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ABSTRACT: While applying machine learning (ML) to semiconductor manufacturing is
prevalent, an efficient way to sample the search space has not been explored much in key
processes such as lithography, annealing, deposition, and etching. The aim is to use the
fewest experimental trials to construct an accurate predictive model. Here, we proposed a
technology computer added design (TCAD)-assisted meta-learned sampling approach.
The meta-learner adjusts the way of sampling in terms of how to hybridize the TCAD with
ML when selecting the next sampling point. While an advanced semiconductor process is
expensive, efficient sampling is indispensable. Using laser annealing as an example, we
demonstrate the effectiveness of the proposed algorithm where the mean square error
(MSE) at the first 100 sampling steps using TCAD-assisted meta-learned sampling is significantly lower than the pure ML approach.
Besides, with reference to the pure TCAD approach, the TCAD-assisted sampling prevents the MSE degradation at 200−400
sampling steps. The proposed approach can be used in other manufacturing or even any applied machine intelligence fields.

1. INTRODUCTION
The application of machine learning (ML) in semiconductor
processes promotes process development and yields. In many
key process steps such as lithography, deposition, annealing,
and etching, the complex phenomena make purely analytical
modeling difficult. In such scenarios, ML becomes a handy tool
to circumvent the deficiency in the lack of proper domain-
knowledge-based models. As far as the semiconductor industry
is concerned, the cost of experimental trials is high. Thus,
efficient sampling becomes an important task. In the case of
optimization, the experiment can be conducted using a
selected optimization algorithm, which has been a mature
field. On the other hand, in the case of constructing an
accurate model for advanced process development or
predictive maintenance, data-efficient sampling in semi-
conductor manufacturing has been less studied compared to
optimization, while sampling has been an intensively studied
subject in other fields.1−6 Prior works in data-efficient sampling
in the semiconductor process are mainly in yield improvement,
quality control, and predictive maintenance in a production-
line setting.7−14 On the other hand, the sampling strategies in
developing key process steps in advanced technology nodes
have not been studied much, and we only found limited
literature.14,15

Laser annealing is promising in advanced semiconductor
technology nodes due to its low thermal budget and capability
of localized annealing. Traditional furnace annealing cannot
fully eliminate defects and can result in the degradation of
material properties, the precipitation of dopant substances, and

the lateral dopant diffusion in wafers owing to high
temperature and anneal time. In contrast, laser annealing has
several advantages. First, the heating time is short. Second, the
heating can be limited to a local surface region and does not
affect the surrounding components. Third, it can form an
abrupt profile to reduce the subthreshold leakage current.
Lastly, the shape of a laser beam can be controlled
meticulously in both spatial and temporal aspects.16−18

There can be difficulty in achieving optimized sampling
regarding the laser annealing condition purely by theory. The
deviation from the theoretical model is mainly due to the
difficulty in retrieving accurate material parameters for
diffusion, melting, dopant activation, and heat transfer.
Additionally, inaccurate boundary conditions, the anomalies
in a polycrystalline material, and the lack of laser repetition rate
and substrate heating effect models all contribute to the
deviation.
Theory-assisted ML has been drawing great attention over

the past few years.19−26 The main idea is to count on prior
knowledge and theory to reduce the loading of ML model
training in terms of the required sample number and prediction
accuracy. Various techniques have been proposed to realize
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domain knowledge assistance, including semisupervised
learning, Bayesian statistics, supervised learning incorporating
domain knowledge in some context, and theory-informed
reinforcement learning (RL).23 In most of the studies in
semiconductor manufacturing, the goal is to use theory-
assisted prediction to reduce the required data amount, while
theory-assisted sampling has not been quite studied. It should
be noted that the current proposal is different from theory-
assisted model-free RL since no predictive model regarding the
environment is constructed in model-free RL. The proposal
here is also different from theory-assisted model-based RL
since RL optimizes wrt the action reward instead of the
prediction accuracy on the test data set/environment.
Meta-learning27−30 is a newly emerged field in ML where a

meta-learner optimizes the base learner, enabling the paradigm
of learning how to learn. It can be regarded as a nested ML
model where one model learns the task while the other learns
how to optimize the training of the first model. In such a
scenario, many base learners will be trained and formed, and
afterward, the meta-learner will learn to optimize the training
process. The meta-learner can be an evolutionary algorithm or
a supervised learning algorithm. In case supervised learning is
used, optimization should be done wrt the input parameters of
the meta-learner to locate the optimum learning strategies in
the base learners. Such a nested ML model is similar to human
thinking, where we do learn how to learn to improve learning
efficiency in our childhood or even at later ages.
Sampling methods in ML can be categorized into passive

sampling and active sampling. Passive sampling chooses
samples based on the geometry of the features, while active
sampling selects the next samples based on the output of the
model trained by the currently available data.31 Three methods
are used in active learning: uncertainty sampling, minimizing
the hypothesis space, and variance reduction.5,32 In uncertainty
sampling, several methods exist to conduct uncertainty

samplings, such as least confidence and margin confidence.
The least confidence method chooses data whose confidence is
less than a specific number defined by the user. The margin
confidence method calculates the difference between the top
two most confident classes. If the difference is not large
enough, the data is selected to be the next sampling
point.6,33,34 As for minimizing the hypothesis space, the aim
is to locate the cases to reduce the number of possible
hypotheses/models, that is, version space, induced from the
given samples. Thus, an active learning algorithm manages to
gain examples that can immediately minimize the number of
hypotheses,35 and the two most widely used methods are query
by disagreement and query by committee.36,37 In the variance
reduction method, the active data selection is used to minimize
the predictive variance of the active learning algorithm
depending on Fisher information. Nevertheless, it will face a
detriment that the computational complexity makes it
impractical since a large number of parameters are
present.5,38−40 Hence, it has received little interest in actual
applications of efficient sampling in ML problems.

2. METHOD
2.1. Algorithm. Meta-learned, technology computer added

design (TCAD)-assisted sampling is illustrated in Figure 1.
Essentially, the algorithm is started from sampling one sample
using a semiconductor experiment. This is the standard
procedure in the semiconductor industry, while in the purest
computer science data mining, the training sets are collected as
a whole. The cost of collecting data in real semiconductor
experiments is much higher. Thus, a proper sampling strategy
is required, and it is uncommon to conduct a bunch of
experiments at once without further discretion. The first row in
the data set is used as the starting point, and based on this first
sample, an inaccurate neural network is built, serving as the

Figure 1. Illustration of meta-learned TCAD-assisted sampling algorithm. The goal is to have an accurate prediction model using the fewest
sampling steps.
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base learner in the context of meta-learning. The next sample
needs to be determined based on the goal of constructing a
predictively accurate model instead of locating the optimal
process parameters. The way to achieve this is to know where
the model predicts the worst by the currently trained ML
model. Essentially, we have another useful tool in hand, which
is the theoretical data for laser annealing.
In Figure 1, there are two learners: the base learner and the

meta-learner. The base learner serves the purpose of
prediction, which is the main purpose of essentially all of the
ML tasks. In addition to being the main prediction model, the
base learner also serves the purpose of suggesting the potential
next sampling point during active learning. The suggestion is
based on the currently constructed prediction network for the
base learner, and in fact, this is the common practice in active
learning or active sampling. The other suggested next sampling
point will come from the theoretical model, which will be
described in detail in the next section. The two suggested next
sampling points need to be selected based on an algorithm.
Therefore, the meta-learner serves the purpose of providing the
classification results, and the selection is based on the
classification results. The ML proposed next sampling point
will be evaluated first. At this location, if the ML model, that is,
the base learner, is more accurate according to the meta-
learner, then the suggestion from the ML model will be used.
Otherwise, the suggested next sampling point by the
theoretical model will be used. Since the base learner is
trained and updated after a certain amount of newly sampled
data points are added, the meta-learner is also trained
periodically during the active learning procedure.
Mathematically, we can express the ML, TCAD, and true

mapping between the input process parameters x and the
output metrology value y as

=y f x( )ML ML (1a)

=y f x( )TCAD TCAD (1b)

=y f x( )true true (1c)

where x is the input process parameters in a laser thermal
annealing process, while y is the sheet resistance (Rsheet)
measured. The details of the laser thermal annealing
experiment can be referred to in ref.41 In the preprocessing
of the experimental and TCAD data, the sheet resistance values
greater than 1000 Ω will be set to 1000 Ω since the overly large
values indicate failed annealing and are not of interest.
Normalization of the input and output parameters x and y to
(0, 1) is conducted. There are two next sampling points
proposed by ML and the TCAD model, namely, xnext, TCAD and
xnext,ML, based on whether the predicted values are far from the
model mean.

= | |x f x f xargmax ( ) ( )next,ML
exclude 1

ML ML (2a)

= | |x f x f xargmax ( ) ( )next,TCAD
exclude 1

TCAD TCAD (2b)

In determining the next sampling point, we set the criterion
of predicted yML <0.8 and predicted yTCAD <0.8 to prevent
consistent sampling on 1000 Ω data. To decide whether to use
xnext, TCAD or xnext,ML, an auxiliary classification ML model is
built, and the meta-learning will adjust the model parameters

of this auxiliary sampling model at each sampling step to
promote better utilization of ML and TCAD models.

= F f x f x x f x( ( ), ( ), , ( ))classify TCAD base true (3)
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Π′ is the true classification between TCAD and ML
accuracy derived from the sampling procedures, while Π is
the fitted classification by networks. The sampling is repeated
and continued until a prescribed step is achieved. The
remaining data points in the data set are used to evaluate
the effectiveness of our proposed meta-learning TCAD-assisted
sampling method. The baselines can be a pure ML model and
a pure TCAD model. It is worth mentioning that the input to
the auxiliary classification ML model to decide whether to use
xnext, TCAD or xnext,ML requires some consideration. The easiest
way is to compare the accuracy of the TCAD and ML models
at the previous sampling point. A further complication is to use
all of the previous sampling points as the input and compare
the accuracy of the ML and the TCAD model, which is the
practice in this work. Alternatively, sample weights/biases and
their change from the previous sampling stages of the base
leaner can be used as the input. In principle, the TCAD model
outperforms the ML model at an early stage of sampling and
model construction, while the strength is reversed at the later
stage of model construction when more data points are trained.
Using sample weights/biases and their change as the input can
reflect the evolved relative strength of the ML and TCAD
models. Tensorflow 2.3.0,42 Python 3.8.10 with Numpy 1.20.3
and Scipy 1.6.2,43−46 Sentaurus Process 2016.03,47 and Matlab
R2017b48 are used in this work.
2.2. TCAD. To compare with the results from the

experiments, we use TCAD to simulate laser thermal annealing
processes in the Sentaurus process. The simulations are
conducted with the heat transfer equation, the dopant diffusion
equation, the phase field equation, and the dopant activation
model. We set the dopant activation model to solid, in which a
simple solid solubility is considered.47

=
+

+C
C C

C C( )A
A
SS

A

A
SS

A (7)

= ·C f CA
SS

A
SS0 (8)

where f is the multiplication factor,CA
ss0 is the solid solubility of

the dopant, and CA is the total dopant concentration. The
transfer matrix method (TMM), which considers the
reflectance, transmittance, and absorbance for both perpen-
dicular and parallel polarizations, is used to calculate the heat
generation (G) in the heat transfer equation.47

= · + +c
T
t

T G L
t

( ) 30 (1 )p
2 2

(9)

= ·G I g0 (10)
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where κ, ρ, cp, and L are the conductivity, the mass density, the
specific heat capacity, and the unit mass latent heat,
respectively, and I0 and g represent the given intensity and
the normalized profile. The crystallinity of the amorphous
region after annealing, being molten and solidified, depends on
the cooling rate assumed to be small enough to crystallize the
solidified region completely. Then, the consequence is
obtained by solving the crystallinity phase field equation, and
the phase field variable φ is introduced to describe whether the
material is liquid or solid.47
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where Δα, φrec, and ε are the change of crystallinity per time
interval, the parameter to manipulate which melting status
starts to lose crystallinity information, and a scaling factor of
φrec to avoid a zero denominator, respectively. Although the
melting phase field equation for the melting laser model is
more suitable in the case of our experiments, we have a
problem with the convergence of the simulation results while
using it. Then, the dopant diffusion equation can be solved by
coupling it with the heat and phase equations.47
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Eseg and Eintf are chemical potential energies of a solid state
and an interface state corresponding to a liquid state. The
sheet resistance formula is given by47
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where electron and hole concentrations are calculated
assuming charge neutrality at a temperature of 300 K, and μ
is the mobility of electrons or holes defined by the formula
below

= +
+ ( )1 N

N

min
max min

r (15)

where N is the background concentration, and μmin, μmax, Nr,
and α are fitting parameters for the empirical formula.49

3. RESULTS AND DISCUSSION
Table 1 lists the mean square error (MSE) at the first 100
sampled data points (MSE100), at the 200−400 sampled data
points (MSEmid), and over the entire sampling period (MSE).
It is clearly seen in Table 1 that the initial advantage of using
the hybridization of TCAD and ML is reflected in MSE100. The
first column in Table 1 lists the period that the base and meta-
learners are retrained during sampling. The second column
lists the number of epochs used in the retraining. Figure 2 is
the plotting of the MSE of the test set versus the number of
trained samples during the sampling steps. The sampling in
this work aims at promoting the construction of an accurate
ML model using fewer data points. The test set is the data
points that have not been sampled. From Figure 2, it is
observed that the test set MSE trend exhibits a different nature
if we compare three cases, that is, the pure machine-learning-
based sampling, the hybridized sampling using TCAD and ML,
and pure TCAD-based sampling. The hybridization of TCAD

Table 1. Comparison of Prediction Accuracy in Terms of MSE for Different Algorithms at Different Stagesa

pure neural network TCAD-assisted ML pure TCAD

retrain (steps) epochs MSE MES100 MSEmid MSE MES100 MSEmid MSE MES100 MSEmid
a 5 20 0.0895 0.2642 0.0660 0.0737 0.1720 0.0971 0.0704 0.1313 0.1053
b 10 20 0.0692 0.3084 0.0700 0.0662 0.1778 0.0814 0.0722 0.1742 0.0890
c 15 20 0.0808 0.4054 0.0675 0.0918 0.3056 0.0946 0.0891 0.2276 0.0821
d 30 20 0.0790 0.4063 0.0692 0.0951 0.2901 0.1027 0.1240 0.3618 0.1106
e 5 40 0.1111 0.2398 0.1385 0.0769 0.1343 0.0791 0.0469 0.1075 0.0702
f 10 40 0.0733 0.2381 0.0616 0.0603 0.1831 0.0820 0.0768 0.1222 0.1365
g 15 40 0.0830 0.3431 0.0549 0.0867 0.2515 0.1004 0.0837 0.1461 0.1359
h 30 40 0.0940 0.4696 0.0537 0.0856 0.4822 0.0625 0.0871 0.2396 0.0840
i 5 60 0.0719 0.1753 0.0714 0.0683 0.1307 0.0993 0.0601 0.1054 0.0994
j 10 60 0.1859 0.3837 0.1013 0.0636 0.1489 0.0701 0.0855 0.1206 0.1528
k 15 60 0.0572 0.2514 0.0506 0.0644 0.1872 0.0995 0.0629 0.1336 0.0985
l 30 60 0.0685 0.2523 0.0624 0.0525 0.2198 0.0641 0.0777 0.1916 0.1082
m 5 80 0.2417 0.2466 0.5540 0.0480 0.1102 0.0536 0.0681 0.1089 0.0854
n 10 80 0.1072 0.2855 0.1864 0.0658 0.1418 0.0888 0.0744 0.1192 0.1254
o 15 80 0.0688 0.2218 0.0539 0.0653 0.1706 0.0732 0.0996 0.1301 0.2104
p 30 80 0.0708 0.2465 0.0635 0.0495 0.2406 0.0443 0.0890 0.1764 0.1319
q 5 100 0.1644 0.1374 0.1799 0.0522 0.1106 0.0512 0.0957 0.1134 0.1427
r 10 100 0.1333 0.2189 0.2659 0.0661 0.1414 0.0750 0.0674 0.1213 0.1100
s 15 100 0.0617 0.2121 0.0556 0.0622 0.1523 0.0859 0.0785 0.1330 0.1157
t 30 100 0.0805 0.2158 0.0705 0.0550 0.2218 0.0547 0.0798 0.1727 0.1357
avg. 0.0996 0.2761 0.1148 0.0675 0.1986 0.0780 0.0794 0.1568 0.1165

aMSE100 and MSEmid are the MSE of the 1−100 and 201−400 sampling steps, respectively.
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and ML has been explained in detail in Section 2. Pure ML-
based sampling is deciding the next sampling points based on

the currently available ML model. Optimization is done to
locate the most appropriate data points. In this work, we will

Figure 2.Mean squared error vs the trained sample number for pure neural-network-based sampling (blue lines), meta-learned, TCAD-assisted ML
sampling (red lines), and pure TCAD-based sampling scheme (yellow lines) for the cases (a−t) in Table 1.
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locate the data points exhibiting the largest deviation from the
predicted-value average based on the partially trained network.
Here, we assume prescribed discrete input process parameter
values, while the same algorithm can be applied to a
continuous value case. The only difference is that the

optimization algorithm to locate the nest sampling point
needs to be changed to a continuous variable version. It is seen
from Figure 2 that, in most cases, the TCAD and hybrid
algorithm exhibit better performance in the first portion of
sampling. The first portion varies from case to case, and the

Figure 3. Test set prediction at the sampling step 50 for the different cases (f,j,l,r,t) in Table 1.

Figure 4. Test set prediction at the sampling step 300 for the different cases (f,j,l,r,t) in Table 1.
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range falls into 30−100 steps in the 20 cases in this work. The
reason for improved performance is that the neural network
model has not been collecting enough amount of data to give
reasonable predictions. This is the weakness of essentially all
ML models, where a certain amount of data needs to be
collected to fulfill reasonable prediction accuracy. In Figure 2,
the TCAD-based sampling can become less efficient at the
mid-stage, that is, 200−400 sampling steps, because the TCAD
is based on analytical modeling where the discrepancy between
theory and experiment always exists. It is quite impossible to
use TCAD to model many subtle phenomena, and many
processes and experiments in semiconductor manufacturing
have not been properly described by TCAD models. Even for
laser thermal annealing, whose analytical model is indeed
explained by several equations in Section 2.2, the discrepancy
from the experiment is still pronounced. At a later stage, at
400−600 sampling steps, it is observed that the ML model
again shows some increased MSE at the test set. Fortunately,
the meta-learner effectively prevents the hybrid model from
following trends of pure ML-based sampling. It should be
emphasized that the phenomenon regarding the relative
strength of ML and TCAD models can vary case by case,
except possibly for the initial weakness of the ML model.
Therefore, it is important to have a meta-learner to guide the
sampling in order to receive the benefit of hybridization. At a
later stage (>900 data points) during the sampling procedure,
the convergence of the three models in Figure 2 is observed.
It is worth mentioning that the base learner is periodically

changing and improving its accuracy with new samples
collected and retraining conducted. Nevertheless, reassigning
the true labels for the classification of meta-learner is not
required and actually should not be conducted for the
previously sampled process parameters x. This is because the
trained base learner has full accuracy at previous sampling
points, and thus, reassigning the classification of true labels for

the previously sampled data only leads to strong biases to the
xnext, ML. Indeed, the gradually improved base learner can lead
to changed true labels as far as the classification meta-learner is
concerned, and in order to take into account this effect, a more
sophisticated strategy such as a further partitioned training set
during active learning is required to re-compare the strength of
ML and TCAD prediction at all of the previously sampled data
points. We do not implement such a complicated strategy in
this study, and the effectiveness of the algorithm is already
quite pronounced, which can be due to the fact that the
current sampling is closer to the more recent sampling data in
the sample space according to the strategy used in this study.
Thus, the accuracy of the classification meta-learner at the
more recent sampling step is more important.
Figures 3−5 further show the scatter plots of true versus

predicted values for the test data set at the 50th, 300th, and
950th sampling steps for a pure neural network-based
sampling, a meta-learned, TCAD-assisted ML sampling, and
a pure TCAD-based sampling scheme. From Figure 3, it is
observed that at the 50th step, the prediction on the test data
set is not effective by pure ML, where the trend between the
predicted values (yML) and the true values (ytrue) has not
established by the 50 sampled data points. On the other hand,
the data trend has been seen in TCAD-assisted ML and pure
TCAD, due to the effective guidance of theory in the early
stage of sampling. Figure 4 shows the mid-stage sampling at
the 300th sampling step. It is seen that pure ML is improved
and is comparable to the pure TCAD sampling. Comparing
TCAD-assisted ML and pure TCAD at the 300th sampling
step, it can be observed that pure TCAD is inferior due to the
inaccuracy of the pure theoretical framework, which is not
corrected by the experimental data. Figure 5 shows the late-
stage sampling at the 950th sampling step, and similar accurate
predictions are achieved for all of the three algorithms on the
remaining small amount of test data.

Figure 5. Test set prediction at the sampling step 950 for the different cases (f,j,l,r,t) in Table 1.
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Meta-learning, in general, refers to using an algorithm to
adjust the learning process, which can be (1) the network
architecture, such as pruning, connection, and neuron number;
(2) basic ML hyperparameters, such as learning rate, batch
size, optimizers, and so forth; (3) data collection method such
as the case in this work; and (4) other aspects that can affect
the model training. Suppose hyperparameters are defined as
any parameters that will not be tuned during model training. In
that case, meta-learning can be defined as using another model,
that is, meta-learner, to tune the hyperparameters. While in
many contexts, hyperparameters are only referred to as the
basic training parameters, such as batch size and learning rate,
many more aspects can be regarded as hyperparameters,
including network architectures. It should be clear that in this
work, we try to use a meta-learner to control the behavior of
sampling at each step of active learning.50−52 The base learner
is the network predicting the sheet resistance as a function of
process parameters. Before the base learner learns the input−
output relation, the way to decide the next sample between
TCAD and ML models is tuned first based on the past
sampling experience.
The way to utilize the past sampling experience to enhance

the meta-learner and to facilitate the speed of constructing an
accurate base learner has firstly count on deciding the input to
the meta-learner. Clearly, the most straightforward strategy is
to use the process parameters as the input and consider
whether the TCAD model or the ML model is more accurate
as the output, consisting of a classification problem. In this
case, the input to the base learner and to the meta-learner is
the same. The selection of the next sampling point is based on
tracing the currently available ML model and the existing
TCAD model and locating the maximal deviation. Then, using
ML or TCAD model is based on the accuracy of the two
models at various locations on the input sample space.
Alternatively, long-short-term memory (LSTM) or time-series-
based method can also be used to model the time evolution of
sampling. In this case, the correlation between the input and
output is related to the mapping between the process
parameters and not only the classified accuracy of the ML
and TCAD models but also the previous sampling sequence in
the sense of LSTM. This means that more recent sampling
affects the next sampling more than the less recent sampling
does. We do not employ the time series analysis method. This
is because while the sequence of sampling may have some
effect on the model prediction accuracy, using LSTM requires
repeated construction of imaginary sampling sequences, in the
currently available training set, to supplement the real sampling
sequence. While the effect of the sampling sequence and the
effectiveness of constructing imaginary sampling sequences is
unclear, time-series analysis techniques are not considered in
this work.
Regarding the TCAD model, our modeling is based on

commercially available TCAD software. The diffusion, heat,
melting phase, and crystallinity equations lead to a coupled
solution. The partial differential equation on time and space is
solved; thus, we can see the evolution of dopant activation
during annealing as a space function. The substrate temper-
ature can be varied in our experimental setup, but the TCAD
model can only be set at its ambient temperature, and this
aspect leads to some inaccuracy. Essentially, the wafer top
surface in the TCAD model is described by the Stefan−
Boltzmann law, where the radiation of the thermal energy to
the ambiance is calculated as the boundary condition. The

wafer bottom surface is set as the thermal conduction
boundary where the temperature difference between the
wafer and the ambiance leads to the heat flow between the
material contact. It is impossible to set two temperatures in the
TCAD model; thus, we assume that the stage temperature and
the air on the wafer’s top surface temperature are the same.
Assuming that the wafer thickness is thin compared to the
temperature gradient from the stage to the sample top surface,
the Stefan Boltzmann law still holds in the case of stage
heating. Another model inaccuracy lies in the fact that pulsed
laser condition can only be modeled as a continuous wave or a
single or a few laser pulses. In this case, the effect of laser
repetition rate and the nonlinear behavior of high-power laser
pulses cannot be fully modeled. In our simulation, the
repetition rate is modeled by adjusting the laser fluence and
anneal time. On the other hand, the TMM model is sufficient
to model planar multilayers, and thus, electromagnetic wave
modeling is not required in our poly-Si/SiO2/Si-substrate case.

4. CONCLUSIONS
Constructing an accurate prediction model efficiently and at all
sampling stages is important and desired in the semiconductor
industry. To achieve this goal, an efficient sampling scheme is
required. TCAD-assisted sampling is proposed in this work.
The approach supplements the deficiency of ML-based
sampling during the initial data collection and the deficiency
of inaccurate TCAD models in the mid-stage. Using laser
thermal annealing as an example, we have demonstrated the
effectiveness of the meta-learned sampling procedure. While
the base learner is gradually improving its accuracy by active
learning, the classification meta-learner effectively selects the
more appropriate next sampling candidate from TCAD or ML
suggestion, which will be incorporated into the base learner
training. The early, that is, <100 steps, and mid-stage, that is,
200−400 steps, strength is observed by using TCAD-assisted
ML sampling. The future improvement will further improve
meta-learner to fully utilize the TCAD and ML sampling
flexibly, verifying the effectiveness of the proposed algorithm
by testing it on a variety of semiconductor processes and going
beyond the multiplayer perceptron. We believe that the meta-
learned, TCAD-assisted sampling prediction network will be
beneficial in nearly all future semiconductor manufacturing
experiments.
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