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MFEM-CIN: A Lightweight Architecture
Combining CNN and Transformer for
the Classification of Pre-Cancerous

Lesions of the Cervix
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Abstract—Goal: Cervical cancer is one of the most com-
mon cancers in women worldwide, ranking among the top
four. Unfortunately, it is also the fourth leading cause of
cancer-related deaths among women, particularly in devel-
oping countries where incidence and mortality rates are
higher compared to developed nations. Colposcopy can aid
in the early detection of cervical lesions, but its effective-
ness is limited in areas with limited medical resources and
a lack of specialized physicians. Consequently, many cases
are diagnosed at later stages, putting patients at significant
risk. Methods: This paper proposes an automated colpo-
scopic image analysis framework to address these chal-
lenges. The framework aims to reduce the labor costs as-
sociated with cervical precancer screening in undeserved
regions and assist doctors in diagnosing patients. The
core of the framework is the MFEM-CIN hybrid model,
which combines Convolutional Neural Networks (CNN) and
Transformer to aggregate the correlation between local and
global features. This combined analysis of local and global
information is scientifically useful in clinical diagnosis. In
the model, MSFE and MSFF are utilized to extract and fuse
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multi-scale semantics. This preserves important shallow
feature information and allows it to interact with the deep
feature, enriching the semantics to some extent. Conclu-
sions: The experimental results demonstrate an accuracy
rate of 89.2% in identifying cervical intraepithelial neoplasia
while maintaining a lightweight model. This performance
exceeds the average accuracy achieved by professional
physicians, indicating promising potential for practical ap-
plication. Utilizing automated colposcopic image analysis
and the MFEM-CIN model, this research offers a practical
solution to reduce the burden on healthcare providers and
improve the efficiency and accuracy of cervical cancer di-
agnosis in resource-constrained areas.

Index Terms—Cervical cancer, cervical intraepithelial
neoplasia,deep learning, CNN, transformer.

Impact Statement—The proposed lightweight model
achieved an impressive accuracy of 89.2% in identifying
cervical intraepithelial neoplasia, which is better than the
average professional physician, indicating the promising
potential for practical application.

I. INTRODUCTION

C ERVICAL cancer is the fourth most common malignancy
in women worldwide and is the only malignancy with a

known cause in human tumors. However, there has been no
significant decline in cervical cancer incidence and mortality. In
2018, there were approximately 570000 new cases of cervical
cancer worldwide, accounting for 3.15% of all malignancy inci-
dences, and approximately 310000 deaths, accounting for 3.26%
of all malignancy deaths. Cervical cancer poses a significant
global burden [1], with a large proportion of incidence and
deaths occurring in developing countries. Surveys indicate that
approximately 85% of women diagnosed and 87% of women
who die from cervical cancer reside in low- and middle-income
countries (LMIC) [2]. In these regions, there is a lack of sufficient
knowledge about cervical cancer and inadequate medical re-
sources. Many women in less economically developed areas are
not regularly screened for precancerous cervical lesions, putting
them at high risk. Improved medical equipment and resources
can play a crucial role in reducing the incidence and mortality
rates of cervical cancer in these areas.

Screening tests for precancerous lesions include HPV DNA
testing, cytology (Pap test), and visual cervical screening. Visual
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cervical screening is a cost-effective alternative to cytology,
which requires complex training [3]. However, HPV testing is
more commonly used in clinical practice for primary cervical
cancer screening [4]. Therefore, visual cervical screening is
indicated in less economically developed areas (LMIC). Visual
cervical screening is a method of examining the cervix using
acetic acid (VIA) and Lugol’s iodine (VILI) to identify pre-
cancerous lesions and cervical intraepithelial neoplasia (CIN).
During the examination, the colposcopist applies 3–5% VIA,
which turns precancerous lesions white (acetowhite) and cervi-
cal intraepithelial nodules visible. Furthermore, CIN is a crucial
screening method for detecting abnormal cell growth on the sur-
face of the cervix. According to the World Health Organization,
CIN is classified into three categories: CIN1, CIN2, and CIN3.
Clinically, CIN is divided into two main categories: Low-Grade
Squamous Intraepithelial Lesion (LSIL) which corresponds to
CIN1, and High-Grade Squamous Intraepithelial Lesion (HSIL)
which corresponds to CIN2 and CIN3. CIN1 usually resolves
spontaneously with a 60% chance and can be treated conser-
vatively by observation and regular diagnosis. However, HSIL
(CIN2 and CIN3) can directly develop into invasive cancer,
requiring immediate surgical treatment [5]. There is a shortage of
experienced colposcopists in economically disadvantaged areas.

In recent years, deep learning techniques have been applied
in the field of complementary medicine, including cervical can-
cer detection. However, many proposed CNN-based algorithms
have obvious drawbacks. This is because the physiological
image obtained from colposcopic images cannot easily distin-
guish between cervical epithelial neoplasia and other types of
abnormal growths, such as celiac disease, due to the variable
physiological condition of the cervix. The convolution operation
in CNN captures only local information, whereas the Vision
Transformer (ViT) extracts global information of the image
through the multi-headed self-attentive mechanism (MHSA) and
has a global perception field. This property allows the model to
focus more on the features of cervical epithelial lesions, com-
pensating for the missing property of CNNs. ViT has performed
well in various vision tasks, including image classification [5],
semantic segmentation [6], and video understanding [7], [8].
Some studies have suggested that ViT’s prediction error is closer
to human prediction error than that of CNN [9]. These features
have made ViT popular in medical imaging and physiological
image analysis [10].

However, using the Transformer model on the ground remains
challenging due to two main reasons. Firstly, the number of
parameters is significantly larger compared to CNN [11]. Sec-
ondly, the Transformer lacks spatial induction bias, and spatial
information is crucial in image data. VIT researchers introduced
absolute position bias to the model, while Swin Transformer
researchers added relative position bias. These measures can
partially solve the problem of spatial information loss, but they
require adjustment when applied to other tasks. Specifically, the
relative position encoding may be adjusted as a trainable param-
eter during training to adapt to the position offset requirements
of the new task.

To solve the practical problem, we propose a lightweight
structure called MFEM-CIN, which stands for multiscale feature

extraction module for CIN. It is based on a mixture of CNN
and Transformer. CNN reduces the number of parameters for
the model and eliminates position bias. Additionally, the inclu-
sion of CNN can expedite network convergence, resulting in
a more stable training process. The Transformer architecture
replaces traditional convolution with a global sensing field,
enhancing the attention given to key features and improving the
model’s classification performance. MEFM-CIN is designed to
consider both local and global features in practical diagnosis.
This includes vascularity, texture, boundary definition, position,
and relative size. The aim is to prevent the loss of low-level
semantics by paying attention to different scales of features.
The model architecture employs the MSFE (multiscale fea-
ture extraction module) to extract features at different scales,
and the MSFF to fuse the semantics at different scales. This
paper is the first to apply Transformer to cervical precancer
detection.

The following section outlines previous research on the ap-
plication of machine learning and deep learning to precancerous
lesion detection. The third section introduces the dataset and data
preprocessing methods. The fourth section presents the deep
learning tools used. The fifth section analyses the experimental
results. Finally, the paper concludes by discussing the limitations
of the current study and future developments.

II. RELATED WORK

The field of medical diagnosis has seen considerable results
and greater impact due to the rapid development of artificial
intelligence technology in recent years. Techniques based on
deep learning and machine learning have been increasingly
applied. Scholars have also made some explorations in the field
of automated cervical cancer precancer detection.

Xu et al. [12] trained CNNs on almost 1000 patient images,
each with a self-reported cervical cytology and HPV test re-
sult. The final model achieved 88.91% accuracy in identifying
LSIL+. Ma et al. [13] designed a network architecture based
on a feature pyramid network (FPN) with a lightweight booster
(CCDB), which was trained on 4107 cervical smears and finally
achieved a specificity of 95.14% for detecting abnormal squa-
mous cells. Zhang et al. [14] employed convolutional neural net-
works (ConvNets) to distinguish abnormally growing cervical
cells. The model was first pre-trained on a natural image dataset
and then subsequently fine-tuned on a cervical cell dataset.
Finally, the trained model was evaluated on a Pap smear and LBC
dataset, achieving a classification accuracy of 98.3%. Li et al.
[15] proposed a deep learning model based on RestNet-101 with
E-GCN, trained on a dataset of 7668 delayed colposcopies, and
finally this model achieved an accuracy of 78.33% for the detec-
tion of LSIL+. The model achieved an accuracy of 78.33% for
the detection of LSIL+, surpassing that of a group of specialists
who conducted a competition to identify LSIL+ under the same
conditions.

Buiu et al. [16] proposed MobileNetV2 using multiple colpo-
scopic images of the same patient as input. These images consist
of five consecutive images of acetic acid action, one image
through a green lens, and one image after the action of iodine
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solution. The final model achieved a recognition accuracy of
83.33% for multivariate classification on a dataset of over 3000
images. Although the model approach demonstrated good per-
formance, there are concerns regarding its clinical application
due to the need to input too many images. In poorer areas, it may
be unlikely to obtain colposcopic images in three different states
required for the model. Additionally, the diagnostic process
may become too burdensome, which should be avoided. Saini
et al. [17] developed the ColpoNet network with a DenseNet
backbone and tested it on 800 images, achieving an accuracy
of 81.35% for the binary classification task. The dataset used
in their experiments was limited in its robustness and did not
include special cases that may be encountered in a clinical
setting.

Xue et al. [18] aimed to remove specular reflections, which
often appear on the surface of vaginal mirrors, and identify
acetyl white in the ROI region. The team used two main steps
to achieve this. The first step involved identifying specular
reflective regions, which were determined by the presence of
high bright spots in pixels with high luminance (I) and low
colour saturation (S) values near high gradients. The second
step is to fill these regions. The paper describes two methods
of filling: average color fill and weighted color fill. Similar to
Xue et al. [18], Yue’s team [19] also made significant con-
tributions to the study of specular reflections in vaginoscopic
images. The cervigram was converted to HIS colour space
and thresholds were set on the S (saturation) and I (intensity)
channels to obtain ROIs. These were then filled by searching
for patches with the greatest similarity to the pixels around the
ROIs.

In [20], the authors trained a convolutional neural network
model on a colposcopic dataset of 330 patients. The final model
identified HISL+ with an accuracy of 94.1%, compared to
84.3% for competing gynaecologic oncologists in the same con-
dition. In this experiment, the automated screening method out-
performed the manual method. There are few publicly available
datasets of reliable quality. Li et al. [21] collected colposcopic
images from 8604 patients to construct a dataset of colposcopic
images of cervical intraepithelial malignancies with fine-grained
lesions. The dataset was labelled based on the anterior texture
of the supraacetabular white skin and the appearance of blood
vessels. It is anticipated that this dataset will be accessible to
additional researchers in the future, thereby contributing to more
automated diagnostic studies.

Models that combine CNNs and Transformers are becom-
ing increasingly popular due to their ability to capture both
local and global information. This combination enhances the
model’s ability to capture contextual information in the image,
ultimately leading to improved performance. The choice of
which model to use depends on the specific needs and task
at hand. Chen et al. [22] introduced SleepZzNet, a model that
combines CNN and Transformer architectures to classify EEG
sleep stages. Similarly, Hong et al. [23] used a transformer-
CNN network with a dual coding system to segment multi-
organ CT maps among different organs and achieved superior
results.

TABLE I
DISTRIBUTION OF DATA IN THE TRAINING AND VALIDATION SETS

Fig. 1. Classification distribution of the CIN data set.

III. DATASET AND PREPROCESSING

A. Experimental Dataset

The dataset used in our experiment comprises colposcopic
images collected from Wanan Medical College. The dataset
includes images of over 4000 patients, each taken after a VIA
procedure performed by a specialized colposcopist. Clinically
relevant conditions such as bleeding, polyps, erosions, displaced
cervix, and foreign body obscuring the lens are included. The
dataset for CIN grade was graded by several professional and
experienced gynecologists. The images are all uniformly sized
at 960 x 640. Normal specimens are described as CIN0.

In our experiments, we categorized CIN0 and CIN1 as LSIL
and CIN2 and CIN3 as HSIL. The training and validation sets
were randomly divided in an 8:2 ratio, as shown in Table I. Fig. 1
displays the corresponding histogram distribution.

The CIN dataset includes a small proportion of LSIL and
HSIL class samples, as determined by the following formula:
where nummax is the number of samples from the largest class,
and nummin is the number of samples from the smallest class.
Therefore, the effect of sample imbalance does not need to be
considered at this time.

nummax

nummin
≤ 10 (1)

B. Experimental Environment

Our experimental environment consists of an Intel Gold 512
CPU, two Nvidia Geforce GTX 1080Ti GPUs (8GB each), and
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TABLE II
DATA PRE-PROCESSING

we use the open-source deep learning framework Pytorch on
Ubuntu 16.04 LTS.

C. Preprocessing

Prior to the official experiment, we dedicated significant effort
to preprocessing the images. The methods employed are listed
in Table II, and are explained in detail below:

1) Histogram Equalization: The complexity of the content
in the colposcopic images was due to the physiological state
of the patient. Additionally, some samples did not reflect dis-
tinctive lesion features after the action of acetyl. Therefore, we
performed image enhancement to improve the details for all
samples. This improved the classification accuracy of the model
and sped up the convergence rate. Contrast enhancement is used
to achieve detail enhancement. This is because an image with too
much concentration of grayscale in the grayscale histogram will
look blurred and have too little detail. Histogram equalization
can make the distribution of grayscale more even [24]. However,
using the normal histogram equalization method to enhance
contrast can cause problems such as areas becoming brighter
or darker and losing detail, which should be avoided [25]. The
contrast enhancement was limited to histogram equalization.
The process involved mapping the image into LAB space and
running the CLAHE algorithm on each of the three channels L,
A, and B. The resulting three channels were merged and then
mapped back into RGB space.

imageRGB
trannsfer−−−−−−→ imageLAB (2)

CL,CA, CB = Fspilt (imageLAB) (3)

C ′
L,C

′
A,C

′
B = FCLAHE (CL,CA, CB) (4)

image = Fmerge

(
C ′

L,C
′
A,C

′
B

)
(5)

imageLAB
trannsfer−−−−−−→ imageRGB (6)

where imageRGB denotes the colposcopy image in RGB repre-
sentation, imageLAB denotes the colposcopy image under the
LAB presentation, CL, CA, CB denote L, A, and B channels,
respectively,C ′

L,C
′
A,C

′
B denote L, A and B channels after Clahe

enhancement. Moreover, Fspilt splits an image represented by
multi-channel into multiple single channels, FCLAHE denotes
enhanced images by Clahe algorithm, andFmerge merges multi-
channels.

The image is enhanced in detail, as shown in Fig. 2. The white
areas are believed to be the effect of acetyl on the lesion. This
step’s significance will be discussed in detail in the following
experimental discussion.

Fig. 2. Colposcopic image enhancement.

Fig. 3. Mirror reflection removal effect.

2) Mirror Reflection Removal: To improve the accuracy of
classification, we removed and filled in the specular reflections
from the endoscopic images in the dataset. This was done by
setting a suitable threshold to detect the specular reflection areas,
based on the fact that high bright spots tend to appear at low
saturation and high intensity [26]. Secondly, based on the size
of the identified areas, we fill them one by one using an algorithm
that searches for the most similar patches within the same image
sample. The resulting rendering can be seen in Fig. 3

3) Image Enhancement: Additionally, to avoid overfitting,
we expanded the dataset to include random horizontal flipping
and cropping of images.

IV. EXPERIMENTAL METHOD

A. Experimental Model

1) General Overview of Model Architecture: The follow-
ing section describes the architecture of MFEM-CIN.

Initially, the model convolves the image input to extract
low-level features and downsamples it to remove redundant
data. This module comprises a convolution kernel size of 3, a
step size of 2, batch normalization (BN), and a SiLu activation
function. The second part of the MobileNetV2 network consists
of the inverse residual structure. Within this structure, the data
is first down-sampled by a 1x1 convolution kernel, followed by
a deep separable convolution with a 3x3 convolution kernel, and
finally by a 1x1 convolution up-sampling. The output data is then
concatenated with the input of this structure, as shown in [27].
The data is then down-sampled by the MV structure in layer
2 and processed by the multi-scale feature extraction (MSFE)
component.

The MSFE component has two parallel branches, each with
nodes that process data using MV2 and MFViT blocks with
different scale features from each layer. The multi-scale feature
fusion (MSFF) module collects and merges features from dif-
ferent scales in the previous module. Finally, the high-level se-
mantics are extracted, dimensionally adjusted, globally pooled,
and flattened. They are then fed into the fully connected layer
for decision-making to obtain the predicted CIN risk level.
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Fig. 4. Flowchart of the model structure.

TABLE III
INFORMATION RELATING TO THE STRUCTURE OF THE MODEL

Fig. 5. MV2 structure. (a) The MV2 structure with stride = 2. (b) The MV2 structure with stride = 1.

The model is a hybrid architecture of CNN and Transformer,
designed to extract multi-scale high-level semantics, which are
then fused and fed into the fully connected layer for classifica-
tion. Fig. 4 illustrates the model’s structure. Table III explains
some of the basic operations in the model.

2) Multi-Scale Feature Extraction Module: The paper
presents a MSFE module that is divided into two branches. The
features extracted from different branches but the same layer are
fused and interacted. This fusion is necessary because the feature
extraction components on each node have differences, which
can provide different information. The feature extraction com-
ponents used are MV2 and MFViT Block. The MV2 structure

comprises of a 1x1 convolution and DW convolution, which re-
duces computational intensity while retaining high-dimensional
information with a low loss rate.

Another MV2 structure can be found in Fig. 5, as presented
by Sandle et al. The MFViT module was designed to learn both
local and global information with an effective perceptual field
of H × W.

Fig. 6 displays the fundamental structure of the MFViT mod-
ule. Initially, the number of channels is established using the
standard 3 × 3 and 1 × 1 convolution kernels, and the tensor
size is set fromα ∈ XH×W×C toαl ∈ XH×W×d. Subsequently,
the unfolding module is divided αl into N non-overlapping
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Fig. 6. MFViT structure.

sequences αu ∈ XP×N×d, where N = HW/wh ,P = hw, h
and w represent the size of a patch.

Fig. 7 shows that the patch size is 2 × 2 and the input is
divided into 9 patches. Each patch in the same color region
is stitched together to form a sequence. These sequences are
then entered into the Transformer module for global relational
modeling. Finally, the different tokens are collapsed into the
original feature map, preserving the location information of each
region. As demonstrated in (7), each token is self-attended by
the token of the same colour, reducing parameter calculation.

αg (p) = Transformer (αu (p) ) , 1 ≤ p ≤ P (7)

Following the Transformer computation, αg ∈ XP×N×d is
collapsed into αf ∈ XH×W×d, and the number of channels is
adjusted to C by a 1 × 1 convolution kernel. The output α ∈
XH×W×C is obtained by concatenation with the original input
αf ∈ XH×W×C .

3) Multi-Scale Feature Fusion Module: The MSFF mod-
ule is built to collect the multi-scale modules generated by the
previous feature extraction module. The MV2 module is used to
downsample the features from different scales for better fusion.
The logical details within the module are shown in the following
equation. The MV2 structure has been introduced in the previous
section, and Concat represents the connection of the different
features of the input. Here, Xi is the feature of the same scale
processed by MV2 structure. Xsum is the advanced semantics
after fusion of different scales. The expectation is that these
high-level semantics will provide richer and more hierarchical
information, which is crucial for the model to accurately focus
on key features and improve classification accuracy.

Xi = MV 2 (xi) (i ∈ {1, 2, 3})
Xsum = Concat (Xi) (8)

B. Model Forward Propagation

This section presents the number of channels and the variation
of the data length and width (C × H × W) of the sample data

TABLE IV
FORWARD PROPAGATION PROCESS

as they pass through our model are presented to provide a more
intuitive view of the forward propagation process.

The data first passes through the 3 × 3 convolution at the
beginning of the model, where the stride is set to 2. As a result,
the size of the tensor becomes 112 × 112, and the number
of channels increases to 32. The data is processed through a
3x3 convolution layer in the MV2 structure of module 1 with
padding=(kernel_size-1)/2, resulting in a constant H and W.
The output after the module is 32 × 112 × 112. The output
of this module is 48 × 56 × 56. Module 2 contains three MV2
structures, with one having a stride of 2 while convolving and
the other two being the same as the structure in module 1, which
does not affect the data size. The three layers in the next branch
differ only in the number of transformer encoders used. This
module does not affect the size, only the MV2 structure. As a
result, the output of the next three modules are 64 × 28 × 28,
80 × 14 × 14 and 96 × 7 × 7. Please refer to Table IV for a
summary of this section.

C. Loss Fuction

The paper addresses a binary classification problem and em-
ploys the cross-entropy loss function, as shown in (9) below. ypre
represents the probability of the network arriving at a positive
class (HSIL), andyact representsthe actual label value (0/1).

loss = − (yact log (ypre) + (1− yact) log (1− ypre)) (9)

V. EXPERIMENTAL RESULT AND ANALYSIS

In Section V-A, the metrics used to evaluate the experimental
results are presented. Section V-B discusses the differences in
CIN classification performance between the underlying net-
works and our proposed network. The time taken by each model
to infer a single sample is also analyzed, and the heat map of our
proposed model for key feature attention is presented. In Sec-
tion V-C, the performance of the CIN classification framework
is compared with that of other researchers.

A. Evalution Metrics

In the experimental section, we conducted several sets of
experiments. One set summarised the effect of different model
parameters on the classification accuracy of the model. Another
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Fig. 7. Flowchart of unfold and fold operations.

set illustrated the improvement of model performance after
processing the dataset with our preprocessing method. In the
third experiment, we compare the performance of the existing
model with our proposed model on the preprocessed dataset
to highlight the superiority and necessity of the preprocessing
method.

To assess the performance of a classification model, evalua-
tion metrics such as accuracy, precision, sensitivity, and speci-
ficity can be used. These metrics are commonly employed to
evaluate the performance of classification models. Accuracy is
an important metric as it represents the proportion of correctly
predicted samples out of all predicted samples. The accuracy
metric formula is expressed as follows: TP represents the number
of true positive classes classified as positive, TN represents the
number of negative classes correctly classified as negative, FP
represents the number of positive classes incorrectly classified
as negative, and FN represents the number of negative classes in-
correctly classified as positive. To simplify matters, the negative
class referred to above is actually the LSIL, while the positive
class is the HSIL.

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

Precision =
TP

TP + FP
(11)

Sensitivity =
TP

TP + FN
(12)

Specificity =
TN

TN + FP
(13)

Recall =
TP

TP + FN
(14)

F1 Score = 2∗ Recall∗Precision

Recall + Precision
(15)

B. Performance Comparison With Different
Networks

This experiment evaluates the effectiveness of the proposed
network compared to alternative networks, including AlexNet,
VggNet, MobileNetV2, ResNet50, and ShufflenNet, for CIN
classification on the same preprocessed dataset. All networks

were pre-trained on ImageNet, which has the advantage of
faster convergence during training and the model not having to
learn image features from scratch. Table V shows that our CNN
and Transformer-based models outperform the previously men-
tioned deep neural networks on all metrics, demonstrating their
superior performance. Our models combine high classification
performance with low weight.

To consider practical applications, we conducted an experi-
ment comparing the inference time required to complete a single
image for each model.

Colposcopic images from the test set were selected for the
experiment, and Table VI shows the average single-sample
inference time for each model. The proposed model completes
inference quickly and achieves speeds far beyond manual diag-
nosis in clinical use.

In our experiments, we found that colposcopy images contain
noise, which can negatively impact the network’s classification
accuracy. To evaluate the model’s attention to key features and
its ability to filter out noise after extensive training, we utilized
Grad-Cam [28]. The Grad-Cam is computed by weighting the
output of the final model layer with the results of the back-
propagation. The first row of Fig. 8 illustrates this. The model
successfully avoids interference and focuses on key feature
areas even when common endoscopic image noise, such as
endoscopy, is present in the sample content. As demonstrated
below, the model can effectively eliminate specular reflection
noise by learning numerous features. Even without the use of
the specular reflection removal algorithm, the model remains
relatively resistant to interference.

C. Ablation Studies

In this section, we conducted ablation experiments to confirm
the significance of our preprocessing approach and the model’s
components.

1) Effect of Key Components: This experiment demon-
strates the validity of MFViT and multi-scale modules (MSFE
and MSFF). The results are shown in Table VII. When the multi-
scale modules (MSFE and MSFF) are removed but the MFViT
module is kept, the accuracy is 87.5%, precision is 88.04%,
and F1 score is 85.86%. When the MFViT module is removed
but the multi-scale modules (MSFE and MSFF) are retained,
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TABLE V
PERFORMANCE COMPARISON OF DIFFERENT MODELS

TABLE VI
CLASSIFICATION TIME FOR SINGLE CASE SAMPLES

Fig. 8. Heat map of CNN with our model.

the accuracy is 86.34%, precision is 88.93%, and F1 score is
86.22%. The comparison in Table V shows that the performance
on these metrics was higher than that of the comparison model.
The experimental results indicate that integrating these two
modules improved the metrics compared to the first two groups
of experiments. This confirms the necessity of correlating local

TABLE VII
ABLETION STUDIES OF MFEM-CIN

TABLE VIII
ABLETION STUDIES OF MFEM-CIN

features with global features and multi-scale feature extraction
in our diagnosis of colposcopic images.

2) Effect of Preprocessing Methods: In the previous sec-
tion on data preprocessing, we introduced the image enhance-
ment algorithm and the highlight removal algorithm used in
this process. To demonstrate the practicality and necessity of
these two parts of preprocessing, we designed an experiment to
compare the classification performance of the model before and
after preprocessing. The results are shown in Table VIII. The
experiment demonstrated that preprocessing the predesigned
data improved the model’s feature learning on cervical images,
resulting in better performance. However, it should be noted
that the multi-channel model used in the study had over 1000
patients, while our data sampling only contains data from over
4000 patients. The team of professional physicians achieved a
diagnostic accuracy of 81.00%. Therefore, it can be concluded
that the automated diagnostic method proposed in this paper is
superior to the professional physicians.

D. Comparison With Other Methods

Table IX shows a comparison between the results of our
experiment and those of previous studies. Although other studies
have different types of classification, our classification of CIN
type LSIL/HSIL is more clinically relevant. The following works
can be compared with ours in this regard. Our proposed model
has a better accuracy rate of 89.2%, and our sample size is also
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TABLE IX
COMPARISON WITH OTHER RELATED METHODS

comparable to that of Li et al., who had a sample size of over
7000.

VI. EXPERIMENTAL RESULT AND ANALYSIS

Computer-aided automated diagnosis is crucial for the
widespread availability of medical treatment in economically
underdeveloped areas. This paper presents pre-processing meth-
ods, including image enhancement and specular reflection, to
accelerate model training speed and improve model classifi-
cation accuracy based on the characteristics of colposcopic
images. The proposed MFEM-CIN model is based on CNN
and Transformer. The model’s design is based on the concept
of combining a Vision Transformer with a CNN to achieve
a global perceptual field and capture long-range dependen-
cies while avoiding the drawbacks of ViT’s large parameter
count. The combination of MSFE and MSFF enable the model
to extract and fuse multi-scale features, taking into account
the interaction between shallow important features and high-
level semantics. The classification performance of MFEM-
CIN was validated using basic CNN and ViT models on the
vagoscopic dataset. The experiments demonstrated that our
model outperformed previous studies in terms of classifica-
tion accuracy on highly complex datasets. Additionally, our
model was shown to be highly focused on key features when
faced with highly noisy samples, illustrating its strong learning
ability.

In summary, this paper’s research can assist physicians
in making auxiliary clinical judgments and improving medi-
cal care, which is of great importance in reducing the inci-
dence of cervical cancer in poor areas. However, the study
has some limitations. Firstly, the pretreatment method is not
a system with an automated diagnostic framework, so more
efforts will be made to access it in the future. Secondly,
some patients may have intracervical lesions that are not di-
rectly visible during colposcopy. To address this issue, we
need to integrate cervical cytology and HPV results into the
dataset. Additionally, we are working to collect colposcopy
datasets from different regions and populations, along with
other medical imaging datasets, to further validate the model’s
generalizability.
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