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The clinical distinction of frontotemporal dementia (FTD) and Alzheimer’s disease (AD) may be difficult. In this narrative review
we summarize and discuss the most relevant electroencephalography (EEG) studies which have been applied to demented patients
with the aim of distinguishing the various types of cognitive impairment. EEG studies revealed that patients at an early stage of FTD
or AD displayed different patterns in the cortical localization of oscillatory activity across different frequency bands and in
functional connectivity. Both classical EEG spectral analysis and EEG topography analysis are able to differentiate the different
dementias at group level. The combination of standardized low-resolution brain electromagnetic tomography (sLORETA) and
power parameters seems to improve the sensitivity, but spectral and connectivity biomarkers able to differentiate single patients
have not yet been identified. The promising EEG findings should be replicated in larger studies, but could represent an
additional useful, noninvasive, and reproducible diagnostic tool for clinical practice.

1. Introduction

Alzheimer’s disease (AD) and frontotemporal dementia
(FTD) are the most common causes of dementia. However,
the differential diagnosis is challenging due to their overlap-
ping clinical symptoms and involved brain regions. Current
clinical criteria identify distinct phenotypes of FTD on the
basis of presenting clinical features; these include the
behavioral variant of FTD (bvFTD), the agrammatic variant
of primary progressive aphasia, and the semantic variant of

primary progressive aphasia [1, 2]. The bvFTD is character-
ized by changes in social behavior and conduct, with loss of
social awareness, poor impulse control, hyperorality, and die-
tary changes, as well as apathy and impaired performance in
executive tasks [3]. Even if diagnostic criteria exist [4], the
disease remains poorly recognized. Other less frequent causes
of dementia, such as dementia with Lewy bodies (DLB) and
Parkinson’s disease dementia (PDD), are probably still
underdiagnosed in the clinical setting, and also sometimes
difficult to differentiate from AD and FTD.
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Some neuroimaging techniques, such as positron emission
tomography (PET), single photon emission computerized
tomography (SPECT), and functional magnetic resonance
(MRI) have been used in order to identify affected brain
regions in dementias and to improve diagnostic accuracy.
However, these imaging tools are invasive, expensive, and
often not clinically feasible.

In contrast, the electroencephalogram (EEG) repre-
sents a noninvasive technique that is cheap, highly avail-
able, and sensitive to changes in the functional state of the
human brain.

We aimed in this narrative review to summarize and
discuss the most relevant studies dealing with EEG tech-
niques in order to distinguish FTD from AD, other demen-
tias, and healthy subjects.

2. Methods

The MEDLINE, accessed by PubMed (1966–February
2018) and EMBASE (1980–February 2018) electronic data-
bases, was searched using the following medical subject
headings (MeSH) and free terms: “Frontotemporal demen-
tia,” “Frontotemporal lobar degeneration,” “Alzheimer’s dis-
ease,” “Dementia with Lewy bodies,” “Lewy body dementia,”
“Parkinson’s disease dementia,” “Electroencephalography,”
“Spectral analysis,” and “Connectivity.”

Only original articles written in English were consid-
ered eligible for inclusion. Review articles were excluded.
For the selected titles, full-text articles were retrieved and
their reference lists were searched for additional publica-
tions. In the case of missing or incomplete data, principal
investigators of included trials were contacted and additional
information requested. The titles and abstracts of the initially
identified studies were screened to determine if they satisfied
the selection criteria. Two reviewers independently assessed
the methodological quality of each study and risk of bias,
focusing on blinding. The search strategy described above
yielded 10 results, two of which were excluded after reading
the full paper, thereby leaving 8 studies which contributed
to this review.

3. Electroencephalography (EEG)

3.1. EEG Analysis. The EEG represents an old and inexpen-
sive method that has been employed for many years in
dementia research. EEG has been examined in demented
patients in order to differentiate individuals with various
types and severity of cognitive impairment from healthy
subjects. While visual EEG analysis still prevails in routine
clinical practice, the differential diagnosis of the various
subtypes of dementia relies on quantitative EEG (qEEG),
where extensive technical knowledge is needed in the field
of digital signal processing. One of the most frequently used
research methods is the spectral analysis, and therefore
sometimes the term qEEG is used to indicate quantitative
spectral analysis. However, qEEG offers a wider spectrum
of possible applications. By means of computational algo-
rithms, such as fast Fourier transform (FFT) or autoregres-
sive (AR) models [5–10], the characteristics of the EEG can

be documented in an objective and quantitative way. More-
over, the EEG analysis is not restricted to the predefined sur-
face localizations of the international electrode systems such
as the 10-20 system. Advanced methods of EEG analysis
have been applied to the study of neural activity sources in
3-D models of the brain, and different techniques known
as solutions for the EEG inverse problem have been pro-
posed throughout the years [11–14]. Furthermore, low-
resolution brain electromagnetic tomography (LORETA)
allowing 3-D localization of cortical EEG generators both
in the time and frequency domains [15, 16], has been suc-
cessfully applied to study EEG changes across normal
elderly, mild cognitive impairment, and dementia [17–19].
In addition, standardized LORETA (sLORETA) [12], allows
obtaining images of standardized current density with the
so-called “0 localization error”.

3.2. EEG Studies. Generalized EEG slowing has been
observed in a number of studies in AD during rest. This slow-
ing can thus be assessed visually by qualitative EEG assess-
ment as decreased frequency of the dominant background
rhythm, or by spectral analysis as increased power of slow
rhythms (δ and θ frequency bands) and reduced power of
faster rhythms (upper α and β bands) [10, 20, 21]. Indeed,
the peak frequency in the power spectrum, which is normally
located between 8 and 12Hz, shifts in AD to a lower range of
6–8Hz. However, only a few studies have investigated EEG
changes in FTD. Qualitative evaluation of EEG recordings
typically shows no abnormal slowing in FTD patients [22].
We could like to point out that pathological slowing of the
EEG can be seen as a more extreme form of the general slow-
ing of the background rhythm that can be found also in
healthy ageing. Thus, age-matched control groups are a nec-
essary prerequisite for these studies; otherwise, the EEG-
slowing effect will be overestimated.

Mild to moderate FTD and AD patients have been com-
pared with healthy controls (HC) using a so-called visual
grand total EEG score and the synchronization likelihood
as a measure of functional connectivity [23]. No significant
differences were found in the visual grand total EEG score
between FTD and HC. AD patients show significant EEG
slowing and a loss of reactivity compared with FTD and HC
by means of the visual grand total EEG. AD patients exhibit
decreased synchronization likelihood compared with both
FTD and HC in fast frequencies, whereas no differences can
be found between FTD and HC (Figure 1). Thus, the changes
in synchronization likelihood parallel the pattern of slowing.
The characteristics of the higher frequencies—be it power or
synchronization—are reduced in AD, but not in FTD.

Several studies have investigated differences in qEEG
among patients with FTD and those with AD, PDD,
and DLB. For qEEG, the global field power was calculated
for six frequency bands: δ (1.0–3.5Hz), θ (4.0–7.5Hz), α
(8.0–11.0Hz), β1 (12.0–15.5Hz), β2 (16.0–19.5Hz), and β3
(20.0–23.5Hz). The spectral ratio was calculated as the ratio
of the sum of fast frequency bands α+β1+β2+β3 and slow
frequency bands δ+ θ.

The spectral profile of cortical EEG sources has been
analyzed in patients with probable FTD compared with
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AD patients and HC [24]. The authors of this study differen-
tiated 16 patients with AD from 19 patients with FTD using
EEG band powers, coherence, dominant frequency, α-peak
frequency, and cortical sources. Using logistic regression
analysis, the best predictors of FTD and AD were defined
in a model. These predictors included δ and θ activities
together with high levels of visuospatial ability and episodic
memory. Classification accuracy of the model was 93.3%.
Therefore, the combination of qEEG and neuropsychological
tests significantly contributes to classification accuracy and
should be recommended for differential diagnoses of FTD
and AD.

Caso et al. differentiated 39 AD from 39 FTD patients by
means of power spectral analysis and standardized sLOR-
ETA within the δ, θ, α1, α2, β1, β2, and β3 frequency bands,
achieving 49% sensitivity and 85% specificity [25]. As such,
the sensitivity is at chance level. Both analyses revealed in
AD patients higher expression of diffuse δ/θ and lower cen-
tral/posterior fast frequency (from α1 to β2) bands compared
to HC. Patients with FTD showed diffuse increased θ power
compared with HC and lower δ compared to AD patients.
Compared with FTD, AD patients showed diffuse higher θ
power in the power spectrum and, by use of sLORETA,
decreased α2 and β1 values in central/temporal regions.
Again, we observe the relative increase of relevance of slower
frequencies and decrease of faster frequencies.

Analyses of global field power, which is a measure of
whole-brain electric field strength, together with EEG neuro-
imaging analyses with sLORETA, were performed in patients

with mild stages of FTD and in HC [26]. In the global field
power, significant group effects were observed in the δ
(1.5–6.0Hz), α1 (8.5–10.0Hz), and β1 (12.5–18.0Hz) bands.
In sLORETA analysis, differences in activity were observed in
the α1 band (HC>FTD) in the orbital frontal and temporal
lobe, in the δ band (AD>HC) in widespread areas including
the frontal lobe, and in the β1 band (FTD>AD) in the pari-
etal lobe and sensorimotor area (Figure 2). As such, it does
not seem that a specific brain region is relevant for the dis-
tinction of these groups.

Snaedal et al. first investigated the possibility of differen-
tiating between 239 patients with AD, 52 patients with PDD
or probable DLB (DLBPD), and 14 patients with FDT by
qEEG [27]. The authors of this Icelandic study used θ, α2,
and β1 coherences together with peak α frequency for classi-
fication. Using a support vector machine for classification, a
good-to-excellent separation was found when differentiating
cases of degenerative disorders from HC, but this was less so
when the likelihood of comorbidity was high. The authors
achieved 91% accuracy in differentiating AD from DLBPD,
93% for DLBPD-FTD, and 88% for AD-FTD. However, the
accuracy of these statistical estimates must be interpreted
with caution, given the very small sample of FTD patients.
In general, studies involving FTD have to struggle with diffi-
culties in recruiting participants, so that the importance of
this study should not be undermined. Nevertheless, classifi-
cation analysis requires adequate feature subset selection,
especially in studies with long feature vectors such as in this
study, where 1120 entries were taken into consideration. It
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Figure 1: Significant group× electrode interaction effects in the 8–10Hz frequency band (a) and the 10–13Hz frequency band (b). Error bars
indicate standard deviations. Legend: FTLD= frontotemporal lobar degeneration; AD=Alzheimer’s disease; SMC= subjective memory
complaints. Reproduced with permission from Pijnenburg et al. [23], in 2008.
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is not clear whether the 10-fold cross-validation in this study
with the genetic algorithm used a separate training, evalua-
tion, and testing set.

A recent study aimed at developing a classifier for differ-
entiating probable AD from PDD or DLB and from bvFTD
based on qEEG [28]. Twenty-five qEEG features characteriz-
ing frequency (spectral) properties, synchrony, and similarity
of signals have been investigated. For analysis, scatter plots of
these qEEG features versus MMSE scores were generated
with linear regression lines with age and sex introduced as
covariables. Twenty-three out of the 25 features were signifi-
cantly different between AD and DLBPD; seventeen turned
out to be significantly different for AD versus bvFTD, and
12 turned out to be significantly different for bvFTD versus
DLBPD. The classification achieved an accuracy, sensitivity,
and specificity of 100% using only the QEEG features of
Granger causality (GC) and the ratio of θ and β1 band pow-
ers (Figure 3). These results suggest that classifiers trained
with selected qEEG features can provide a valuable input
in distinguishing among AD, DLB or PDD, and bvFTD
patients. Comparing AD and bvFTD, conditional GC Fp1/
Fp2 increases as the MMSE score decreases in AD patients
and it decreases as MMSE score decreases in bvFTD patients.
The opposite was observed for conditional GC O1/Fp1. A
difference was observed for the feature partial coherence α
at P7/P8 between bvFTD and DLBPD patients, where there
was an increasing trend in DLBPD as the MMSE scores
decreased and the opposite for bvFTD. GC, phase coher-
ence α, phase coherence β1, and coherence β1 features at
29, 14, 16, and 18 sites or pairs of sites, respectively, were
significantly different for the differentiation between AD
and bvFTD.

3.3. EEG Has Been Used Also to Investigate Functional
Connectivity in AD and FTD. Automutual information,
mutual information, and center frequency at 5, 6, and 5 sites
or pairs of sites, respectively, for differentiating bvFTD and
DLBPD were found to be significant. This finding demon-
strates that AD and DLBPD are most dissimilar based on
the number of electrode sites. Comparing AD and bvFTD,
it was observed that phase coherences α and β1 were higher

in AD patients than in bvFTD patients. The opposite was
observed for coherence β1 and GC. Automutual information
and cross-mutual information were higher in DLBPD
patients than in bvFTD patients, whereas center frequency
is higher in bvFTD patients than in DLBPD patients. Yu
et al. investigated functional connectivity and network topol-
ogy in 69 AD patients, 48 bvFTD patients, and 64 individuals
with subjective cognitive decline using resting-state EEG
recordings [29]. Functional connectivity between all pairs
of EEG channels was assessed using the phase lag index
(PLI). Subsequently, the authors calculated PLI-weighted
networks, from which minimum spanning trees (MSTs)
were constructed. Finally, the hierarchical clustering orga-
nization of the MSTs has been investigated. Functional
connectivity analysis showed frequency-dependent results:
in the δ band, bvFTD showed the highest whole-brain PLI;
in the θ band, the whole-brain PLI in AD was higher than
that in bvFTD; and in the α band, AD showed lower whole-
brain PLI compared with bvFTD and subjective cognitive
decline. These findings suggest that frontal networks are
selectively involved in bvFTD against the background of pre-
served global efficiency, whereas in AD parietal and occipital
impairment of network organization is accompanied by
global efficiency loss.

A more recent study relied on EEG signals and a novel
information-sharing method to study resting-state connec-
tivity in patients with bvFTD, AD, and HC [30]. Unlike AD
patients, bvFTD patients showed a specific pattern of hypo-
connectivity in midrange frontotemporal links. These func-
tional connectivity abnormalities in bvFTD were observed
with a low-density EEG setting (20 electrodes). Therefore,
classification between bvFTD and AD patients was better
when based on connectivity than on neuropsychological
measures. Taken together, such findings underscore the rele-
vance of EEG measures as potential biomarker signatures for
clinical settings.

4. Discussion

Most studies on the differentiation among FTD, AD, DLB, or
PDD, were done using SPECT, PET, or MRI. However,
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Figure 3: Boxplots of selected features: AD versus DLBPD: 23 of 25 features resulted in significant differences. The features with the lowest
p values (p = 6 80e − 08) were the GC at P7/P8 and P8/P7 (a). Center frequency and relative band power α and β1 were higher in AD patients
than in DLBPD patients at all sites with significantly different results. The opposite was true for automutual information, band ratios, relative
band power θ, and cross-mutual information. AD versus bvFTD: 17 features resulted in significant differences with GC and phase coherence
β1 reaching the lowest p value of 7 21e − 8 at T7/T8. GC was significantly higher in bvFTD patients than in AD patients while phase
coherence was significantly higher in AD patients (b). Phase coherences α and β1 were significantly higher in AD patients than in bvFTD
patients at all sites with significantly different results. The opposite was observed for coherence β1 and GC. bvFTD versus DLBPD: 12
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2 83e − 5, respectively. Automutual information and mutual information were higher in DLBPD patients than in bvFTD patients at all
sites with significantly different results. The opposite was then evident for center frequency. Legend: DLBPD=PDD or probable DLB;
bvFTD=behavioral variant of FTD; AD=Alzheimer’s disease; GC=Granger causality. Reproduced with permission from Garn et al. [28]
in 2017.

5Disease Markers



besides their expensiveness, these imaging techniques are not
sufficient to provide information on the pathophysiological
mechanisms of dementia, in particular in the early stages.
We summarized in this narrative review the most relevant
studies which aimed to distinguish FTD from AD and other
dementias by using various types of EEG analyses.

It is well known that EEG activity can be influenced by
the severity of dementia [24, 25, 27].

Indeed, the impairment of cortical neuronal networks
related to cognitive functions is partially reflected by the
abnormal mechanisms of cortical neural synchronization
and by dysfunctional neuroplasticity of the neural transmis-
sion that generate resting EEG rhythms [31].

Since the likelihood of abnormal EEG findings seems to
increase late in FTD compared to AD [15], Caso et al. aimed
to evaluate whether also at an early stage of FTD EEG differ-
ences can be found in comparison to mild AD and HC, using
a combined spectral and sLORETA approach. In AD patients
compared to HC, EEG spectral analysis showed a significant
occipital power increase within the δ band but a significant
parietooccipital α1 and temporal α2 power decrease and
widespread β1 and β2 power decrease [25]. Notably, these
findings are consistent with those of many previous quantita-
tive EEG studies [20, 21, 32–34]. On the other hand, the spec-
tral pattern of EEG recordings in FTD patients did not
significantly differ from HC except for a widespread increase
of θ power, as previously reported [5, 35–37]. Compared with
AD, FTD patients showed in the study of Caso et al. (differ-
ently from a previous work of Lindau et al. [24]) a decrease
of δ power and higher α2 and β1 values over the posterior
regions. Moreover, using classical spectral analysis the
authors failed to find highly significant differences between
FTD and AD in fast activities. sLORETA results were similar
to those obtained by classical spectral analysis comparing AD
patients with HC and FTD with HC. This is in agreement
with previous studies using LORETA in AD [38–40]. Nota-
bly, θ band values seem to be more critical in differentiating
HC from patients which are in a very early stage of mild
AD [38]. Both spectral and sLORETA analysis for α activity
in AD patients compared with HC were well preserved over
the frontal areas. This finding may be explained by the so-
called “anteriorization” of α rhythm in AD. In normal sub-
jects, α generators are localized over the posterior regions of
the brain while in AD the decrease of posterior α activity pro-
duces a shift to more anterior regions [17, 41, 42]. Compar-
ing sLORETA results in the AD and FTD groups, a
decreased δ power over the posterior regions was detected
in FTD patients, in line with the findings of spectral analysis.
Moreover, lower values within the posterior α2 and centro-
temporal β1 bands were detected in AD compared with
FTD patients. EEG cortical activity depends on a complex
balance between cholinergic pathways and other neurotrans-
mitters systems [43]. It is known that α rhythms are mainly
modulated by thalamocortical interactions, which modulate
the transmission of sensorimotor and cognitive information
among subcortical and cortical pathways [44–46]. Therefore,
it can be speculated that the magnitude reduction of fast
cortical rhythms in mild AD is related to the impairment of
cholinergic pathways, resulting in an abnormal increase of

cortical excitation or disinhibition in the resting state. In
FTD, the intracortical disconnection seems to be related to
the neuronal loss in the frontal/frontotemporal area, along-
side with the preserved cholinergic system. These character-
istics may explain EEG differences in comparison to HC
and AD patients. However, the results of Caso et al. [25]
are only partially in agreement with the recent findings of
Nishida et al. [26], showing a decrease of α band compared
to HC and an increase of β band in comparison with AD in
FTD patients. Moreover, no significant differences were
found between AD and FTD in slow frequency bands or in
the α band [26]. The different sample sizes of patients, and
thus, the statistical power, of the two studies may explain this
discrepancy. In addition, the different lengths of the analyzed
EEG signals for each subject might also contribute to the dif-
ferences between the two studies. Indeed, in the study of
Nishida et al., only 40 seconds of EEG were analyzed in each
participant. This weakly consistent spectral estimation might
not be a fully representative interval and could provide a
statistical correlation between cortical powers, sources of
EEG rhythms, and cognitive functions of patients. As such,
α1 power over frontal areas correlated positively with MMSE
and Token Test scores, confirmed by both spectral and
sLORETA analysis. It may be hypothesized that the intensity
of α1 power changes in pathological aging is a function of the
global cognitive level [47].

Even if the combination of sLORETA and spectral char-
acterization seems to improve the sensitivity, the validity of
spectral biomarkers for differentiation of single patients has
not yet been confirmed. Nevertheless, the reviewed studies
showed that both classical EEG spectral analysis and EEG
source analysis were able to differentiate AD, FTD, and HC
at group level. In fact, spectral analysis and sLORETA pro-
vided information that their combination can improve the
characterization of EEG rhythmic activities in patients with
the AD and FTD group. Further studies with larger sample
sizes and considering the combination of spectral and sLOR-
ETA analysis with imaging techniques, such as brain MRI
and/or PET/SPECT, could be useful in order to improve
the classification of single subjects.

One additional problem in several of the presented EEG
studies should be mentioned. Machine learning techniques
have emerged over the past two decades and are now an
integral part of clinical neuroscientific research. However,
older studies have failed to clearly separate the training from
the testing data, so that most of the older results include a
considerable amount of overfitting. Today, the standard is
the separation of the data into three sets: training, evalua-
tion, and testing sets. Without this clear separation, the
reported results must be interpreted with caution. As a
rough estimate, a result of 100% accuracy with only two sets
could be 80% or less, when overfitting is avoided by clear
separation into three sets.

Slowing of the EEG frequency spectrum, which has long
been known to be a hallmark in dementia, was confirmed
to represent one of the two most significant features for dif-
ferential diagnosis. This is well in line with the results of pre-
vious studies [48]. Interestingly, qEEG features correlated
with the severity of disease measured by MMSE scores.
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EEG variability in DLBmay be associated with the fluctu-
ating cognition seen in these patients. This might have clini-
cal implications for the diagnosis of DLB. Despite that
modern techniques of qEEG analysis can be quite sophisti-
cated, spectral EEG analysis is simple enough to be incorpo-
rated into clinical software, which would pave the way for the
implementation of qEEG into clinical practice.

It is necessary to conduct further studies with larger
sample sizes in order to confirm the reviewed findings. It is
also of interest to validate the hypotheses by adding further
comparisons to HC, although this would not affect the dif-
ferentiation among AD, DLBPD, and bvFTD patients with
MMSE scores less than 30. However, the comparison to
HC would establish a more solid knowledge about the base-
line, and thus, allow drafting the course of pathological
changes from healthy aging, to early and more severe stages
of the examined diseases.

Notably, genetic factors are often associated with FTD; in
particular, the microtubule-associated protein tau (MAPT),
the chromosome 9 open reading frame 72 (c9orf72), and
granulin/progranulin have been identified as common FTD
genes. Future studies should also take into account genetic
differences in a sample population. Neurophysiological tech-
niques are able to detect distinct and peculiar abnormalities
associated with different genetic features that are the expres-
sion of precise FTD phenotypes. Indeed, in healthy human
subjects EEG measures were able to identify some differences
in genetically different groups [49].

One of the drawbacks of most studies is that they rely on
clinical features instead of definite diagnoses. Indeed, the
most EEG studies did not have any postmortem confirma-
tion. The diagnoses were clinically based on MRI/CT and/
or SPECT/PET imaging, in order to avoid the inclusion of
phenocopies in the FTD sample. However, Knopman et al.
[50] demonstrated that an accurate FTD antemortem diag-
nosis is possible by combining clinical, neuropsychological,
and imaging features (MRI scan), giving a sensitivity of
85% and a specificity of 99%. Moreover, in McNeill’s report
[51] the percentages of correct diagnoses using the associa-
tion of SPECT results and clinical data were 92% for FTD
and 90.3% for AD patients.

In future studies, the possible impact of combining EEG
with other neurophysiological techniques, such as transcra-
nial magnetic stimulation (TMS), should also be carefully
addressed. TMS-EEG has been demonstrated to be a suitable,
reliable, and affordable tool for detecting changes in cortical
excitability, connectivity, and functional synchronization of
EEG activity both in normal aging [52, 53] and in AD [54].
The analysis of TMS-evoked oscillations could possibly allow
detecting subtle and area-specific alterations of natural oscil-
latory activities [55] with good sensitivity and specificity for
different types of dementia.

Some systems do already allow for a quantitative spectral
analysis, but further processing of the signal is highly war-
ranted for clinical decision making. Modern qEEG scoring
systems such as, for instance the dementia index SIGLA
(http://www.mentiscura.com), give an exact answer to the
question whether a patient suffers from DLB or whether he
will develop AD. We anticipate that such systems will enter

the clinical arena within the next 10 years and ease the use
of qEEG for clinicians tremendously.

In conclusion, application of EEG techniques in neurode-
generative diseases has provided important pathophysiologi-
cal insights, leading to the development of pathogenic and
diagnostic biomarkers that could be used in the clinical set-
ting and therapeutic trials.
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