors to inhibit 
insulin signaling [39] and correlates with key enzymes for 
lipid and glucose metabolism, such as SREBP-1c, CPT1, 
and phosphoenolpyruvate carboxy kinase 1 (PEPCK1) 
[40]. Many publications show significantly higher serum 
fibroblast growth factor 21 (FGF21) in NAFLD patients 
compared to healthy controls [41, 42]. FGF21 directly 
regulates lipid metabolism and reduces hepatic lipid 
accumulation in an insulin-independent manner. Toxic 
lipid accumulation in the MCD diet NASH model 
induces early FGF21 expression [43]. Adenovirus-medi-
ated knockdown or genetic deletion of FGF21 cause lipo-
toxic damage, hepatic steatosis and dyslipidemia [44, 45]. 
FGF21 is also reported to mediate energy homeostasis via 
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regulation of sweet taste [46]. Another major hepatokine, 
angiopoietin-like 8 (ANGPTL8), correlates with hepatic 
lipid content independent of IR in NAFLD patients. 
ANGPTL8 is activated by ER stress or hyperlipidemia, 
and hence leads to the inhibition of lipoprotein lipase 
activity, and the activation of autophagic process [47].

Finally, autophagy has also been suggested participat-
ing in NAFLD. In murine models and patients of NAFLD, 
autophagy activity decreases [48–51]. Loss of autophagic 
modulation against cell death leads to hepatic steatosis 
and the shift from NAFLD to NASH. Overexpression 
of autophagy-related 7 (Atg7) or Atg14, key autophagy 
mediators, eliminates steatosis in high fat diet (HFD)-
fed mice, while specific deletion of Atg7 gene in the liver 
alters TAG secretion and increases hepatic lipid contents. 
Hyperinsulinemia and IR suppress hepatic autophagy 
and key autophagy genes such as Atg12, and Gamma-
aminobutyric acid type A receptor associated protein like 
1 (Gabarapl1) [52]. Conversely, autophagy induction also 
ameliorates ER stress and IR in NAFLD mice [53, 54]. 
Here exists a vicious circle, in which hepatic steatosis and 
lipotoxicity-induced IR synergistically impair autophagy 
which further exacerbates steatosis and insulin sensitiv-
ity. Through autophagy, damaged mitochondria con-
taining excessive abnormal intracellular components 
could be removed to prevent ROS production and apop-
tosis [55]. Once this process gets dampened, e.g., by 
Atg5 knockdown, ROS and energy imbalance activates 
upstream JNK/c-Jun signaling, which sensitizes hepato-
cytes to cell death [54].

Adipose tissue and NAFLD
Adipose tissue was considered originally as an inert 
organ only for fat storage, while recent studies have 
revealed its crucial roles participating in both energy 
homeostasis and immune regulation [56]. Altered adi-
pose tissue biology has been recognized as a key early 
event in the initiation of NAFLD. During obesity pro-
gression, adipocytes gradually become hypertrophied 
in association with macrophages infiltration and subse-
quent adipokines, cytokines and chemokines alteration 
[57]. The expansion of adipose tissue also causes hypoxia 
and subsequent adipocyte death, triggering low-grade 
chronic inflammation, accumulation of ECM, and even-
tually IR. Local IR leads to more lipolysis in the adipose 
tissue and excess release of FFAs into the circulation 
[58]. The origin of hepatic TAG in NAFLD have been 
analyzed and indicate that adipose tissue lipolysis, DNL 
and dietary intake contribute to 60%, 25% and 15% of 
total hepatic TAGs, respectively [59]. Enhancement of 
ECM component level may incur progressive fibrosis in 
the adipose tissue, thereby limiting the fat storage capac-
ity of adipocytes and promoting ectopic fat uptake [60]. 

Proinflammatory cytokines and chemokines produced by 
infiltrated macrophages could exacerbate IR and recruit 
more immune cells to the inflamed adipocytes [61]. It 
was reported in NAFLD patients that liver necroinflam-
mation and fibrosis increased significantly with visceral 
fat in a dose-dependent manner [62]. Meanwhile, the 
adipose tissue from NAFLD patients were found with an 
increased expression of genes that regulate inflammation, 
and the adipose tissue macrophages produced increased 
levels of inflammatory cytokines, compared with control 
[63]. Inflamed adipose tissue macrophages were showed 
to signal to bone marrow and to stimulate production 
of myeloid cells, resulting in an exacerbation of inflam-
mation and associated obesity processes [64, 65]. In a 
recent study, transplantation of adipose tissue from obese 
mice rapidly induced hepatic neutrophil recruitment by 
upregulating CXCL chemokine family genes and second-
ary macrophage accumulation [66]. Several studies have 
reported associations between adipocyte death and the 
pathogenesis of NFALD [67, 68]. After globally deleting 
the Bid gene or specifically deleting the Fas gene of adi-
pocytes in HFD-fed mice, adipocyte death was mitigated, 
and as a result, IR and fatty liver were ameliorated. Cor-
respondingly, adipocyte apoptosis caused by adipocyte-
specific deletion of the synaptosomal-associated protein 
23 (Snap23) gene led to IR and hepatic steatosis [69, 
70]. The induction of adipocyte death in HFD-fed mice 
caused marked upregulation of Mcp1, which is important 
for macrophage recruitment in both adipose tissue and 
liver, at a very early time point. This rapid elevation of 
Mcp1 was found to be mainly contributed by adipocytes, 
other than macrophages. After adipocyte death and mac-
rophage activation, the elevation of epinephrine (EPI) 
and norepinephrine (NE) and the subsequent activation 
of lipolysis were observed [61].

The adipose tissue also serves as an important endo-
crine organ participating in energy balance by sensing 
metabolic signals and secreting a number of adipokines 
such as leptin, adiponectin, and resistin [71, 72]. The 
‘energy expenditure hormone’ leptin is mainly secreted 
by visceral adipocytes and it’s involved in a range of 
energy modulating activities including hunger, food 
energy utilization, physical exercise, thermogenesis, 
and fat mass regulation [73, 74]. Leptin downregulates 
the transcription of the preproinsulin gene and insulin 
excretion, and high levels of leptin were documented in 
obese individuals or during IR [75, 76]. Proinflammatory 
cytokines such as IL-1 and TNF-α could increase leptin 
levels and subsequently perpetuate the loop of chronic 
inflammation in obesity [77, 78]. Especially in the liver, 
leptin suppresses the lipogenic process by lowering the 
expression of SREBP-1 [79, 80]. It exerts a permissive 
role in promoting liver inflammation and fibrosis by 
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enhancing the production of type 1 collagen, upregu-
lating tissue inhibitor of metalloproteinase (TIMP)-1 
expression and downregulating matrix metalloproteinase 
1 (MMP1) expression [81]. Leptin could also upregulate 
the expression of transforming growth factor (TGF)-β in 
Kupffer cells and sinusoidal endothelial cells, which con-
tributes to liver fibrogenesis [82]. Although leptin has 
been reported contributing to IR, steatosis development 
and fibrogenesis, there are still disputes on its association 
with NASH severity in different cohorts [83, 84]. Hence, 
more studies with careful designs and strict criteria are 
needed to elucidate the role of leptin in NAFLD.

Another major adipokine is adiponectin, which is an 
adipocyte-derived anti-inflammatory mediator elicit-
ing AMP-activated protein kinase (AMPK) signaling. 
Adiponectin suppresses adipose TNF-α expression and 
induces anti-inflammatory gene expression in leukocytes 
[85]. Suppression of adiponectin secretion by selectively 
deleting conventional kinesin heavy chain in adipose 
tissue exacerbates HFD-induced obesity and its associ-
ated metabolic disorders [86]. In NASH patients, cir-
culating adiponectin levels were remarked diminished, 
and the downregulation of hepatic adiponectin could 
be reserved by weight loss [87]. A meta-analysis showed 
that hypoadiponectinemia serves as a critical feature of 
NASH patients and the reduction of adiponectin corre-
lates closed with disease progression [88]. In an animal 
model of deleting C-terminus Hsc70-Interacting protein 
(CHIP), oxidative stress, IR, and hepatic inflammation 
had been achieved only except for steatosis because of a 
compensatory upregulation of adiponectin. By activating 
the AMPK-forkhead box O (FOXO)-signaling axis, adi-
ponectin could override oxidative stress and JNK signal-
ing, resulting in the counteracting progression of hepatic 
steatosis [89].

Resistin is mainly produced by adipocytes in mice and 
ATMs in humans [90]. Treatment of resistin in mice 
induced IR by impairing glucose tolerance and insu-
lin action, and also upregulated suppressor of cytokine 
signaling 3 (SOCS3) expression, which further inhibited 
insulin signaling [91]. Knockout of resistin decreased 
hepatic steatosis via downregulating genes related to in 
hepatic lipogenesis and VLDL export [49]. Resistin has 
a proinflammatory role by not only stimulating mul-
tiple inflammatory cytokines (TNF-α, IL-1β, IL-6 and 
IL-12) [92], but also activating the MAPK pathway and 
the coagulation cascade. [93] Moreover, resistin could 
induce the production of TGF-β and type I collagen [94]. 
It was also reported that resistin could upregulate expres-
sions of several chemokines [95]. Data about other adi-
pokines (visfatin, retinol-binding protein 4, chemerin, 
acylation-stimulating protein, adipsin, apelin, obestatin, 
omentin, vaspin nesfatin-1, neopterin, neuregulin-4, etc.) 

are inconclusive or limited. Further studies may elucidate 
their roles in NAFLD.

In mammals, the adipose-tissue pool consists of white 
adipose tissue (WAT) and brown adipose tissue (BAT). 
Compared to WAT, BAT plays a distinct role in main-
taining energy homeostasis because of its abundance 
in mitochondria and capillaries. BAT generates heat 
by catabolizing glucose and fatty acid, hence it acts as 
a protector against obesity and diabetes because ther-
mogenesis dissipates excess energy from high-calorie 
intake [96]. Decrease of BAT activities could cause meta-
bolic disorders including IR and type 2 diabetes mellitus 
(T2DM) [97]. In the subcutaneous inguinal WAT, there 
is a group of brown fat-like adipocytes called browning 
of WAT, which also contribute to thermogenesis. Trans-
genic expression or deletion of PR domain containing 
16 (PRDM16) in WAT, a transcription coregulator for 
brown adipocyte development, could bi-directionally 
attenuate diet-induced obesity (DIO) or lead to obesity 
[98]. Reported in a recent study, deletion of AMPK in 
adipocytes led to BAT mitochondrial dysfunction, and 
secondarily exacerbated hepatic steatosis, IR, and glucose 
intolerance [99]. Reduction of adipose AMPK commonly 
observed in NAFLD patients, hence this study offered 
mechanism for NAFLD pathogenesis and a potential 
therapeutic target [100].

Gut and NAFLD
Gut, or the gastrointestinal tract, plays a critical role in 
human physiology in terms of digestion, absorption of 
nutrients and the excretion of waste. Its mucosal barrier 
protects the body from pathogens and extrinsic antigens, 
and gut also secrets hormones to communicate with 
other organs. Another important profile is that trillions 
of microorganisms inhabit in the gut and they are closely 
involved in human metabolism, immune regulation, and 
behavior modulation. Recently, gut and gut microbiome 
are linked with the pathogenesis of NAFLD by more and 
more studies, and ‘gut-liver axis’ or ‘gut-brain-liver’ axis 
have also become hot topics among scholars [13, 101, 
102].

Gut could initiate complex hormonal responses to 
changes in the nutritional status by secreting peptides 
like ghrelin, cholecystokinin (CCK), glucagon-like pep-
tide 1 (GLP-1), fibroblast growth factor 19 (FGF19), etc., 
and some of these gut signals have also been considered 
as important mediators in NAFLD development [103].

Ghrelin is a small peptide mainly synthesized by the 
stomach and released into the circulation in two iso-
forms, the acylated ghrelin (AG) and the des-acyl ghrelin 
[104]. Ghrelin could stimulate appetite and act with the 
growth hormone secretagogue receptor (GHS-R). Apart 
from its unique role in the orexigenic central circuit, 
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ghrelin has recently received considerable attention in 
studies of metabolic diseases and liver diseases due to 
the regulatory functions on immunity and disease patho-
genesis independent of its effects on food intake [105]. 
The association between elevated AG levels and hepatic 
steatosis was documented in NAFLD patients [106]. Both 
animal and human studies showed that ghrelin could 
directly promote lipogenesis and inhibit lipolysis in adi-
pocytes. Administration of AG inactivated AMPK sign-
aling, stimulated TAG storage in the liver and caused 
dysregulation of lipid oxidation and mitochondrial func-
tion [107]. By deleting ghrelin or ghrelin receptor genes 
in mice, the facilitation on de novo lipogenesis was elimi-
nated, and the resistance towards obesity and hepatic 
steatosis was observed. Involving the interaction between 
PPARγ and mammalian target of rapamycin (mTOR), 
ghrelin could activate its receptor on hepatocytes to pro-
mote lipogenesis as well [108]. Ghrelin also regulates 
insulin secretion and sensitivity in pancreatic β-cells 
and stimulates glucose output from primary hepatocytes 
[109]. Reported in a recent study [110], ghrelin reduced 
apoptosis induced by TNF-α and autophagy in human 
hepatocytes via AMPK/mTOR, consistent with another 
research where ghrelin showed anti-fibrosis effects by 
downregulating the TGF-β1/Smad3 signaling pathways 
and inhabiting autophagy [111].

Glucagon-like peptide-1 (GLP-1) is a hormone secreted 
by the enteroendocrine L-cells of the intestine, which 
causes potentiation of glucose-stimulated insulin secre-
tion after nutrient intake. GLP-1 could downregulate the 
expressions of SREBP-1c, ACC, SCD-1, and FAS, which 
are all important players for de novo lipogenesis [112]. 
Hence, low level of GLP-1 in NAFLD populations pos-
sibly derived from producing dysfunction or cleavage 
enhancement is considered as one predisposing factor for 
NAFLD development [113]. Treatment of GLP-1 recep-
tor agonists (GLP-1RA) significantly reduced blood glu-
cose level, IR and hepatic lipid concentration in mouse 
steatohepatitis model [114]. GLP-1RA downregulated 
expression of SREBP-1c and SCD-1 and upregulated the 
expression of PPARα in hepatocytes, which could further 
suppress de novo lipogenesis and induce β-oxidation of 
free fatty acids [115]. The majority of clinical trials inves-
tigating the effects of GLP-1RAs on NAFLD patients 
has shown promising results [116, 117]. GLP-1RAs 
were able to significantly reduce hepatic steatosis as well 
as control blood glucose in NAFLD patients [118]. In a 
Chinese cohort, Liraglutide, a recombinant polypeptide 
analogue of GLP-1, was found superior to traditional 
therapies including metformin and gliclazide, in ame-
liorating hepatic steatosis, improving liver function, and 
controlling body weight [119]. Bile acids are released 
into the duodenum for lipid digestion and 95% of them 

are absorbed back into the portal circulation within the 
ileum for recycle. Increased bile acids in the intestine 
could activate the farnesoid X receptor (FXR) signaling 
in enterocytes and thereby induce FGF19 production 
and secretion. Besides their roles in regulating hepatic 
bile acid synthesis, FXR and FGF19 are also involved in 
metabolic homeostasis. Deletion of FXR led to significant 
increases in hepatic cholesterol and triglycerides [120, 
121]. On contrary, the activation of FXR could prevent 
lipid accumulation in the liver by regulating hepatic de 
novo lipogenesis and fatty acid β-oxidation [122]. FGF19 
inhibits the expression of lipogenic enzymes by increas-
ing phosphorylation of signal transducer and activator of 
transcription 3 (STAT3) and decreasing the expression of 
PGC1β [123]. Peripheral administration of FGF19 could 
improve glucose tolerance in both HFD-feeding mice 
and ob/ob mice [124], possibly because of its motivating 
effects on hepatic protein and glycogen synthesis [125]. 
Although hepatic FXR protein contents and circulating 
FGF19 levels were found inversely associated with NASH 
severity in patients [126], more mechanistic studies are 
needed to clarify their roles in NAFLD development. As 
the agonist of FXR, obeticholic acid, has recently been 
studied in a multicenter, randomized, double-blind phase 
III study, and showed benefits in fibrosis improvement 
[127].

Gut harbors the most abundant bacterial populations in 
the body, while the importance of these ‘guests’ in human 
physiology has long been ignored. Recent studies have 
discovered more and more functional roles of gut micro-
biota, such as nutrient metabolism [129–131], xenobiotic 
metabolism [131, 132], antimicrobial protection [133], 
immunomodulation [134, 135] and gut integrity mainte-
nance [136]. On this basis, the change in gut microbiota, 
or dysbiosis, is presumed associated with etiologies of 
many metabolic diseases, including NAFLD. Comparing 
individuals with NAFLD and non-NAFLD controls, both 
microbiome and bacterial density are different [137]. In 
NAFLD patients, increased intestinal permeability and 
bacterial overgrowth were reported positively correlated 
with the severity of steatosis [138, 139]. Germ-free mice 
were found resistant to DIO, in contrast to mice with the 
normal gut microbiota. Transplantation of stool from 
individuals with IR to healthy controls transfer the insu-
lin resistant phenotype as well, which further highlights 
the contributions gut microbiota could make to host 
metabolic disorders [140].

Gut microbiota could ferment excess food that the host 
is not able to digest, and further produce short-chain fatty 
acids (SCFAs), including acetate, propionate, butyrate, 
etc., mostly in colon. Increased total SCFAs level is one 
common metabolic profile of both animal model and 
NAFLD patients, but precise production of SCFA is hard 
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to measure so far in patients due to technical difficul-
ties. One human study showed a significant association 
between the presence of steatohepatitis and an increased 
percentage Firmicutes and a reduced percentage of Bac-
teroidetes (two predominant bacterial phyla colonizing 
the healthy human large intestine) [141], and the increase 
of the Firmicutes/Bacteroidetes ratio was reported asso-
ciated with increased energy harvest from the diet [142]. 
SCFAs not only provide extra energy to the host (about 
30% of hepatic energy supply) [143] but also impact sati-
ety and insulin signaling by stimulating the production of 
peptide YY (PYY) and GLP-1 in the intestine [144]. The 
insulin-mediated fat accumulation could be suppressed 
by the interaction of SCFAs and their receptors, G-pro-
tein-coupled receptors (GPCRs), in the gut, skeletal mus-
cle, adipose tissue and the liver [145]. SCFAs stimulate 
the leptin production [146], increase adipogenesis and 
suppress lipolysis in adipose tissue [147]. Administration 
of SCFAs to mice and patients leads to increased energy 
expenditure [148, 149], thermogenesis [150] and fatty 
acids oxidation secondary to AMPK activation [151], but 
SCFAs also serve as substrates for lipogenesis and glu-
coneogenesis. There have been mixed reports regarding 
the roles of SCFAs in regulating inflammation. GPCRs 
could activate signaling pathways such as RAS, protein 
kinase A, phosphoinositide 3-kinases (PI3K), and extra-
cellular regulated protein kinases (ERK1/2) and further 
upregulate the expressions of IL-1, IL-6, TNF-α, CXCL1, 
and CXCL2, in favor of the contribution of SCFAs in 
NASH pathogenesis [153–156]. Increased acetate level 
was reported responsible for production of inflamma-
tory cytokines in macrophages and even inflammatory 
responses in the liver [156]. While under inflammatory 
conditions, administration of SCFAs reduces NF-κB 
activity via the inhibition of histone deacetylase (HDAC), 
which suppresses the production of inflammatory 
cytokines such as IL-6, IL-8, and TNF-α [155, 157, 158]. 
Furthermore, SCFAs could enhance differentiation of 
anti-inflammatory regulatory T cells (Tregs) in the colon, 
and also stimulate the NLRP3 inflammasome. In  vitro, 
SCFAs also attenuate PPARγ activity and reduce the 
expression of lymphocyte function-associated antigen 3 
(LFA3) and intercellular adhesion molecule 1 (ICAM1). 
The beneficial functions of SCFAs to prevent NAFLD 
was discussed by a variety of animal studies [160–163], 
but there still need to be direct evidences from clinical 
trials.

From saccharolytic fermentation, Proteobacteria (e.g., 
Escherichia coli) also produce a decent amount of etha-
nol and this ability could be increased by dysbiosis. In 
both obese mice and human subjects, higher breath 
ethanol contents were detected compared to controls, 
which could be abrogated by antibiotic treatment [163, 

164]. In addition, elevated circulating ethanol levels and 
increased hepatic alcohol metabolism (in terms of alco-
hol dehydrogenase 1, aldehyde dehydrogenase 2 and 
Cytochrome P450 2E1) were also reported in NALFD 
patients [165]. Such increases of the endogenous etha-
nol not only negatively regulate gut environment, but 
also supply a constant source of ROS to the liver [166]. In 
HFD-fed mice, ethanol and free fat acids were showed to 
synergistically promote liver injury through the elevation 
of hepatic/serum free fatty acids and upregulation of the 
hepatic expression of several chemokines [167]. A recent 
work published in Cell Metabolism introduced a high-
alcohol-producing Klebsiella pneumoniae (HiAlc Kpn) 
strain in a rare NASH case with bacterial auto-brewery 
syndrome and reported a strong correlation between 
HiAlc Kpn between NAFLD in a Chinese cohort. When a 
HiAlc-Kpn-strain-containing fecal microbiota was trans-
planted into normal mice, NAFLD also developed. These 
novel findings all together suggested the alteration in the 
gut microbiome could to some extent facilitate NAFLD 
development via excess production of endogenous etha-
nol [168].

Increased intestine permeability is another impor-
tant alteration caused by gut dysbiosis. The relationship 
between gut permeability and NAFLD is highlighted by 
the finding in a high-fat dietary model of NAFLD that 
increased circulating Lipopolysaccharide (LPS) levels 
correlated with worsened steatohepatitis, as measured 
by the NAFLD Activity Score and liver enzyme levels 
[111]. Impaired gut barrier (unsealed junctions between 
intestinal endothelial cells) allows gut mucosal cells and 
the liver exposed to harmful substances derived from the 
gut, including translocated bacteria, LPS and endotox-
ins as well as secreted cytokines. Gut-derived bacterial 
products, especially LPS, could be recognized by Toll-
like receptors (TLRs), which are important players in 
innate and adaptive immune responses [101]. Increased 
TLR ligands could be detected in the portal system in 
the presence of gut dysbiosis, which contributes to the 
activation of TLR4 on Kupfer cells and stellate cells and 
subsequent stimulation of pro-inflammatory and profi-
brotic pathways [13, 102, 169]. A range of signaling cas-
cades, including MAPK, c-Jun N-terminal kinase (JNK), 
p38 mitogen-activated kinases and NF-κB, are involved 
in this process and lead to activation of proinflammatory 
genes, production of inflammasomes and release of ROS 
[13]. Activation of the NACHT, LRR and PYD domains-
containing protein 3 (NLRP3) inflammasome by LPS 
from gut microbiota via TLR4 and TLR9 was reported 
necessary for NASH development since it led to the early 
onset of steatohepatitis. In liver samples from NASH 
patients, NLRP3 inflammasome was also found posi-
tively correlated with hepatic collagen type 1α expression 
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[170]. Activation of TLRs could also contribute to hepatic 
steatosis via intestinal epithelial myeloid differentiation 
primary response gene 88 (MyD88) which is a central 
adaptor molecule for TLRS and is responsible for switch-
ing metabolism towards obesity [171].

Brain and NAFLD
The central nerve system plays a predominating role in 
energy regulation as neuronal networks and nuclei in cer-
tain brain regions crosstalk and integrate peripheral sig-
nals like plasma nutrients and key metabolic hormones 
to coordinate adaptive changes in food intake and energy 
expenditure [172]. In particular, the hypothalamic arcu-
ate nucleus (ARC) is considered as the most important 
central sensor for signals in circulation and cerebrospinal 
fluid because it is anatomically adjacent to the median 
eminence and the third ventricle [173]. Neurons in ARC 
are the first-order neurons on which peripheral metabolic 
hormones, including leptin, insulin, ghrelin and nutrients 
primarily act, and, they are each responsible for express-
ing orexigenic neuropeptides like neuropeptide Y (NPY) 
and agouti-related peptide (AgRP), or anorexigenic neu-
ropeptides like proopiomelanocortin (POMC). Then, 
second-order neurons in the paraventricular nucleus 
(PVN), ventromedial hypothalamus (VMH) and lateral 
hypothalamus (LH) could receive signals from first-order 
neurons via axonal transport. AgPR released from NPY/
AgRP neurons or α-melanocyte-stimulating hormone 
(α-MSH) released from POMC neurons could bind to 
the melanocortin-3 and -4 receptors (MC3R and MC4R) 
on second-order neurons. α-MSH activates catabolic 
pathways to modulate food intake and energy expendi-
ture while AgPR competes with α-MSH for MC3Rs and 
MC4Rs and antagonizes its effects [174]. Deletion of 
MC4R in mice causes hyperphagia and obesity [175], 
and MC4R gene mutation is also associated with severe 
early-onset obesity in human study [176]. A novel mouse 
model composing both MC4R knockout and HFD feed-
ing successfully simulates the clinical and pathologic 
features of human NASH. The loss of hypothalamic 
MC4R function accounts for the development of IR, 
dyslipidemia, liver fibrosis and HCC [177]. When ablat-
ing NPY/AgRP neurons in young mice, researchers find 
significant food intake inhibition and weight loss [178], 
and direct administration of NPY and AgRP also stimu-
late feeding in animal models [179]. PVN neurons syn-
thesize catabolic neuropeptides and control autonomic 
outflow to peripheral metabolic organs, which increases 
fatty acid oxidation and lipolysis. Consistently, lesion 
study on PVN shows overeating and obesity in rats [180]. 
Neurons in the VMH could sense glucose and leptin and 
produce anorexigenic neuropeptides like brain-derived 
neurotrophic factor (BDNF). Destruction of VMH leads 

to hyperphagia, obesity and hyperglycemia [181]. In con-
trast, electronic or chemical ablation of the LH lead to 
anorexia and weight loss because LH neurons produce 
orexigenic neuropeptides melanin-concentrating hor-
mone (MCH) and orexin which are responsible for inter-
actions between ARC and LH. Chronic infusion of MCH 
causes obesity [182], and MCH deletion causes resistance 
to diet-induced obesity in mice [183, 184]. Recently, a 
selective MCH receptor 1 antagonist is reported success-
fully ameliorating obesity and hepatic steatosis in mouse 
NAFLD models [185].

By modulating energy consumption pathways (e.g., 
locomotor activity, fatty acid oxidation or thermogen-
esis), the brain also regulates energy expenditure of the 
body. The suprachiasmatic nucleus (SCN) produces 
tumor growth factor-α in a circadian manner to mobilize 
growth factor receptors in the hypothalamus paraven-
tricular nucleus and subsequently inhibit [186]. LH neu-
rons and POMC neurons also control locomotor activity 
by producing orexin and recognizing circulating signals 
like leptin level [173]. As mentioned above, thermogen-
esis is mainly carried out by BAT. The brain regulates 
BAT activity via the interaction of norepinephrine and 
β-adrenergic receptors. Downstream activation of cyclic-
adenosine monophosphate (cAMP) signaling then upreg-
ulates mitochondrial uncoupling protein-1 (Ucp1), a key 
molecule for metabolic thermogenesis to avoid an excess 
of fat accumulation [187]. Hypothalamus integrates body 
temperature sensation and modulates thermogenesis 
with excitatory neurons in VMH and efferent sympa-
thetic outflow. Abnormal hormonal signals could trick 
hypothalamus and influence sympathetic outflow to BAT 
[188]. Central administration of leptin, MC3/4R ago-
nists, glucagon or GLP-1 could stimulate BAT activity. 
Intracerebroventricular co-injection of leptin and insu-
lin induces WAT browning and then increases energy 
expenditure [189].

Particular of note, SCN is the master cerebral clock 
coordinating all biological clocks in the body and con-
trolling [190]. The SCN pace the self‐sustained and 
cell‐autonomous molecular oscillators in the peripheral 
tissues through autonomic neural outputs and humoral 
signals such as melatonin and glucocorticoids [191]. 
A loss-of-function mutation in the Clock gene, a criti-
cal transcriptional factor affecting both the persistence 
and period of circadian rhythms, leads to hypergly-
cemia and dyslipidemia, and mice develop adipocyte 
hypertrophy and hepatic steatosis [192]. Under the 
circumstance of hepatic steatosis, clock-related gene 
alterations are found associated with pathways regard-
ing fatty acid oxidation, lipoprotein, fatty acid synthe-
sis and cholesterol metabolism. In the liver, immediate 
early genes are regulated by systematic signals and then 
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communicate rhythmic signals to the hepatic molecu-
lar clockworks. The molecular clockwork provokes the 
expression of genes encoding the enzymatic and trans-
port proteins managing lipogenesis and lipolysis, such 
as hepatic cytochrome P450 cholesterol 7α‐hydroxy-
lase, 3‐hydroxy‐3‐methylglutaryl coenzyme A reductase 
(HMGCR), FAS, lipolytic enzymes, apoA‐IV and C‐III, 
low‐density lipoprotein receptor, FA transport protein 
1 (FATP1), fatty acyl‐CoA synthetase 1 and adipocyte 
differentiation‐related protein [193].

Both the liver and the gut are rich in vagal afferent 
fibers which transmit local information to the brain 
stem, another key area involved in the central regula-
tion of energy balance. In the brain stem, the nucleus 
tractus solitaries (NTS) is predominantly in charge 
of receiving afferent inputs indicating parameters of 
splanchnic organs and then processing extensive signals 
before delivering them to higher brain regions [194]. 
The NTS receives neuronal projections from the hypo-
thalamus, the amygdala and the nucleus accumbens, 
and vice versa, hence, it serves as a relay station and 
presides over orchestrating a coherent output reflex 
to the periphery [195]. During HFD-induced obesity, 
the vagal afferent pathway becomes dysfunctional as 
the neuronal excitability is reduced. As a result, higher 
levels of stimulations (such as stomach distension or 
hormones) are needed to activate vagal afferents with 
reduced responding abilities [196]. Nevertheless, neu-
rons of obese animal or human remain the normal phe-
notype as lean subjects irrespective of abundant energy 
stores, hence improper afferent signals could not be 
appropriately interpreted in the brain and will inevita-
bly exacerbate hyperphagia and obesity by increasing 
meal consumptions and blunting satiety signals [197]. 
After phenol‐induced hepatic denervation in rats, 
CPT1 is suppressed. As a mitochondrial transport pro-
tein that traverses the outer mitochondrial membrane, 
CPT1 motivates fatty acids to enter the mitochondria, 
where the β-oxidation takes place [198]. In the hypo-
thalamus, AMPK phosphorylates ACC, lowers malonyl‐
CoA production, modulate CPT1 activity and thereby 
regulate energy balance. The AMPK-malonyl‐CoA-
CPT1 axis has already been targeted for the therapy of 
NASH [199]. Interestingly, gut dysbiosis and relevant 
endotoxemia are considered partially contributing to 
the dysregulation of gut-brain vagal communication 
and subsequent outcomes such as obesity and NAFLD 
[200, 201]. In HFD-fed mice and obese patients, multi-
ple hormones (CCK, PYY, GLP-1, etc.) become scarce 
capable to activate vagal afferents and their receptors in 
vagal neurons also reduce [196, 202, 203]. A posteriori, 
the benefits of bariatric procedures on NAFLD patients 

are also ascribed to the remediation of vagal nerve cir-
cuits [204].

Leptin activates receptors in many brain regions, 
among which ARC is the most important area to regulate 
appetite, thermogenesis, and locomotor activity [173]. 
Leptin drives hypothalamic signaling cascades such as 
the Janus kinase-STAT pathway, the insulin receptor sub-
strate (IRS)-PI3K signaling, mTOR-S6 kinase signaling, 
AMPK signaling and ERK signaling [205]. Meanwhile, 
ghrelin also acts through central mechanisms to increase 
caloric intake and functions through hypothalamic neu-
ronal circuits to increase lipogenesis and decreasing 
β-oxidation in WAT. By activating GHS-R1a on hypo-
thalamic NPY/AgRP neurons, ghrelin promotes the 
blockade of MC3/4R and regulates peripheral lipogenesis 
through the sympathetic nervous system [206].

Hypothalamic neurons (such as orexin-producing neu-
rons in the LH) could be activated by sweet foods [207], 
while one unique point to mention here is, besides the 
caloric and glycemic aspects, sweet taste itself should 
also be discussed when we talk about the role of brain in 
NAFLD and other metabolic disorders. When assigned 
to diet soda with aspartame, a nonnutritive sweetener 
worldwide consumed, rats develop hyperglycemia and 
fat accumulation in two months compared to their water 
drinking counterparts [208]. The aspartame exposure 
downregulates adiponectin and PPAR and increases lep-
tin production, which may potentially contribute to the 
pathogenesis of NAFLD. A number of studies reported 
that consumption of artificial sweeteners brings great 
risks of obesity, metabolic syndrome and type 2 diabe-
tes [209–212]. Reminded by these studies, the learned 
behavior of sweet taste is associated with disease patho-
genesis. Oral but not gastric administration of glucose or 
saccharin leads to decreased GLP-1 release [213], which 
subsequently disrupts the satiety process and increases 
food intake and weight gain.

Summary
NAFLD is a rising health problem worldwide and 
related medical burden is also increasing at an alarm-
ing rate. Recently, an international expert group has 
announced the consensus of renaming NAFLD as 
metabolic (dysfunction) associated fatty liver disease 
(MAFLD), in two position papers [214, 215]. Although 
there is still some feeling in academia that the new 
acronym is premature [216], the effort to bring this dis-
ease to a more practical status and closer to metabolic 
disorders is not doubt destined. The new terminology 
and corresponding diagnostic criteria explicitly high-
light overweight/obesity, type 2 diabetes mellitus, and 
metabolic dysregulation, which shall bring more tar-
gets for mechanism research and intervention. Without 
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doubt, the pathogenesis of NAFLD (or MAFLD) is 
complex and evidently involves multiple organs and 
diverse mechanisms (Fig.  1). The adipose tissue not 
only contributes fatty acids to facilitate hepatic steato-
sis but also produces hormones and cytokines to influ-
ence proinflammatory pathways. The gut directly takes 
charge of energy absorption and it communicates with 
brain to modulate food intake. Gut microbiota has 
become a hot topic recently as it participates in NAFLD 
pathogenesis via the gut-liver axis. Altered gut perme-
ability also exposes liver to bacterial components and 
further triggers immune responses. The central nerve 
system integrates hormonal and neurol signals to con-
trol energy balance, which when impaired leads to obe-
sity and NAFLD. Finally, in the liver, key mechanisms 
include lipotoxicity, IR, ROS production, ER stress, 
apoptosis, inflammation, autophagy, etc. Based on 
researches emphasizing aforementioned mechanisms, 
quests for novel therapies are underway and many 
candidates have already entered clinical trials. Further 

work is still urgently needed to find detailed pathogenic 
mechanisms of NAFLD, especially the inter-organ 
crosstalk aspect.

Abbreviations
17-OHP: 17-Hydroxyprogesterone; 4-HNE: 4-Hydroxynonenal; α-MSH: 
α-Melanocyte-stimulating hormone; ACC​: Acetyl-CoA carboxylase; AG: 
Acylated ghrelin; AgRP: Agouti-related peptide; AMPK: AMP-activated protein 
kinase; ANGPTL8: Angiopoietin-like 8; ApoB: Apolipoprotein B; ARC​: Arcuate 
nucleus; ASK1: Apoptosis signal‐regulating kinase 1; Atg7: Autophagy-related 
7; BAT: Brown adipose tissue; BDNF: Brain-derived neurotrophic factor; cAMP: 
Cyclic-adenosine monophosphate; CCK: Cholecystokinin; CHOP: C/EBP 
homologous protein; CHIP: C-terminus Hsc70-interacting protein; ChREBP: 
Carbohydrate-responsive element-binding protein; CPT1: Carnitine palmitoyl 
transferase 1; DAG: Diacylglycerol; DGAT​: Diglyceride acyltransferase; DIO: 
Diet-induced obesity; DNL: De novo lipogenesis; ECM: Extracellular matrix; 
EPI: Epinephrine; ER: Endoplasmic reticulum; ERK: Extracellular regulated 
protein kinases; FA: Fatty acid; FAS: Fatty acid synthase; FATP1: FA transport 
protein 1; FFAs: Free fatty acids; FGF19: Fibroblast growth factor 19; FGF21: 
Fibroblast growth factor 21; FOXO: Forkhead box O; FXR: Farnesoid X receptor; 
Gabarapl1: Gamma-aminobutyric acid type A receptor associated protein 
like 1; GHS-R: Growth hormone secretagogue receptor; GLP-1: Glucagon-
like peptide 1; GLP-1RA: GLP-1 receptor agonist; GPCRs: G-protein-coupled 
receptors; GR: Glucocorticoid receptor; HCC: Hepatocellular carcinoma; HDAC: 

FFAs

Proflammatory cytokines 

Chemokines

Obesity

Insulin resistance

Adipocyte death

Lypolysis

Adipokines 

(Leptin, Adiponectin, Resisitn) 

Gut hormones 

(Ghrelin, GLP-1, FGF19, )

Endogenous ethanol, SCFAs

Translocated bacteria

LPS, cytokines

Vagal afferent fibers 

Insulin

Leptin

Ghrelin

Nutrients
NYP

AgRP

POMC

BAT activity

WAT browning

Biological clock

Obesity, IR, FFAs overload

Lipodystrophy

Inflammation, fibrosis

Mitochondrial dysfunction

ER stress

Hepatokines dysregulation 

Autophagy

Appetite 

Energy homeostasis

Fig. 1  Inter-organ crosstalk regarding the pathogenesis mechanism of NAFLD. The adipose tissue contributes fatty acids to facilitate hepatic 
steatosis and also produces cytokines to impact proinflammatory pathways, which in turn exacerbates obesity, insulin resistance, adipocyte death 
and lipolysis. Adipokines deliver metabolic signals to the brain as well. Gut dysbiosis affects gut hormones, metabolites and bacterial components, 
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dysfunction, ER stress, apoptosis, inflammation, hepatokine dysregulation, and autophagy, thus collectively inducing the development of NAFLD
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