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abstract

PURPOSE Biliary tract cancers (BTCs) are aggressive cancers that carry a poor prognosis. An enhanced un-
derstanding of the immune landscape of anatomically and molecularly defined subsets of BTC may improve
patient selection for immunotherapy and inform immune-based combination treatment strategies.

METHODS We analyzed deidentified clinical, genomic, and transcriptomic data from the Tempus database to
determine the mutational frequency and mutational clustering across the three major BTC subtypes (intra-
hepatic cholangiocarcinoma [IHC], extrahepatic cholangiocarcinoma, and gallbladder cancer). We subse-
quently determined the relationship between specificmolecular alterations and anatomical subsets and features
of the BTC immune microenvironment.

RESULTS We analyzed 454 samples of BTC, of which the most commonly detected alterations were TP53
(42.5%), CDKN2A (23.4%), ARID1A (19.6%), BAP1 (15.5%), KRAS (15%), CDKN2B (14.2%), PBRM1
(11.7%), IDH1 (11.7%), TERT (8.4%), KMT2C (10.4%) and LRP1B (8.4%), and FGFR2 fusions (8.7%).
Potentially actionable molecular alterations were identified in 30.5% of BTCs including 39.1% of IHC. Integrative
cluster analysis revealed four distinct molecular clusters, with cluster 4 predominately associated with FGFR2
rearrangements and BAP1 mutations in IHC. Immune-related biomarkers indicative of an inflamed tumor-
immune microenvironment were elevated in gallbladder cancers and in cluster 1, which was enriched for TP53,
KRAS, and ATM mutations. Multiple common driver genes, including TP53, FGFR2, IDH1, TERT, BRAF, and
BAP1, were individually associated with unique BTC immune microenvironments.

CONCLUSION BTC subtypes exhibit diverse DNA alterations, RNA inflammatory signatures, and immune bio-
markers. The association between specific BTC anatomical subsets, molecular alterations, and immuno-
phenotypes highlights new opportunities for therapeutic development.
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INTRODUCTION

Biliary tract cancers (BTCs) are a group of cancers that
arise from the biliary tract and are historically sub-
categorized by their anatomical site of origin into intra-
hepatic cholangiocarcinomas (IHCs), extrahepatic
cholangiocarcinomas (EHCs), and gallbladder (GB)
cancers.1,2 BTC is the second most common primary
hepatic malignancy after hepatocellular carcinoma and
comprises approximately 3% of all gastrointestinal
cancers.2-4 Although it is a rare cancer, the incidence of
BTCs (0.3-6 per 100,000 individuals per year, with large
geographic variation) and overall mortality burden have
been increasing over the past few decades worldwide,
representing a growing global health challenge.2,5 Across
nearly all countries, BTC is frequently diagnosed during
advanced stages of the disease, which limits therapeutic
options and results in a poor prognosis.6 Significant
improvements in long-term survival for patients with

advanced disease have not occurred over the past de-
cade, and 5-year survival rates remain low (7%-20%).
Surgical resection is the most effective treatment, but
tumor recurrence rates even after resection remain high.2

BTC is increasingly subtyped by the presence of
specific genomic alterations identified through next-
generation sequencing analyses. Prior efforts to se-
quence BTC have revealed that targetable genomic
alterations occur with moderately high frequency in
this cancer.7 These include alterations in well-studied
genes including but not limited to FGFR2, IDH1,
BRAF, and ERBB2 (HER2).7,8 The molecular profiles
are known to vary between the different anatomical
subtypes of the disease, with a higher rate of potentially
actionable mutations identified in IHC than other
anatomical subsets of BTC.7,9,10 Other common BTC
alterations are not therapeutically targetable but
nonetheless provide important prognostic information.
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A previous integrative clustering analysis of nearly 500
cholangiocarcinomas defined four clusters, with the cluster
enriched in BAP1, IDH1/2, and FGFR2 alterations having a
significantly better survival than the cluster enriched in
TP53, ARID1A, and BRCA1/2 mutations.11

Immunotherapies targeting the programmed cell death pro-
tein 1 (PD1) axis and other immune checkpoints have
transformed themanagement of many cancers, but have thus
far demonstrated limited clinical activity in BTC. For example,
the phase II KEYNOTE-158 trial enrolled 104 patients with
BTCs, of whom six had an objective response to therapy
(objective response rate 5.8%).12 Other phase II trials targeting
the PD1 axis in BTC have similarly reported response rates of
2.9%-11%.13 Enhanced comprehension of the immune
landscape in molecularly defined subsets of BTCs may
specifically enhance patient selection for immunotherapy and
inform the development of novel combination strategies for
distinct molecularly defined subsets of this cancer.

A number of biomarkers related to immune system
function have been discovered and developed to better
predict responses to immunotherapy-based treatments.
These biomarkers include quantities that can be cal-
culated from either genomic or RNA expression–level
data. Tumors with large numbers of genomic mutations
(having a high tumor mutational burden [TMB]) appear
to be particularly susceptible to immune-checkpoint
blockade therapy.14,15 Similarly, programmed death-
ligand 1 (PD-L1) protein levels are partially predictive
of the response to anti–PD-L1 therapies across nu-
merous cancer types.16-18 In most tumor types, TMB and
PD-L1 expression each provide independent informa-
tion and are minimally correlated with one another.19

Various other metrics describing immune cell infiltration
and/or the expression of particular subsets of genes
have been developed and are predictive of immuno-
therapy responses in particular contexts.20-24 A better
understanding of the overall landscape of immune-

related biomarkers in BTCs and possible subtype-
specific differences may thus help guide future re-
search and therapeutic options.

Here, we present real-world data for themutational patterns of
BTC subtypes from the Tempus clinicogenomic database,
which contains clinical, genomic, and transcript-level data.
Critically, we leverage the availability of RNA-based gene
expression data to calculate several immune-related bio-
markers of immunotherapy response and compare these
differences across subtypes and mutational landscapes to
provide insight into possible subtype-specific differences in
immunotherapy treatment responses. Our study thus presents
an overview of the intersection between particular genomic
mutations, BTC subtypes, and immune-related biomarkers.

METHODS

Cohort Selection and Data Processing

The Tempus clinicogenomic database consists of dei-
dentified clinical data and DNA and RNA sequencing,
performed for the care of oncology patients in standard
clinical practice. Patients were eligible for our cohort if
they had a confirmed histologic diagnosis of chol-
angiocarcinoma, with paired clinical demographic data and
RNA sequencing. Records were included in the cohort
regardless of sex, race, stage, treatment status, or tissue
sample site. Of 1,500 potential BTC records in the Tempus
database, we identified BTC records with matched RNA
and clinical data (N = 454). Of these 454 records, most had
matched DNA sequencing data as well (n = 367). These
data were derived from the Tempus xT solid tumor LDT
assay (DNA-seq of 595-648 genes at 500× coverage, full
transcriptome RNA-seq).25,26 The primary mutations
identified by this assay include germline and/or somatic
single-nucleotide polymorphisms (SNPs), insertions/
deletions (Indels), fusions, and copy number variations.
Intrahepatic, extrahepatic, and gallbladder cancer desig-
nations were derived from curated clinical data. All
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Key Objective
Biliary tract cancers (BTCs) are increasingly subtyped by the presence of specific genomic alterations, but little is known about

the immune microenvironment of molecularly defined subsets of BTC. The objective of this study was to characterize the
immune landscape of molecularly defined subsets of BTC using genomic and transcriptomic data.

Knowledge Generated
We analyzed 454 samples of BTC and found that BTC subtypes exhibit diverse DNA alterations, RNA inflammatory signatures,

and immune biomarkers. Potentially actionable molecular alterations were identified in 30.5% of BTCs including 39.1% of
intrahepatic cholangiocarcinoma. We identified four clusters of BTC, each containing uniquely altered genes and a
distinctive tumor-immune microenvironment.
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BTC clusters have distinct clinical and biologic features, and such clusters may provide opportunities for therapeutic de-

velopment. We also identify relationships between certain molecular alterations and distinctive immunophenotypes, which
may provide new opportunities for therapeutic development.
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specimens undergo pathologist assessment of the hema-
toxylin and eosin slide for overall tumor amount and percent
tumor cellularity as a ratio of tumor to normal nuclei. A
minimum tumor cellularity of 20% is required to proceed for
xT and RNA fusion analysis and 30% for RNA expression.
Approval for this study was obtained from the Advarra
Institutional Review Board Protocol (Pro00042950).

Sequencing and Processing of RNA Samples

RNA-seq gene expression data were generated from
formalin-fixed, paraffin-embedded tumor samples using
an exome capture–based RNA-seq protocol previously
published.25,26 In brief, RNA-seq data were aligned to
GRCh38 using STAR (2.4.0.1)27 and expression quantifi-
cation per gene was computed using featureCounts
(1.4.6).28 Normalized gene expression data for cancer
types were log10-transformed and used for all subsequent
analyses.

Mutation-Based Cluster Generation

We applied the agglomerative clustering method (part of
the scikit-learn Python package) to cluster patients on the
basis of the presence or absence of driver mutations in the
following genes: IDH1, PBRM1, FGFR2, BRAF, ERBB2,
KRAS, NRAS, TP53, PIK3CA, BRCA1, BRCA2, ATM,
POLE, MET, BAP1, ARID1A, CDKN2A, CDKN2B, KMT2C,
TERT, KMT2D, and LRP1B. The number of clusters n was
determined by manually evaluating a range of possible
values and observing that the most stable clusters occurred
with n = 4. The other important clustering parameters that
we set include the affinity (Euclidean) and linkage (ward).

TMB Estimation

TMB was derived from targeted genomic sequencing. The
TMB was calculated by dividing the count of all nonsilent
mutations (including missense SNPs/indels) by the total
size of the panel coding region. For this analysis, we include
367 records (from the larger subset of 454) for which we
had DNA-level information.

Immune-Related Biomarkers

All reported immune-related biomarkers were derived from
RNA expression data. PD-L1 expression levels—calculated
from the CD274 gene—were extracted for each sample
from RNA expression data and are displayed as the log of
the normalized abundances, following mean and variance
transformation. Immune cytolytic activity (CYT) is derived
from transcript levels of two key cytolytic effectors, gran-
zyme A and perforin, and was calculated as described by
Rooney et al.29 In a pan-cancer cohort, higher CYT scores
were associated with a modest but improved long-term
survival benefit. The neoadjuvant response signature
(NRS) was calculated as described by Huang et al.30 In that
study, higher NRS scores were associated with improved
outcomes during anti–PD-1 therapy in stage III/IV mela-
noma. The immuno-predictive score (IMPRES) was cal-
culated as described by Auslander et al.21 Higher scores on

this metric were shown to be associated with high immune
response and improved outcomes after immune checkpoint
blockade therapy in melanomas. Estimates of immune cell
infiltration were derived from an RNA deconvolution model,
as previously described.25,31

Statistical Analysis

For all pairwise comparisons on continuous, normally
distributed variables, we used the two-sided Student’s t-test
for P value calculation. Similarly, we used one-way analysis
of variance for comparisons involving more than
two groups. We applied the nonparametric Mann-Whitney
U test or Kruskal-Wallis H test for statistical comparisons
involving non-normally distributed continuous variables
(TMB, RNA signatures, and immune infiltration) and
Fisher’s exact test for assessing significant differences
between categorical variables. When multiple pairwise
comparisons were performed, we used Bonferroni-corrected
P value thresholds to ensure statistical robustness of our
findings. All statistical tests were performed using the SciPy
package in Python.

RESULTS

Clinical Characteristics, Demographic Features, and

Mutational Patterns

Our retrospective study leveraged deidentified real-world
data records from the Tempus clinicogenomic database,
selecting records with matched RNA and clinical data (N =
454) as well as a subset with matched DNA, RNA, and
clinical data (n = 367). Intrahepatic, extrahepatic, and
gallbladder cancer data were included regardless of stage,
treatment, or tumor site. Using this rich data set, we
assessed associations between subtypes and a range of
features including demographic (age, sex, and smoking
status) and clinical characteristics (stage; Table 1).

Integrated Clustering of BTC Reveals Four Distinct

Genomic Clusters

Across all subtypes, where available, we analyzed muta-
tional patterns and detected alterations in TP53 (42.5%),
CDKN2A (23.4%), ARID1A (19.6%), BAP1 (15.5%),
CDKN2B (14.2%), KRAS (15%), PBRM1 (11.7%), IDH1
(11.7%), TERT (8.4%), KMT2C (10.4%), and LRP1B
(8.4%), along with FGFR2 fusions (8.7%). We assessed
associations between driver gene mutations and BTC
subtypes. Consistent with previous studies,9,10 FGFR2 fu-
sions and mutations in BAP1, IDH1, and PBRM1 were
enriched in intrahepatic BTC. Mutations in TP53 and
ERBB2 were observed at similar frequencies across gall-
bladder and extrahepatic BTCs but were significantly less
common in intrahepatic BTC (Appendix Table A1).

To determine the potential benefit of molecular testing in
BTC, we assessed the percentage of BTC samples for
which testing identified potentially actionable alterations.
For this analysis, we restricted our analysis to biomarkers
for which tumor-agnostic drug approvals exist in the
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United States (eg, TMB . 10 mutations per megabase
[m/MB], microsatellite instability or mismatch repair defi-
ciency, or NTRK gene fusions) or phase II-III trials have
demonstrated clear evidence of therapeutic benefit in
biliary tract cancers (FGFR2 fusions or rearrangements,
and IDH1, ERBB2, or BRAF [V600E] mutations). Using
these criteria, we identified potentially actionable bio-
markers in 30.5% of all BTCs, including 39.1% of IHC,
29.6% of EHC, and 15% of GB cancers.

We observed a number of mutually exclusive mutational pairs
(tested across all subtypes), where the presence of comuta-
tions is significantly lower than that expected on the basis of
single mutation frequencies. The most notable example of
mutual exclusivity that we observed was between TP53 and
BAP1 (chi-squared test,P, .001). Furthermore, one of TP53,
BAP1, or IDH1 was involved in all significantly identified
mutually exclusive pairings that we identified (Appendix Table
A2), consistent with previous studies.10

Clustering analysis on the basis of driver mutation status
(22 genes in total) revealed four distinct clusters, with
cluster 4 predominately associated with FGFR2 and BAP1
mutations in intrahepatic BTC (Fig 1). The rest of the
clusters consisted of a mix between all three subtypes.
Cluster 1 was enriched for TP53, KRAS, and ATM muta-
tions, cluster 2 was enriched for CDKN2A/B alterations,
cluster 3 was enriched for mutations in the chromatin-

remodeling genes ARID1A and PBRM1, as well as IDH1
mutations.

From our rich DNA-seq and RNA-seq data set, we quantified
CD274 (PD-L1) gene expression levels and a variety of other
immune-related biomarkers for each record. We subse-
quently examined the variation in these biomarkers across the
four identified clusters and found a number of significant
differences. Cluster 1—enriched in TP53, KRAS, and ATM
variants—had the highest PD-L1 gene expression and was
significantly higher than cluster 4—enriched in FGFR2 and
BAP1 variants (Fig 2A). In addition, clusters 1 and 3 had
significantly higher CYT scores than cluster 2 (Fig 2B). There
were significant differences between clusters for a number of
other immune-related biomarkers (Figs 2C and 2D); cluster 1
was generally associated with the highest scores, which is
indicative of an inflamed tumor-immune microenvironment.
TMB was similar across all four clusters.

Differences in TMB, PD-L1, and Immune-Related

Signatures Across BTC Subtypes

Previous analyses show that BTC subtypes exhibit a range
of possible mutations and generally fail to cluster according
to subtype when looking only at driver gene mutations.
However, we discovered that these clusters have significant
variation across a number of immune-related biomarkers.
We next wanted to assess whether subtypes themselves

TABLE 1. Comparison of Clinical Characteristics of Data Records in the Overall Cohort and Across BTC Subtypes
Characteristic Overall EHC GB IHC P

Total, No. 454 34 153 267

Sex, No. (%)

Female 268 (59.0) 16 (47.1) 109 (71.2) 143 (53.6) .001

Male 188 (41.0) 18 (52.9) 44 (28.8) 124 (46.4)

Age at biopsy, years, median (Q1, Q3) 66.0 (58.8, 72.6) 67.6 (59.3, 73.1) 66.7 (60.6, 75.0) 65.6 (58.0, 71.2) .721

Stage at RNA biopsy, No. (%)

I 10 (4.6) 2 (9.5) 2 (2.0) 6 (6.1) .012

II 12 (5.5) 3 (14.3) 1 (1.0) 8 (8.2)

III 27 (12.3) 2 (9.5) 18 (18.0) 7 (7.1)

IV 171 (77.6) 14 (66.7) 79 (79.0) 77 (78.6)

ECOG, No. (%)

0 86 (40.2) 5 (31.2) 26 (41.3) 55 (40.7) .829

1 104 (48.6) 8 (50.0) 33 (52.4) 62 (45.9)

2 19 (8.9) 2 (12.5) 3 (4.8) 15 (11.1)

3 5 (2.3) 1 (6.2) 1 (1.6) 3 (2.2)

Smoking history, No. (%)

No 316 (69.6) 26 (76.5) 111 (72.5) 179 (67.0) .331

Yes 138 (30.4) 8 (23.5) 42 (27.5) 88 (33.0)

NOTE. The only strongly significant difference that we observed (P value , .01) was an enrichment for female records with GB cancer, which
is consistent with the known elevated risk for females with the GB subtype.

Abbreviations: BTC, biliary tract cancer; ECOG, Eastern Cooperative Oncology Group; EHC, extrahepatic cholangiocarcinoma; GB, gallbladder;
IHC, intrahepatic cholangiocarcinoma.
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exhibit distinct immune-related features to get a better
understanding of subtype diversity at the molecular level.

Within the intrahepatic, extrahepatic, and gallbladder BTC
subtypes, we observed that both TMB and PD-L1 gene ex-
pression are highly variable (Figs 3A and 3B). TMBwas higher
in extrahepatic and gallbladder cancers than in intrahepatic
cancers withmedian TMB values of 2.5m/MB for gallbladder,
1.92 m/MB for intrahepatic, and 2.63 m/MB for extrahepatic
subtypes. Across all possible pairwise comparisons, we ob-
served significant differences (Mann-Whitney U test, P, .01)
between gallbladder and intrahepatic subtypes and between
intrahepatic and extrahepatic subtypes. Median PD-L1 gene
expression values (log of the normalized abundances, fol-
lowing mean and variance transformation) were 0.997 for
gallbladder, 0.875 for intrahepatic, and 1.01 for extrahepatic
subtypes. Across all possible pairwise comparisons, the only
significant difference we observed was between gallbladder
and intrahepatic subtypes.

We next used our RNA-seq data set to investigate subtype-
specific differences in immune-related biomarkers that have
been previously described, notably CYT, NRS, and immuno-
predictive (IMPRES) scores21,29,30 (Figs 3C-3E). Scores were
relatively similar across these major BTC subsets, but with a
general observed trend of higher immune scores in gallbladder
and lower immune scores in intrahepatic. Median CYT scores

were 1.89 for gallbladder, 1.75 for intrahepatic, and 1.86 for
extrahepatic subtypes. Median NRS scores were 2.09 for
gallbladder, 1.98 for intrahepatic, and 2.02 extrahepatic
subtypes. For both CYT and NRS scores, the differences
between gallbladder and intrahepatic subtypes were signifi-
cant (Student’s t-test, P , .01 after correcting for multiple
comparisons), whereas all other pairwise comparisons were
insignificant. Median IMPRES scores were 9.0 for gallbladder,
9.0 for intrahepatic, and 10.0 for extrahepatic subtypes. None
of the possible pairwise comparisons were significantly dif-
ferent for this score.

Immune-Related Features Vary Significantly

Across Genotypes

Previous analyses show that BTC subtypes significantly vary
according to numerous biomarkers of immune function. In
addition, biomarkers of immune function were unique across
the four clusters that we have identified. Interestingly, each of
these clusters were enriched for a distinct set of genetic al-
terations. However, our real-world data set consists of hun-
dreds of tumors with a variety of genomic mutations. We
wondered if the differences in immune function biomarkers
were driven by specific individual genetic alterations found
within each cluster. We thus assessed gene-biomarker as-
sociations across the subset of patients for whom we have
matched DNA, RNA, and clinical data (n = 367). We
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expanded our set of immune biomarkers to encompass a
broad range of features that have been shown in various
studies to play a role in either predicting immune function or
responses to immunotherapies. We display our findings as a
heat map where colored blocks indicate significantly corre-
lated gene-biomarker pairs (log-fold change) in mutant versus
wild-type groups (Mann-Whitney U test, P , .05 after

correction for multiple testing; Fig 4). Shown are the subset of
commonly characterized driver genes in BTC for which we
observed a statistically significant interaction with at least one
immune biomarker.

Across all comparisons, we observed roughly equal numbers
of instances where specific biomarker signatures were higher
(and lower) in mutant (relative to wild-type) genotypes.
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Records with mutant TP53, for instance, had significantly
higher TMB (red squares, Fig 4). By contrast, PD-L1 ex-
pression was significantly lower in records where BAP1 was
mutated (blue squares, Fig 4).Most genes showed only a small
number of significant associations, but IDH1, TP53, BRAF,
and BAP1 each had several significant differences in immune
biomarkers acrossmutant and wild-type genotypes, consistent
with previous reports.

DISCUSSION

We analyzed a clinically annotated cohort of more than 400
BTCs using the Tempus molecular profiling platform. To our
knowledge, this is the largest reported cohort of BTC with
comprehensive genomic and transcriptomic profiling. Con-
sistent with previous reports, we find that a high frequency of
BTCs have potentially actionable molecular alterations, es-
pecially IHCs, supporting the use of molecular profiling for
patients with BTC. Our estimate that 39.1% of IHCs have
potentially actionable molecular alterations is a relatively
conservative estimate because we only included biomarkers
supported by published phase II-III studies in BTC or tumor-
agonistic approvals. Inclusion of other biomarkers with the

potential to be actionable on the basis of case reports in BTC,
including but not limited to ROS1 fusions or BRCA1/2
mutations,32 would have resulted in a higher estimation of
patients standing to benefit frommultimodal genomic profiling.

BTCs are a heterogeneous group of tumors but are generally
treated similarly with the exception of the subset of BTCs with
potentially actionable molecular alterations. Here, we find that
several biomarkers thought to be associated with anti-PD1
sensitivity—including TMB, PD-L1 expression, and other
immune-related biomarkers indicative of an inflamed tumor-
immune microenvironment—were elevated in GB cancer as
compared with IHC and EHC. Clinical trials of PD1-targeted/
PD-L1–targeted therapy in BTC have reported only modest
clinical activity, but have generally recruited a relatively small
number of patients with GB cancer. This makes it difficult to
assess the efficacy of anti-PD1 therapy in this anatomical
subset of BTC. Our data are hypothesis-generating but suggest
that GB cancer could be more sensitive to anti-PD1 therapy
than other anatomical subsets, and further evaluation of anti-
PD1 therapy and other immunotherapies in GB cancer is
warranted.
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Several molecular alterations identified in our data set were
mutually exclusive, suggesting that such alterations define
distinct BTC subtypes. Our cluster analyses revealed four
distinct clusters of BTC. Cluster 4 (consisting primarily of
FGFR2 fusions and BAP1 mutations in IHC) has been
identified in two other integrative clustering analyses of
BTC.11,33 Conversely, other clusters identified in this work were
not obviously matched with these other analyses. We ac-
knowledge that the genomic heterogeneity of BTCs might very
well reflect the diverse underlying risk factors and associated
pathologies. We therefore hypothesize that differences in the
patient populationsmay account for some of these differences,
as our samples were exclusively fromNorth America where the
incidence of liver fluke–associated BTC is rare or absent,
whereas clustering analyses conducted on behalf of the In-
ternational Cancer Genome Consortium included a large
number of fluke-associated BTCs from Asia.

Our clustering analyses demonstrate that the molecular
profiling may provide distinct information about the biology
of BTC, even for tumors for which targeted therapies are not
yet available. With the exception of cluster 4, all the other
subsets comprise a mix of IHC, EHC, and GB tumors,
indicating that the molecular data provide information
beyond what can be learned from the anatomical site.
Although cluster 4 appears to be driven by abrupt genomic
events (eg, FGFR2 rearrangements or fusions), the biology
of cluster 3 appears to be driven by genes that regulate
transcription, DNA repair, and the epigenetic landscape,

which, in turn, lead to tumor progression. Specifically, IDH1
mutations are enriched in this cluster and have been shown
to increase 2-hydroxyglutarate oncometabolite production,
leading to widespread epigenetic dysregulation.34,35

Our retrospective analysis of a real-world data set is advanta-
geous because of the scale and complexity of data that we are
able to obtain, but it nevertheless has several possible limita-
tions. First and most foremost is that real-world data are het-
erogeneous. We investigated possible factors that could
confound our analyses (Table 1), but differences across a range
of other demographic or clinical features—such as prior
therapies—may obscure important effects or bias our results.
We also focused a portion of our analyses on RNA, but RNA
and protein abundances do not exhibit a one-to-one corre-
spondence. Finally, the objective of our study was to assess
differences inmolecular-level and genome-level features across
subtypes, and it is important to note that we did not consider
clinical outcomes or end points.

In summary, we identified a high frequency of potentially
actionable molecular alterations in BTC, and we believe that
molecular profiling should be considered for all patients who
may stand to benefit from the discovery of a potentially ac-
tionablemutation in this population.With the exception of a few
biomarker-indicated therapies (eg, FGFR2 inhibitors for
FGFR2 fusion–positive BTC), most BTC is treated without
regard to molecular drivers and most therapeutic trials are
conducted across anatomical and molecular clusters. Our
results indicate that specific BTC clusters have distinct clinical
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and biologic features and such clusters may provide oppor-
tunities for therapeutic development. We also identify rela-
tionships between individual driver genes and certain immune-
related features, including enhanced M2 polarization of
macrophages in IDH1-mutated BTC and low immune

infiltration in BTC with FGFR2 fusions or rearrange-
ments, providing initial evidence for combining targeted
inhibition of specific drivers to reprogram the tumor-
immune microenvironment in combination with sys-
temic immunotherapy.
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APPENDIX

TABLE A1. Driver Gene Associations With Particular Biliary Tract Cancer Subtypes (n = 367)

Gene
Gallbladder (n = 121),

No. (%)
Intrahepatic (n = 219),

No. (%)
Extrahepatic (n = 27),

No. (%) P

FGFR2 (fusion) 0 (0) 31 (14.2) 1 (3.7) , .001

IDH1 1 (0.8) 40 (18.3) 2 (7.4) , .001

PBRM1 5 (4.1) 36 (16.4) 2 (7.4) .009

ERBB2 18 (14.9) 6 (2.7) 4 (14.8) .001

TP53 82 (67.8) 59 (26.9) 15 (55.6) , .001

POLE 1 (0.8) 0 (0) 2 (7.4) .009

BAP1 1 (0.8) 54 (24.7) 2 (7.4) , .001

NOTE. Statistical significance was determined via Fisher’s exact test. Driver genes for which we tested but did not observe any significant,
subtype-specific differences in prevalence included FGFR3 (fusion), BRAF, KRAS, NRAS, PIK3CA, BRCA1, BRCA2, ATM, MET, ARID1A,
CDKN2A, CDKN2B, KMT2C, TERT, KMT2D, and LRP1B.

TABLE A2. Mutually Exclusive Gene Mutations Across All Biliary
Tract Cancer Types in the Tempus Cohort With Included Genomic
Data (n = 367)
Gene 1 Gene 2 P q

TP53 BAP1 3.345e-14 1.248e-13

KRAS BAP1 1.691e-06 2.233e-05

TP53 PBRM1 2.585e-05 2.791e-04

TP53 IDH1 2.597e-05 2.791e-04

TERT BAP1 4.876e-05 4.493e-04

TP53 EPHA2 8.638e-05 7.315e-04

TP53 ARID1A 1.087e-04 8.358e-04

SMAD4 BAP1 1.239e-04 8.358e-04

ERBB2 BAP1 1.333e-04 8.358e-04

SMAD4 IDH1 1.99e-04 1.277e-03

KRAS IDH1 3.138e-04 2.072e-03

TERT IDH1 3.359e-04 2.072e-03

NOTE. Shown are both raw P values and q-values—a corrected set
of P values produced via the Benjamini-Hochberg procedure to control
for false discovery rate.
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