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Abstract: Epidemiological evidence indicates that nutritionally-derived polyphenols such 

as resveratrol (RES) have neuroprotective properties. Administration of RES to culture 

media protects a wide variety of neuronal cell types from stress-induced death. Dietary 

supplementation of RES can ameliorate neuronal damage and death resulting from both 

acute and chronic stresses in rodents. The specific molecular mechanisms by which RES 

acts at the cellular level remain incompletely understood. However, many experimental 

data indicate that RES reduces or prevents the occurrence of oxidative damage. Here we 

discuss possible mechanisms by which RES might exert protection against oxidative 

damage and cell death. Evidence suggesting that RES’s chemical antioxidant potential is 

not sufficient explanation for its effects is discussed. Putative biological activities, 

including interactions with estrogen receptors and sirtuins are critically discussed. We 

provide a synthesis of how RES’s phytoestrogenic properties might mediate the neuronal 

stress resistance underlying its observed neuroprotective properties. 

Keywords: resveratrol; mitochondria; MnSOD; superoxide dismutase; reactive oxygen 

species; ROS; estrogen; phytoestrogen; stress resistance; neuroprotection 

 

1. Introduction 

The efficacy of nutritionally derived compounds as neuroprotective agents is increasingly supported 

by empirical evidence. Plant-derived molecules including polyphenols have demonstrated 

neuroprotective activities in cell culture and animal models. However, the molecular mechanisms that 
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give rise to their protective effects are generally not well understood. Elevated levels of oxidative 

damage and an increased occurrence of cell death are common observations in chronic 

neurodegenerative diseases and acute ischemic injury. Polyphenols are small molecule antioxidants 

that are hypothesized to offer protection against the negative effects of oxidative stress in many tissues 

including brain, and this may underlie their ability to protect against cell death. Although dietary 

sources of antioxidants are extensive, a great deal of research interest has been directed towards the 

compounds found in red wine. 

Resveratrol (RES), a compound found in high concentrations in red wine, and related polyphenols, 

have inherent antioxidant capacity due to their chemical structure. Direct antioxidant properties were 

once posited to be responsible for their broad range of biological effects; however, limited 

bioavailability and relatively weak scavenging abilities make this unlikely. An alternative to direct 

chemical interactions is the possibility that RES and related polyphenols work to enhance endogenous 

intracellular defense systems and in turn protect against cellular stress, dysfunction and death.  

We begin this review by first summarizing the literature supporting the neuroprotective actions of 

RES, followed by a critical review of recent findings regarding putative mechanisms of RES’s actions 

at the cellular level. We then extend this discussion to dietary delivery strategies that may increase 

RES’s bioavailability and thereby maximize its neuroprotective effects. 

2. RES as a Neuroprotectant—Experimental Evidence 

RES’s neuroprotective activity has been demonstrated in a wide range of different experimental 

models including neuronal cell cultures and live animals (Table 1). Experiments with neuronal cell 

lines are too numerous to summarize here, so only selected examples are described. Micromolar 

concentrations of RES have been shown to prevent apoptotic cell death in cultured cerebellar [1] and 

dopaminergic [2] neurons exposed to MPP+, a model of Parkinson-like neurodegeneration. Similarly, 

RES protects rat brain hippocampal slices against oxygen and glucose deprivation, a model of 

ischemic brain injury. In vivo, dietary administration of RES to mice [6] or rats [12] confers protection 

against acute brain injury caused by transient middle cerebral artery occlusion or cardiac arrest, 

respectively. Delivery of RES in the diet also protects mice [7] and rats [9] against 1-methyl-4-phenyl-

1,2,3,3-tetrahydropyridine (MPTP)- and 6-hydroxydopamine (6-OHDA)-induced neurodegeneration in 

experimental models of Parkinson’s disease. Dietary RES supplementation reduces plaque formation 

in brains of a transgenic mouse model of Alzheimer’s disease [11]. In the primate species Microcebus 

murinus chronic dietary administration of RES, for up to 18 months confers improved performance in 

a variety of behavioural tests [13]. Thus, regular dietary supplementation with RES can provide neural 

protection against a variety of potentially cytotoxic stresses and ameliorates neurodegeneration 

resulting from both acute and chronic insults. 
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Table 1. Evidence for resveratrol as a neuroprotectant. 

Model Treatment Stressor Effect Reference 

Cerebellar granule neurons 24 h of 1-100 µM RES MPP+ Antiapoptotic [1] 

PC12 cells 3 h of 100 µM RES MPP+ 

 

Antiapoptotic [2] 

SH-SY5Y cells 

 

1 h of 5 µM RES Dopamine Antiapoptotic [3] 

SH-SY5Y cells 24–72 h of 1–50 uM 

RES  

H2O2, paraquat or 

menadione 

Reduced incidence of 

cell death 

Robb and Stuart 

unpublished 

PC12 cells co-cultured 

with N9 microglia 

27h of 100 µM RES LPS treatment Antiapoptotic [4] 

Rat hippocampal slices Acute 100 µM RES Oxygen-glucose 

deprivation 

Neuroprotective [5] 

Mice 50 mg/kg/day gavage Middle cerebral 

artery occlusion 

Neuroprotective [6] 

Mice 50–100 mg/kg/day MPTP Prevented loss of DA 

neurons 

[7] 

Mice Acute RES at 30 mg/kg 

i.v. 

MPTP Reduced oxidative 

damage; protected DA 

neurons 

[8] 

Mice 10–40 mg/kg/d for 10 

wks 

6-OHDA Reduced neuronal 

damage 

[9] 

Inducible p25 Alzheimer’s 

mouse model 

2.5 µg RES injected 

into lateral brain 

ventricles 

N.A. Neuroprotective  [10] 

Tg 19959 mouse 

Alzheimer’s model 

300 mg/kg/d RES in 

diet 

N.A. Reduced plaque 

pathology 

[11] 

Rats 10–100 µM RES by i.p. 

injection 

Asphyxial cardiac 

arrest 

Neuroprotective [12] 

 

2.1. RES ameliorates oxidative stress 

Many different conditions of cellular stress are united by a common observation of oxidative 

damage. In both acute brain injuries [14] and chronic neurodegenerative diseases [15], increased levels 

of cellular oxidative damage are typically evident. Oxidative stress is broadly defined as a perturbation 

of cellular homeostasis such that the rate of reactive oxygen species (ROS) production exceeds that of 

their neutralization. If homeostasis is not re-established, oxidative stress may progress toward the 

initiation of apoptotic cell death and tissue degeneration. There is abundant evidence that RES plays a 

role in attenuating this process via its ability to ameliorate oxidative stress. 

In neurons, ROS are produced primarily from the mitochondrial electron transport chain as 

electrons pass from reduced complexes directly to molecular oxygen. The resulting superoxide anion 

participates in a variety of reactions that produce hydrogen peroxide, hydroxyl radical and 

peroxynitrite, which are subsequently involved in the oxidation of DNA, proteins and membranes. An 

aberrant overproduction of mitochondrial ROS is thought to contribute to both acute and chronic 
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neuronal stress and death. For example Parkinson’s disease, which is characterized by the specific loss 

of dopaminergic neurons, can be induced by injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

(MPTP) [7–8]. This toxin is converted to MPP+ in satellite cells, and then taken up by dopaminergic 

neurons and electrophoretically accumulated within the mitochondrial matrix where it inhibits 

respiratory complex I [16] and increases superoxide production. Isolated mitochondria from rats 

treated with rotenone, a similar model of Parkinsonism, display increased levels of superoxide 

production, as well as an increased propensity to undergo membrane permeability transition pore 

opening [17]. In these Parkinson’s disease models, treatment with mitochondria-targeted antioxidants, 

such as Szeto-Schiller peptide and MitoQ, can prevent acute neurological injury and 

neurodegeneration [reviewed in 18]. Szeto-Schiller peptide SS-31 is a short peptide containing 

aromatic and basic amino acids that accumulates in mitochondria and may reduce ROS concentrations 

[19]. SS-31 protects neuronal cell lines against exogenous oxidants [20]. It has recently been shown to 

protect against MPTP neurotoxicity in mice in a dose dependent manner [21]. Thus, rodent models of 

acute neuronal injury and chronic neurodegenerative disease indicate an important role for 

mitochondria-derived ROS, and provide evidence for the benefits of mitochondria-targeted 

antioxidants. 

Abundant evidence from neuronal cell culture experiments and in vivo models indicates that RES-

mediated neuroprotection occurs concomitantly with measureable reductions in the oxidative damage 

load. For example, RES reduces oxidative DNA damage in C6 Glioma cells exposed to hydrogen 

peroxide [22]. RES reduces stress-induced ROS production in cerebellar neurons [1]. In vivo, RES has 

been shown to decrease various biomarkers of cellular oxidative damage, including DNA oxidation 

and lipid peroxidation [23–28]. Taken together, these results support the interpretation that RES 

confers neuroprotection due to its activity as an antioxidant. However, it appears that the ability to 

induce the expression of endogenous antioxidant enzymes, rather than its chemical antioxidant activity 

per se, underlies the antioxidant capacity of RES. 

2.2. RES as a chemical antioxidant 

The neuroprotective actions of RES and related phenolics at the cellular and organism level have 

been attributed to their chemical antioxidant capacities. In vitro, RES may efficiently neutralize ROS 

via the donation of a hydrogen atom and indeed, RES does protect cultured cells against death induced 

by a variety of exogenous oxidative stressors [29–31]. The extrapolation of in vitro results to in vivo 

systems is cautioned by a number of important experimental limitations. In vitro studies of 

antioxidants often employ supraphysiological concentrations, and may be complicated by the potential 

of some compounds to act as pro-oxidants in vitro, generating ROS as they decompose or react with 

surrounding molecules (see [32] for a review). These pro-oxidants cause mild oxidative stress which 

induces cellular defense systems and in turn increases the ability to withstand subsequent stressors 

(i.e., hormesis). This is particularly important in the context of ischemia-reperfusion injury as exposure 

to a low grade, non-lethal stressor invokes the expression of enzymes capable of protecting against 

more severe stress. Currently, however, there is no evidence to support the hypothesis that RES 

generates significant quantities of ROS in cell culture media. Ungvari et al. found that human coronary 

arterial endothelial cells cultured in the presence of micromolar concentrations of RES produced lower 

levels of superoxide and hydrogen peroxide than control treated cells [33]. While the reduction in ROS 
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production observed likely arises due to an increase in ROS detoxification, the data do not support a 

prooxidant role for RES. 

In vitro, the location of an antioxidant compound is also an important consideration, as its effects 

will be different if it is sequestered in the culture media or accumulates within cells. MitoQ, a 

hydrophobic antioxidant synthesized with a mitochondrial targeting sequence [34], partitions in 

mitochondrial membranes and has been shown to protect against oxidative damage following 

ischemia-reperfusion injury in rats [35]. Similarly, RES is hydrophobic and may accumulate in 

membranes at concentrations sufficient to act as an antioxidant following chronic exposure. There is 

evidence for an association between RES and mitochondria, including direct interactions with electron 

transport chain complexes [36]. Interestingly, RES’s protective effect against a range of exogenous 

stressors, including oxidants, in vitro persists when RES is withdrawn from the culture media prior to 

the addition of exogenous oxidants [37], suggesting that RES is not acting to buffer ROS in the culture 

media. It is unknown whether RES accumulates within cells to act as an antioxidant or if its biological 

activities are responsible for its ability to enhance cellular stress resistance. Further research into the 

intracellular localization and accumulation of RES is required to understand its mechanism of action 

within cells.  

In contrast to many chemical antioxidants, RES has been reported to interact with a wide range of 

cellular systems with the potential to protect against cell death, and it is therefore unclear whether 

direct chemical antioxidant or biological activities are responsible for RES’s ability to protect against 

oxidative stress in vitro [38]. In contrast, it is quite clear that in vivo RES’s chemical antioxidant 

properties are unlikely to be important. Concentrations of RES necessary to achieve protective effects 

in vitro are supraphysiological, and extrapolation of RES’s in vivo effects from these experiments is 

not possible. It is interesting to note that RES is a fairly weak antioxidant, and radical scavenging 

would likely be observed only at concentrations above 0.1M [39–40]. Plasma concentrations of RES in 

rodents following a pharmaceutical dose are typically in the low micromolar range, far below the 

concentrations required for chemical antioxidant effects [41]. In humans, an oral dose of 25mg only 

yields plasma concentrations of free RES in the low nanomolar range [42]. Additionally, RES and 

related phenolics are quickly metabolized to glucuronidated forms with reduced antioxidant capacities 

[43]. Given the low bioavailability of RES and the rapid appearance of its metabolites, it seems 

unlikely that RES’s chemical antioxidant properties are important to its beneficial effects in vivo.  

In spite of the low probability that RES can act as a chemical antioxidant in vivo, it does appear to 

ameliorate conditions associated with oxidative stress. Below we explore the hypothesis that RES 

protects against oxidative stress via an upregulation of antioxidant enzymes. 

3. RES and MnSOD 

Mitochondria possess endogenous defense systems to protect against oxidative stress. These 

systems include antioxidant enzymes that detoxify radicals and repair enzymes that maintain 

macromolecule integrity. Within this review, we will primarily focus on the mitochondrial antioxidant 

enzyme MnSOD, a nuclear encoded protein that is targeted to the mitochondria. Within the matrix 

MnSOD converts the superoxide anion to hydrogen peroxide which is further detoxified by the 

enzymes glutathione peroxidase (in mitochondria) or catalase (in cytosol following diffusion of 

hydrogen peroxide out of mitochondria). 
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Transgenic overexpression of the mitochondrial superoxide dismutase MnSOD, is protective 

against oxidative stress in a wide variety of experimental contexts [44–47]. In vitro, MnSOD is 

capable of protecting neuronal cells from various oxidative stressors. Pheochromocytoma PC6 cells 

overexpressing MnSOD maintain mitochondrial membrane potential, intracellular ATP levels, and are 

resistant to apoptosis induced by a range of chemical stressors, including the Parkinson’s mimetic 

MPTP [44]. Mattson et al. hypothesized that MnSOD induction protects hippocampal neurons from 

oxidative stress induced apoptosis in vitro by reducing membrane peroxidation [48].  

The importance of MnSOD to neuron health is clearly supported by in vivo evidence from animal 

models. In mice, deletion of the MnSOD gene causes severe symptoms from birth including 

neurological defects, limiting lifespan to several weeks [49–50]. MnSOD+/- mice show increased 

incidence of apoptotic cell death induced by oxidative stress in tissues including brain [51–52]. In 

contrast, overexpression of MnSOD in mice provides protection from stress induced cell death, 

including neurons. Transgenic mice that overexpress human MnSOD are protected from oxidative 

damage and neuron loss induced by ischemia and the neurotoxin MPTP [44]. In brain, elevation of 

MnSOD has been shown to attenuate neuron cell death in the event of oxidative stressors such as 

MPTP and 6-hydroxydopamine [53–54]. In transgenic mice that overexpress MnSOD, cortical 

neuronal apoptosis is reduced following chronic intermittent hypoxia. This is accompanied by a 

reduction in spatial learning deficits in the stressed mice [55]. A similar observation was recently 

reported in a transgenic murine model of Alzheimer’s disease in which MnSOD was overexpressed 

[56]. It is clear from both in vivo and in vitro studies that MnSOD has an important role in 

neuroprotection. Below we explore the hypothesis that MnSOD is an important target of RES, and that 

many of the effects observed with the overexpression of MnSOD are similarly observed with RES. 

3.1. MnSOD is a target of resveratrol 

MnSOD was initially identified as an important target of RES following the observation that 

chronic treatment of normal human lung fibroblasts with micromolar concentrations of RES elicits a 

significant increase in the protein level and activity of MnSOD [57]. A similar increase in MnSOD has 

been reported in other cell lines treated with RES including coronary artery endothelial cells [33], 

aortic smooth muscle cells [58], and SH-SY5Y neuroblastoma cells [37]. In vivo, RES given in a high 

fat diet (200 mgRES/kg/day) increases MnSOD in brain tissue of mice [59]. The observation of 

increased MnSOD in vivo is a potential explanation of RES’s neuroprotective effects as many 

similarities exist with MnSOD overexpression. For example, mice administered RES in their diet were 

found to be more resistant to MPTP induced dopaminergic neuron death, a finding that is consistent 

with increased MnSOD capacity in brain [7]. 

The implication of MnSOD as a specific target of RES both in vivo and in vitro has not yet been 

fully realized, but it may represent a critical mechanism behind RES’s beneficial effects on human 

health. However, RES has been reported to interact with numerous signalling pathways that may be 

responsible for its broad range of cellular effects including an increase in MnSOD. Understanding the 

mechanism that leads to increased MnSOD and cellular stress resistance will be a substantial 

contribution to RES research. 
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3.2. RES as a phytoestrogen – induction of MnSOD 

A potential explanation for RES’s cellular effects may be its action as a phytoestrogen, plant 

derived compounds that mimic the activity of 17-β-estradiol (E2). RES, like the soy product genistein 

and other polyphenols is structurally similar to E2, with free hydroxyl groups and phenolic ring 

structures that are important in estrogen receptor binding [60]. RES interacts directly with estrogen 

receptors alpha and beta with Ki values of 4.33–7.9 micromolar and 7.12–23.73 micromolar 

respectively, though it appears to exert particularly strong transcriptional effects via ERβ [61; reviewed 

in 62]. Interestingly, both mitochondria and MnSOD are major downstream targets of E2 signaling 

([63]; for A review see [64]). Borras et al. showed in MCF7 cells that E2 signaling enhances 

transcription of MnSOD and glutathione peroxidase (GPx), although the authors did not state whether 

a mitochondrial GPx isoform (1 or 4) was probed [63]. However, the authors did not correct their 

results for mitochondrial abundance, an important factor to consider when measuring the level and 

activity of mitochondrial proteins. Borras et al. also reported that mitochondria from females contained 

higher levels of MnSOD than males [65]. In addition to its reported ability to stimulate mitochondrial 

antioxidant enzymes, E2 is associated with mitochondrial biogenesis and the transcriptional regulation 

of components of the electron transport chain (see [66] for A review). Further research into estrogen 

mediated change in antioxidant capacity with respect to mitochondrial abundance is required.  

Neither MnSOD nor GPx gene promoters contain estrogen response elements, suggesting the E2 

induction of their transcription by phytoestrogens is indirect. Borras et al. [65] provided evidence for 

the involvement of the signal transduction pathway mediated by MAP kinase, ERK1/2 and NFκB. 

UO126, an inhibitor of MAP kinase phosphorylation, eliminated the effects on ROS detoxification 

observed in MCF-7 cells treated with E2. NFκB is a target of MAP kinases, and is capable of 

upregulating both MnSOD and GPx. Inhibition of NFκB prevented an increase in MnSOD and GPx in 

MCF-7 cells treated with E2, supporting its role in the E2 signaling cascade responsible for increases 

MnSOD [63]. 

Interestingly, E2 demonstrates neuroprotective effects similar to those observed with RES. 

Preincubation of dopaminergic neurons with E2 affords protection against superoxide anions produced 

by xanthine oxidase, and micromolar concentrations hydrogen peroxide [67]. In vivo, E2 has the 

capacity to prevent the loss of aconitase activity, a superoxide sensitive mitochondrial enzyme, in brain 

tissue of both male and female rats [68], an observation that is consistent with an increase in MnSOD 

activity. MnSOD overexpression alone is sufficient to confer neuroprotection in mice [56]. We 

propose that RES acts both in vitro and in vivo by direct agonistic activity with ERβ, and probably to a 

lesser extent ERα, to stimulate NFκB mediated MnSOD transcription (Figure 1). Robb et al. 

demonstrated a progressive stimulation of MnSOD protein levels and activities in human lung 

fibroblasts (MRC5) incubated with 50 µM RES [57]. This result has subsequently been repeated in 

C2C12 murine myoblasts and SH-SY5Y cells [37] and also shown in mouse brain tissue following 

dietary RES supplementation [59]. In culture, the RES-induced upregulation of MnSOD is associated 

with increased stress resistance in all three cell lines indicated above [37]. This is consistent with the 

interpretation that the RES-induced MnSOD upregulation plays a key role in preventing apoptotic 

death of neurons. 
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Figure 1. A proposed pathway for the RES-induced stimulation of MnSOD transcription 

via estrogen receptor-mediated regulation of NFκB activity. Based on the E2-induced 

transcriptional upregulation of MnSOD and other mitochondrial proteins described by 

Borras et al. [63]. MAPK = mitogen activated protein kinase; ERK1/2 = extracellular 

signal regulated kinases ½; NFκB = nuclear factor κB; MnSOD = manganese superoxide 

dismutase. 
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4. RES and Sirtuins 

RES has gained considerable attention recently for its reported ability to activate sirtuins, a family 

of protein deacetylases implicated in lifespan regulation of organisms including yeast and worms [38]. 

Seven sirtuin isoforms have been identified in mammals, each with an apparently unique set of 

intracellular targets [69]. RES has been reported to activate SIR2 in yeast, and SIRT1 in mammals 

[70–73], and this has been offered as an explanation for many of RES’s reported effects. 

A neuroprotective activity of sirtuins has been widely suggested. However, while some 

experimental data support this, there are significant contradictions in the literature (see [74] for a 

review). Inhibition of SIRT1 activity with sirtinol negates the ability of a RES pre-treatment to protect 

SK-N-BE neuroblastoma cells from oxidative stress in culture, and hippocampal neurons from 

ischemic injury in a rat model of stroke secondary to cardiac arrest [12]. SIRT1 overexpression 

similarly has been shown to confer neuroprotection in a rodent model of Alzheimer’s disease [10]. 

However, other authors have reported that sirtuins are dispensable for RES-mediated neuroprotection. 

Sirtinol inhibition of SIRT1 did not attenuate RES-mediated resistance to oxidative stressors in 

cerebellar granule neurons (CGN) in culture [1], and similarly had no effect on RES’s ability to 

ameliorate plaque formation in a transgenic model of Alzheimer’s disease [11]. The apparent 

contradiction between studies might be explained by an incomplete inhibition of SIRT1 at the sirtinol 
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concentration used in some instances. However, Pfister et al. used two additional SIRT1 inhibitors, 

nicotinamide and splitomycin, and still failed to attenuate the RES-mediated protection of cultured 

CGN from oxidative stress [75]. In contrast, these authors demonstrated that, while SIRT1 

overexpression was neuroprotective, this was independent of the enzyme’s deacetylase activity as it 

was observed even when catalytically dead SIRT1 was expressed [75]. In addition to these negative 

results, two reports indicate that SIRT1 may actually sensitize neurons to cell death. Li et al. 

demonstrated that both pharmacological SIRT1 inhibition and SIRT1 gene knockout improved 

neuronal survival following exposure to some oxidative stressors [76]. Liu et al. similarly showed that 

SIRT1 inhibition reduced cell death in response to an excitotoxic insult, noting that intracellular 

NAD+ levels were maintained when SIRT1 was inhibited [77]. These observations were interpreted as 

a SIRT1-mediated depletion of NAD+ that could be lethal under certain conditions; prevention of this 

by SIRT1 inhibition could preserve [NAD+], thus ameliorating cell death [77]. 

The literature concerning the activation of SIRT1 by RES is similarly controversial. RES was first 

identified as an activator of SIRT1 in a fluorescent deacetylation assay using a synthetic peptide 

conjugated to a fluorescent moiety. RES reduced the Km value for the acetylated peptide by 35-fold, 

significantly altering SIRT1’s substrate binding efficiency [71]. However, subsequent studies revealed 

that the RES dependent activation of SIRT1 was an artifact of the assay conditions used. Stimulation 

of SIRT1’s deacetlyation activity with RES was measured in the presence or absence of a 

nonphysiological Fluor de Lys fluorophore. Three research groups found that RES increases the 

deacetylase activity of SIRT1 only in the presence of the Fluor de Lys fluorophore [78–80]. Using 

alternative assays that did not involve the Fluor de Lys fluorophore, Borra et al., Kaeberelein et al., 

and Beher et al. were unable to provide evidence that RES is capable of activating SIRT1 [78–80]. 

Taken together, we believe that the data presented to date are not strongly supportive of a central role 

for SIRT1 in mediating the neuroprotective activity of RES. 

5. Increasing RES Bioavailability 

While RES possesses a variety of beneficial biological activities, its pharmacological use is greatly 

limited by difficulties achieving therapeutic concentrations in vivo. Following dietary intake RES is 

rapidly metabolized and undergoes substantial chemical modification in the small intestine [81] or 

liver [82] and the majority of RES in human plasma following ingestion of the pure compound exists 

in its 3-O-glucuronide form [83]. On account of its rapid metabolism, supraphysiological doses of RES 

are required to elevate blood concentrations even slightly [23]. Studies in which rodents have been fed 

milligram quantities of the isolated compound have measured plasma levels of RES within the 

nanomolar to low micromolar range 30 minutes to 18 hours following intake [82,84–85]. The 

experimental concentrations mentioned above greatly surpass those achieved by red wine 

consumption, the most common dietary source of RES which are typically in the low micromolar 

range [83]. It may be the case that RES is capable of imparting neuroprotective effects at very low 

concentrations. Alternatively, tissue specific uptake of RES may be critical to its actions in vivo, and 

it’s bioavailability in tissue may not be predicted by measurements of plasma RES levels alone. Few 

studies have examined the biological activities of RES derivatives, and it will be interesting to know if 

these compounds are capable of eliciting similar protective effects. 
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Recently, Juan et al. reported an HPLC method capable of detecting RES in animal tissues at 

concentrations as low as 5.5 nM. This HPLC method was used to determine RES concentrations in 

tissues of rats administered intravenous RES at 15 mg/kg for 90 minutes. The accumulation of RES 

was lowest in brain, reaching only 0.17 +/- 0.04 nM/g tissue [86]. Interestingly, free RES comprised 

the greatest proportion of detected species in brain tissue, suggesting that the free form of RES is 

capable of crossing the blood brain barrier. In addition to evidence supporting the presence of RES in 

brain, El-Mohsen et al., found that the rate of RES clearance from brain tissue is substantially lower 

than in other organs. RES concentrations were measured via HPLC analysis of a methanol extraction 

from tissue two hours and 18 hours after RES administration. At 18 hours, the RES concentration 

decreased to only 43% of their initial measurement made two hours following RES administration. In 

comparison, RES concentration at 18 h fell to only 10% of the initial measurement in liver [82]. It is 

important to note that RES distribution in tissues and plasma is typically measured following a single 

dose of the compound. In contrast, many of the studies reporting RES’s neuroprotective effects entail 

chronic, daily supplementation. Currently, little is current known regarding the potential for RES 

accumulation in tissues in studies involving long term, daily RES intake and elucidating the effect of 

chronic RES administration on tissue levels, particularly in brain, is an important next step in 

understanding the in vivo effects of this compound. 

An equally important step in developing the therapeutic potential of RES is investigating how the 

delivery matrix can influence biological activities. Our previous work investigated the ability of three 

delivery methods to modulate tissue levels of antioxidant enzyme activities in mice: 1) RES 

incorporated into standard mouse chow; 2) RES incorporated into a high fat mouse chow and 3) RES 

in DMSO via a subcutaneous osmotic minipump. Delivery in a high fat diet elicited greater changes in 

cellular antioxidant activities in brain than the other two methods [59]. While the exact mechanisms 

that underlie the delivery-specific effects are unclear, it has been proposed that the inclusion of RES in 

a high fat diet protects it from degradation [87]. Alternative delivery systems that protect RES in the 

digestive tract without the negative consequences of a high fat diet may offer a new way to realize 

RES’s positive effects on human health.  

Carrier-mediated delivery of RES, including the use of nanoparticles is one potential means by 

which the challenges facing RES’s bioavailability may be overcome. Two challenges facing the 

pharmaceutical development of RES are its instability and low solubility in water. Carriers that can 

modify these characteristics by encapsulating RES in a hydrophobic and stabilizing environment may 

offer a solution to RES’s low bioavailability. The use of liposomal formulas to deliver other 

antioxidants molecules such as glutathione, vitamin E and N-acetylcysteine has been previously 

reported with protective effects against disorders associated with oxidative stress [88]. Kristl et al., 

reported the development of a liposome carrier for RES that showed a protective effect against UV 

irradiation of human derived renal endothelial cells, using the reduction of MTT as an end point [89] 

While the results of the MTT assay are not necessarily representative of cell viability the RES-

liposomes appear to elicit a variety of changes that are not observed in the control groups [89]. The 

further development of methods to increase tissue concentrations of RES, particularly in brain, will be 

an important step in realizing the neuroprotective potential of this compound. 
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6. Conclusions 

There is now compelling evidence that dietary administration of RES can confer neuroprotection in 

rodents, raising the exciting possibility that it will prove to be similarly active in humans. The 

molecular mechanisms underlying RES’s neuroprotective activities remain to be conclusively 

determined. Experiments with cultured cell lines suggest that the ability to selectively upregulate 

mitochondrial antioxidant gene expression, particularly MnSOD, may be important. This effect is 

achievable in vivo in mice, providing sufficiently high levels of RES are delivered in an appropriate 

dietary matrix. An important cellular target of RES may be ERβ, due to RES’s structural similarity to 

E2. An agonistic interaction with ERβ would explain how circulating RES concentrations that may be 

quite low (high nanomolar to low micromolar range) are capable of eliciting a significant antioxidant 

effect in brain tissue. Presumably, strategies capable of increasing RES bioavailability will enhance 

this desirable effect. Continued study using in vitro and in vivo experimental models will be required 

to achieve this goal. 
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