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Brain dysfunction in chronic pain patients assessed
by resting-state electroencephalography
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Abstract
Chronic pain is a common and severely disabling disease whose treatment is often unsatisfactory. Insights into the brain
mechanisms of chronic pain promise to advance the understanding of the underlying pathophysiology and might help to develop
disease markers and novel treatments. Here, we systematically exploited the potential of electroencephalography to determine
abnormalities of brain function during the resting state in chronic pain. To this end, we performed state-of-the-art analyses of
oscillatory brain activity, brain connectivity, and brain networks in 101 patients of either sex suffering from chronic pain. The results
show that global and local measures of brain activity did not differ between chronic pain patients and a healthy control group.
However, we observed significantly increased connectivity at theta (4-8 Hz) and gamma (.60 Hz) frequencies in frontal brain areas
as well as global network reorganization at gamma frequencies in chronic pain patients. Furthermore, a machine learning algorithm
could differentiate between patients and healthy controls with an above-chance accuracy of 57%, mostly based on frontal
connectivity. These results suggest that increased theta and gamma synchrony in frontal brain areas are involved in the
pathophysiology of chronic pain. Although substantial challenges concerning the reproducibility of the findings and the accuracy,
specificity, and validity of potential electroencephalography-based diseasemarkers remain to be overcome, our study indicates that
abnormal frontal synchrony at theta and gamma frequencies might be promising targets for noninvasive brain stimulation and/or
neurofeedback approaches.
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1. Introduction

Chronic pain is a disease characterized by ongoing pain and
significant sensory, cognitive, and affective abnormalities49,77

that have detrimental effects on quality of life. Affecting between
20%and 30%of the adult population,8,35 chronic pain is a leading
cause of disability worldwide.27 Thus, advances in the un-
derstanding and treatment of chronic pain are urgently needed.

Studies in animals and humans have revealed that chronic pain
is associated with significant structural and functional changes of

the brain.2,38,55 In particular, the prefrontal cortex and subcortical
brain areas including amygdala, hippocampus, and striatal areas
have been implicated in chronic pain.2,3,31,47,55,62,72 Further
insights into the brain mechanisms of chronic pain not only
promise to advance the understanding of the underlying
pathophysiology but could also be clinically highly useful. In
particular, a brain-based marker of chronic pain could be
immensely helpful for the diagnosis, prognosis, classification,
prevention, and treatment of pain.15,71 Accordingly, the feasibility,
limitations, and perspectives of brain-based markers of pain are
currently intensively discussed in the pain research commu-
nity15,50,64 and beyond.43,56,84 Recent functional magnetic
resonance imaging (fMRI) studies have made important first
steps towards such a brain-based marker of experimental80 and
chronic pain.44,45

Using electroencephalography (EEG) to assess abnormalities
of brain function and to establish a brain-basedmarker of chronic
pain is particularly appealing because it is safe, cost-effective,
broadly available, and potentially mobile. Moreover, an EEG-
based marker of chronic pain might not only be helpful for the
diagnosis and classification of chronic pain but might itself
represent a target for novel therapeutic strategies such as
neurofeedback63 or noninvasive brain stimulation techniques.54

As a potential first step in that direction, some EEG studies have
shown a slowing of neural oscillations together with an increase of
oscillatory brain activity at theta frequencies (4-8 Hz) in chronic
pain patients.58,76 These observations have been embedded in
the thalamocortical dysrhythmia (TCD) model of neuropsychiatric
disorders.41 In this model, abnormal thalamocortical theta activity
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yields abnormal oscillations at gamma (.30 Hz) frequencies,
which eventually result in different neuropsychiatric symptoms
including ongoing pain. This model is highly appealing, but
evidence is sparse, contradictory, and mostly confined to small
groups of patients suffering from neuropathic subtypes of chronic
pain.52,53 Thus, a general EEG-based marker of chronic pain
remains to be demonstrated.

In this study, we aimed to systematically and extensively exploit
the potential of EEG to determine abnormalities of resting-state brain
activity as a potential brain-based marker of chronic pain. In a large
cohort of chronic pain patients and age- and sex-matched healthy
controls, we analyzed global and local measures of oscillatory brain
activity.Moreover,weperformed connectivity analyses using phase-
based and amplitude-based measures in source space as well as
graph theory–based network analyses. In a univariate approach, we
statistically compared thesemeasuresbetweenpatients andhealthy
controls. Moreover, in a multivariate machine learning approach, we
tested whether patterns of these measures allow to distinguish
between chronic pain patients and healthy controls.

2. Materials and methods

2.1. Participants

One hundred one patients (age 58.26 13.5 years [mean6SD], 69
female) suffering from chronic pain and 84 age- and sex-matched
healthy control participants (age 57.8 6 14.6 years, 55 female)
participated in the study. Inclusion criteria forpatientswerea clinical
diagnosis of chronic pain, with pain lasting at least 6 months and
aminimum reportedaverage pain intensity$4/10during thepast 4
weeks (05 no pain, 105worst imaginable pain). Exclusion criteria
were acute changes of the pain condition during the past 3
months, for example, due to recent injuries or surgeries. Further
exclusion criteria were major neurological diseases such as stroke,
epilepsy, or dementia, major psychiatric diseases aside from
depression, and severe general diseases. Finally, patients on
medicationwith benzodiazepineswere excluded, othermedication
was not restricted, and patients’ medication was maintained.
Demographic and clinical details of participants are shown in
Tables 1 and 2, respectively. In summary, we included 47 patients
with chronic back pain, 30 patients with chronic widespread pain,
6 patients with joint pain, 5 patients with unspecific neuropathic
pain, 7 patients with postherpetic neuralgia, and 6 patients with
polyneuropathic pain. All participants provided written informed

consent. The study was approved by the ethics committee of the
Medical Faculty of the Technical University of Munich and
conducted in accordance with the relevant guidelines and
regulations. A power analysis for independent 2-sample t-tests
using G*Power22 showed that the number of participants allowed
for detecting differences between groups of at least medium effect
size (Cohen’s d 5 0.5) with a statistical power of 0.9.

2.2. Recordings

Brain activity was recorded using EEG. Recordings were
performed during the resting state, ie, participants were asked
to stay in a relaxed and wakeful state, without any particular task.
Electroencephalography data were recorded with eyes closed
and eyes open for 5 minutes each. Because the eyes-closed
condition showed better data quality and less muscle artifacts,
analyses were focused on this condition.

Electroencephalography data were recorded using 64 electro-
des consisting of all 10-20 system electrodes and the additional
electrodes Fpz, CPz, POz, Oz, Iz, AF3/4, F5/6, FC1/2/3/4/5/6,
FT7/8/9/10, C1/2/5/6, CP1/2/3/4/5/6, TP7/8/9/10, P5/6, and
PO1/2/9/10 plus 2 electrodes below the outer canthus of each
eye (Easycap, Herrsching, Germany) and BrainAmp MR plus
amplifiers (Brain Products, Munich, Germany). All EEG electrodes
were referenced to FCz and grounded at AFz. Simultaneously,
muscle activity was recorded with 2 bipolar surface electromy-
ography (EMG) electrode montages placed on the right masseter
and neck (semispinalis capitis and splenius capitis) muscles14

and a BrainAmp ExG MR amplifier (Brain Products). The EMG
ground electrode was placed at vertebra C2. All data were
sampled at 1000 Hz (0.1 mV resolution) and band-pass filtered
between 0.016 and 250 Hz. Impedances were kept below 20 kV.

Before the EEG recordings, patients completed the following
questionnaires to assess pain characteristics and comorbidities:
short-form McGill pain Questionnaire,48 Pain Disability Index,18

painDETECT (PDQ),24 Beck Depression Inventory II (BDI-II),6

State-Trait-Anxiety Inventory,65 and the Veteran’s RAND 12-Item
Health Survey (VR-12).61

2.3. Preprocessing

Preprocessing was performed using the BrainVision Analyzer
software (Brain Products). Data were downsampled to 250 Hz.
For artifact identification, a high-pass filter of 1 Hz and a 50-Hz
notch filter for line noise removal were applied to the EEG data.
Independent component analysis was performed,34 and com-
ponents representing eye movements and muscle artifacts were
identified based on time courses and topographies. Furthermore,
time intervals of 400 ms around data points with signal jumps
exceeding 6100 mV were marked for rejection. Finally, all data
were visually inspected and remaining bad segments marked.
Subsequently, independent components representing artifacts
were subtracted from the raw, unfiltered EEG data83 and EEG
data were re-referenced to the average reference. The reference
electrode FCz was added to the signal array.

Next, data were exported from the BrainVision Analyzer and
further analyzed in Matlab (Mathworks, Natick, MA) with the
FieldTrip51 and Brain Connectivity Toolbox,57 along with custom-
written code. Data were segmented into 2-second epochs with
1-second overlap. A 2-second epoch length was chosen to
balance the stationarity of the signals and the number of samples
for lower frequencies (down to 4 Hz).11,73 All analyses are based
on these epochs and the following 4 frequency bands: theta (4-8
Hz), alpha (8-13 Hz), beta (14-30 Hz), and gamma (60-100 Hz).

Table 1

Demographics and questionnaire results.

CP (N 5 101,
mean 6 SD)

HC (N 5 84,
mean 6 SD)

Gender (M/F) 32/69 29/55

Age 58.2 6 13.5 57.8 6 14.6

VR-12 PCS score 31.7 6 7.8 52.7 6 5.7

VR-12 MCS score 46.4 6 12.0 54.1 6 9.0

Current pain intensity (VAS) 5.2 6 1.9 —

Avg. Pain intensity (VAS) 5.7 6 1.6 —

Pain duration (mo) 121.9 6 114.3 —

PDI score 28.3 6 14.7 —

PDQ score 17.4 6 6.5 —

Avg. pain intensity, average pain intensity in the past 4 weeks; CP, chronic pain patients; HC, healthy controls;

MCS, mental component score; PCS, physical component score; PDI, pain disability index; PDQ,

painDETECT; VAS, visual analogue scale; VR-12, Veteran’s RAND 12.

2752 S. Ta Dinh et al.·160 (2019) 2751–2765 PAIN®



Table 2

Patient characteristics.

ID Age (y) Sex Pain duration (mo) Curr. Pain (VAS) Avg. Pain (VAS) Pain diagnosis MQS BDI PDQ

1 67 m 360 5 5 CBP 4 3 30

2 54 f 120 4 5 CBP 32 35 14

3 64 f 96 5 7 CBP 11 7 16

4 41 m 24 7 6 CBP 6 15 22

5 74 m 180 3 5 CBP 7 18 4

6 58 f 168 7 6 CBP 19 22 21

7 65 m 48 6 5 CBP 4 11 12

8 65 f 132 3 3 CBP 6 5 24

9 76 f 24 5 5 CBP 4 9 20

10 33 f 36 6 7 CBP 9 19 16

11 45 f 12 8 7 CBP 5 20 8

12 51 f 24 5 6 CBP 11 22 19

13 73 f 108 6 8 CBP 11 21 26

14 41 f 120 5 6 CBP 13 14 13

15 55 f 252 9 9 CBP 24 24 20

16 73 m 300 5 4 CBP 4 10 5

17 46 m 360 6 7 CBP 16 10 5

18 50 m 60 7 7 CBP 0 5 17

19 59 f 24 4 6 CBP 12 31 23

20 62 m 12 5.5 6 CBP 10 26 22

21 54 m 84 5 7 CBP 16 18 17

22 39 f 144 4 2 CBP 0 12 22

23 66 m 48 4 4 CBP 8 19 10

24 57 m 300 5 6 CBP 22 12 17

25 52 m 300 4 3 CBP 11 22 13

26 47 f 180 4 3.5 CBP 26 19 15

27 24 f 96 7.5 7.5 CBP 5 13 20

28 59 f 180 3 5 CBP 6 4 10

29 82 m 60 5 5 CBP 14 21 8

30 54 m 120 6.5 6 CBP 12 17 22

31 62 f 36 3 4.5 CBP 3 22 11

32 73 m 480 8 8 CBP 4 11 10

33 48 m 64 0.5 4 CBP 24.45 24 22

34 55 f 240 5 6 CBP 8.55 31 11

35 59 f 60 3 4 PNP 13.5 11 15

36 48 f 108 3 4 PHN 15.4 13 28

37 73 f 24 5 5 CBP 13.5 5 11

38 57 m 84 8 7.5 PNP 22.35 15 33

39 57 f 96 6 7 CBP 3.4 20 15

40 77 f 36 5 7.8 PNP 4 10 11

41 77 f 480 3.5 3.5 CBP 8.6 9 19

42 53 f 24 4 5 CBP 16.3 12 24

43 80 m 48 4 4 PHN 11.4 4 18

44 77 f 192 4 6 CWP 12.8 0 23

45 57 f 72 5 6 CWP 5.7 42 17

(continued on next page)
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Table 2 (continued)

ID Age (y) Sex Pain duration (mo) Curr. Pain (VAS) Avg. Pain (VAS) Pain diagnosis MQS BDI PDQ

46 67 f 21 6 8 NP 3.4 8 17

47 77 f 324 6 6 CWP 3.4 16 24

48 61 f 36 4.5 6 NP 3.4 7 21.5

49 65 f 23 8 8 CWP 4 7.5 25

50 65 f 180 5 4 CWP 0 12 22

51 56 f 213 4 7 CWP 8 13 23

52 57 m 264 3 4 JP 13.25 10 11

53 41 f 24 4 5 NP 25.5 12 24

54 69 f 72 8 5 CBP 0 19 13

55 56 f 108 8 8 PNP 17.2 10 25

56 72 f 120 7 8 CWP 15.4 16 20

57 57 m 96 5 7 PNP 10.9 11 28

58 82 f 36 2 5 CBP 4.6 n.a. 10

59 70 f 420 4 6 CWP 14.8 28 22

60 70 f 72 4 6 PHN 10.3 11 22

61 54 f 24 7 5 PHN 5.8 10 10

62 69 f 48 6 5 PHN 8.4 6 16

63 66 f 84 2 3 JP 6 4 13

64 52 f 204 6 6 CWP 10.2 16 21

65 77 f 72 8 8 JP 4.6 n.a. 19

66 42 m 252 7 9 CBP 17.35 33 22

67 51 f 31 6 5 JP 9.1 15 7

68 55 m 7 7 7 JP 6.9 1 13

69 68 f 24 1 4 NP 3.8 0 23

70 71 m 324 4 5 CBP 10.8 5 6

71 24 f 108 6 6 CWP 8 31 21

72 71 m 36 6 6 CBP 5.8 9 14

73 68 f 204 3 4 JP 8.8 7 15

74 86 f 120 3 3 CBP 2 5 6

75 68 f 120 4 5 NP 7.8 5 28

76 45 m 48 1 2 CBP 3.8 10 9

77 18 f 16 4 6 PHN 0 14 20

78 80 f 25 8 7 PHN 23.1 15 20

79 60 m 60 n.a. n.a. PNP 0 n.a. n.a.

80 60 f 54 3.5 5.5 CBP 13.5 22 18

81 57 m 17 6.5 6.5 CBP 24.3 25 24

82 45 m n.a. 7.3 n.a. CWP 0 17 n.a.

83 24 f n.a. 3.2 n.a. CWP 0 17 n.a.

84 49 m n.a. 7.3 n.a. CWP 0 39 n.a.

85 47 f n.a. 2.4 n.a. CWP 0 21 n.a.

86 53 f n.a. 7.5 n.a. CWP 0 22 n.a.

87 41 f n.a. 6.2 n.a. CWP 0 29 n.a.

88 46 m n.a. 7.4 n.a. CWP 0 20 n.a.

89 56 f n.a. 1.8 n.a. CWP 0 22 n.a.

90 55 f n.a. 7.8 n.a. CWP 0 30 n.a.

91 60 f n.a. 6.2 n.a. CWP 0 14 n.a.

(continued on next page)
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We observed strong nonstationary line noise around 45-55 Hz
and therefore excluded the “low gamma” band from frequency
band–specific analyses.

2.4. Electroencephalography analysis—overview

Figure 1 summarizes the analyses of the EEG data. The analyses
included measures of oscillatory brain activity (power) and
connectivity in electrode and source space, respectively. Two
categories of analyses were performed. First, local, ie, spatially
specific, analyses were performed in which a single value is
obtained for every electrode, voxel, or brain region. These
analyses included comparisons of power topographies on
electrode level and comparisons of connectivity and local
network measures topographies (degree and clustering co-
efficient [CC]) on source level. Second, global, ie, spatially holistic,
analyses were performed. These analyses include all analyses
that average across all electrodes, voxels, or brain regions, ie, the
peak frequency, the power spectrum, and all global network
measures (see below). In all global analyses, each participant is
represented by a single scalar value per measure. All analyses
were based on 2-second epochs of resting-state data to balance
robustness, frequency resolution, and nonstationarity of the data.

2.5. Brain activity (power) analysis

Oscillatory brain activity (power) was analyzed in electrode space.
Frequency-specific global power was computed for all epochs
using a Fast Fourier Transformation with Slepian multitapers68

and a frequency smoothing of 1 Hz and then averaged across
epochs and electrodes. Power was first computed for the
complete power spectrum, ie, 1 to 100 Hz, with a frequency
resolution of 0.5 Hz. To remove line noise, a band-stop filter of 45
to 55 Hz was applied before computing power.

The individual dominant peak frequency was determined on
the average of the epochs as the highest local maximum (larger
than its 2 neighboring samples) of the amplitude in the frequency
range of 6 to 14 Hz.5 We also pursued alternative approaches to
determine the peak frequency by (1) computing the center of
gravity of the power spectrum,5,36 (2) computing the dominant
peak frequency using longer time windows of 5 seconds, and by
(3) computing the peak frequency on each single epoch and then
averaging the peaks.26

To compare the spatial distribution of local brain activity
between patients and healthy controls, power was averaged
within each frequency band before comparing frequency-specific
power topographies between groups using cluster-based
permutation tests.

Relative power was calculated by normalizing every power
value (both local and global power) by the respective participant’s
total power. Total power was calculated by summing all power
values across frequencies from 1 to 100 Hz and across all
electrodes.

2.6. Connectivity analysis

Connectivity analyses were performed in source space. For
source analysis, we used linearly constrained minimum variance
beamforming74 to project the band-pass filtered data for each
frequency band and participant from electrode space into source
space. This was done with a combination of the FieldTrip
toolbox51 and custom-written code. Spatial filters for every single
person were computed based on the covariance matrices of the
band-pass filtered data for each frequency band and a lead field
matrix. A 3-dimensional grid with a 1-cm resolution covering the
brain was defined, resulting in a total of 2020 voxels in the brain.
The lead field was constructed for each voxel using a realistically
shaped 3-shell boundary-element volume conduction model
based on the template Montreal Neurological Institute (MNI)
brain. We used a regularization parameter of 5% of the
covariance matrix and chose the dipole orientation of most
variance using singular value decomposition. Finally, the pre-
processed and band-pass filtered EEG data of each subject were
projected through the individual spatial filter to extract the
amplitude time series of neuronal activity of each frequency band
at each voxel.

Connectivity analyses of EEG data were performed using
phase-based and amplitude-based approaches that likely
capture different and complementary neural communication
processes (see Ref. 20 for a review of these approaches and
communication processes). In brief, amplitude-based connec-
tivity is believed to be more closely related to structural
connectivity and putatively regulates activation of brain regions.20

By contrast, phase-based connectivity seems more detached
from structure and more strongly affected by contextual
factors.20 Here, functional connectivity was investigated using
the phase locking value (PLV),40 the debiasedweighted phase lag

Table 2 (continued)

ID Age (y) Sex Pain duration (mo) Curr. Pain (VAS) Avg. Pain (VAS) Pain diagnosis MQS BDI PDQ

92 55 f n.a. 8.6 n.a. CWP 0 25 n.a.

93 48 f n.a. 2.9 n.a. CWP 0 27 n.a.

94 59 m n.a. 6.8 n.a. CWP 0 13 n.a.

95 60 f n.a. 5.0 n.a. CWP 0 17 n.a.

96 58 f n.a. 4.5 n.a. CWP 0 12 n.a.

97 71 f n.a. 8.4 n.a. CWP 0 36 n.a.

98 42 m n.a. 3.7 n.a. CWP 0 12 n.a.

99 38 f n.a. 6.5 n.a. CWP 0 10 n.a.

100 65 f n.a. 8.8 n.a. CWP 0 18 n.a.

101 60 f n.a. 6.0 n.a. CWP 0 21 n.a.

Avg. pain, average pain in the past 4 weeks; BDI, Beck Depression Inventory II, score $185 clinically relevant depression; CBP, chronic back pain; Curr. pain, currently experienced pain; CWP, chronic widespread pain;

f, female; ID, patient identification number; JP, joint pain; m, male; MQS, medication quantification scale; n.a., not available because the respective questionnaire was not completed; NP, neuropathic pain; PDQ, painDETECT,

score $19 5 neuropathic pain component probable; PHN, postherpetic neuralgia; PNP, polyneuropathic pain; VAS, visual analogue scale: 0 5 no pain, 10 5 worst imaginable pain.
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index (dwPLI),78 and the orthogonalized amplitude envelope

correlation (AEC).32 The PLV and dwPLI are based on the phase

of the signals, whereas the AEC is based on the amplitude. The

PLV is well established, highly sensitive, and captures both zero

phase lag and nonzero phase lag connectivity. The PLV is

sensitive to volume conduction effects because volume conduc-

tion can yield spurious synchrony at zero phase lag. Source

space analysis can significantly reduce these volume con-

duction effects on PLV-based connectivity.29 Moreover,

group contrasts of connectivity further reduce the likelihood

of volume conduction effects because these effects are

unlikely to differ between groups. The dwPLI captures

nonzero phase lag connectivity only. The dwPLI is therefore

not susceptible to volume conduction at the cost of reduced

sensitivity because real synchrony at zero phase lag is also

discarded. This similarly applies to connectivity analyses in

electrode space and source space. Because of the explor-

ative character of our study, we mainly report the more

sensitive measure, the PLV.
For the connectivity analyses, the connectivity between every

pair of voxels was computed, resulting in a 2020 3 2020
connectivity matrix, with a single value representing the strength
of connection between 2 voxels over the complete recording
time. All 3 connectivity measures are undirected.

2.7. Graph–theoretical network analysis

By applying graph–theoretical methods to the data, we reduced the
high-dimensional EEG data to a few network measures, character-
izing the organization of the whole brain network. Graph theory
defines networks as collections of nodes and edges connecting the
nodes to each other. We defined the nodes as voxels and the edges
as thresholded functional connectivity between voxels. The connec-
tivity matrix was thresholded to the 10% (5%, 20%) strongest
connections and binarized. A binary connectivity matrix was
computed to reduce the computational load and to facilitate
interpretation23 and comparison with previous connectivity analyses.

We used common graph measures that characterize either
a single node (local analyses) or the complete network (global
analyses).57 We investigated 2 local network measures: the degree
and the local CC. The degree is the number of a node’s edges, ie,
the number of connections to other nodes. The local CC is the
fraction of the node’s neighbors that are also neighbors of each
other. Thus, both localmeasures depict howwell connected a node
is. In particular, the degree indicates how well connected a node is
to all other nodes of the network, and the local CC indicates how
well connected a node is to neighboring nodes. Four global network
measureswere included in the analysis: the global CC (gCC), global
efficiency (gEff), small-worldness (S), and hub disruption index (kd).

1

The gCC is the average of the local CC of all nodes indicating the
prevalence of clustered connectivity around individual nodes.57 In

Figure 1. Analysis pipeline. Electroencephalography data were analyzed with regards to power and connectivity, which quantify neural activity and neural
communication, respectively. Power analyses were performed in electrode space. Analyses of functional connectivity were performed in source space.
Connectivity analyses comprised phase-based (PLV, dwPLI) and amplitude-based (AEC) connectivity measures. Graph–theoretical network analysis was applied
to further characterize functional connectivity. All measures were compared between chronic pain patients and healthy controls. In addition, a purely data-driven
machine learning approachwas adopted, using SVMs. The SVMwas trained on all power and connectivity measures to distinguish between chronic pain patients
and healthy controls. dwPLI, debiased weighted phase lag index; PLV, phase locking value; SVM, support vector machine.
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functional brain networks, it is commonly regarded as a measure of
functional segregation.57 The global efficiency is the inverse of the
average shortest path length. In functional brain networks, it
represents a measure of functional integration.57 Small-worldness
describes the ratio ofCC and global efficiency and compares it with
random networks. In functional brain networks, it can quantify the
balance of functional segregation and integration57 and has been
associated with the overall efficiency of communication in
a network.82 Finally, the hub disruption index compares the degree
of all nodes with those of a control group. Positive values indicate
that strongly connected nodes increase and weakly connected
nodes decrease their number of connections (“the rich get richer
and the poor get poorer”). Conversely, negative values indicate that
strongly connected nodes decrease and weakly connected nodes
increase their number of connections (“the rich get poorer and the
poor get richer”), which means a shift of the network towards
a random network with less internal structure.

2.8. Correlation analysis

Pearson’s r was computed between clinical parameters and
brain measures, which were found to show significant relation-
ships either in previous studies10,17,21,28,39,45,58,59,67,75 or our
own. The global peak frequency, mean global power in the 4
frequency bands, hub disruption index and the mean theta and
gamma PLV connectivity (averaged across voxels of clusters with
significant differences between patients and controls), the PLV
global efficiency in the gamma band, and the dwPLI hub
disruption index in the gamma band were correlated with the
following clinical parameters: current pain intensity, average pain
intensity in the past 4weeks quantified by a visual analogue scale,
pain duration, pain disability quantified by the pain disability
index,18 mental and physical quality of life quantified by the VR-
12,61 depression quantified by the BDI-II,6 and medication as
quantified by the medication quantification scale.30

2.9. Machine learning analysis

The machine learning analysis was conducted using the Statis-
tics and Machine Learning Toolbox in Matlab as well as
custom-written scripts. We implemented a support vector
machine (SVM)13 with a linear kernel, which was trained on all
available features. The features were the peak frequency (one
feature per participant), global power spectrum (199 features
per participant, one feature for each frequency step), local power
(4 3 65 features per participant, 65 electrodes), local strength of
connectivity (3 3 4 3 2020 features per participant, 2020 voxels
in 4 frequency bands and 3 connectivity measures), local degree
(33 43 2020 features per participant, 2020 voxels in 4 frequency
bands and 3 connectivity measures), local CC (3 3 4 3 2020
features per participant, 2020 voxels in 4 frequency bands and
3 connectivity measures), and the global graph measures (3 3
4 3 4 features per participant, 4 global graph measures in
4 frequency bands and 3 connectivity measures). This resulted in
an SVM containing 73,228 features per participant.

To avoid overfitting, we implemented a so-called sequential
forward feature selection. This approach first tests the predictive
value of all single features separately. It next takes the most
predictive feature and adds a second feature and testswhether the
classification improves. This procedure is repeated until no further
improvements of the classification canbeachieved. In our data, the
procedure resulted in a classification thatwas based onaverage on
5.5 features rather than more than 70.000 features.

The performance of the SVM was evaluated using a 10-fold
cross-validation. First, the data set was randomly split into 10
folds. 9/10 folds were used to train the classifier, with a nested
feature selection loop that used another 10-fold cross-validation
within the training data to find the most predictive features. Then,
the remaining 1/10, which were not included in the training and
therefore also not in the feature selection, were classified,
resulting in a certain classification accuracy. This procedure
was then repeated, cycling through all folds, yielding a mean
accuracy over the 10 folds. Because our groups were un-
balanced regarding participant numbers, we randomly picked 84
data sets from the cohort of chronic pain patients for the
classification procedure, repeating this 1000 times. To conclude
whether this result truly exceeds chance level, we repeated the
whole procedure with the same data, but the labels of chronic
pain patients and healthy controls were randomly shuffled.12

Thus, we conducted 2000 analyses: 1000 with 84 randomly
picked patients and the 84 healthy controls, and 1000 with the
same data but randomly shuffled labels between patients and
controls. The 2 resulting distributions of 1000 cross-validation
accuracies each were then statistically compared using a non-
parametric permutation test.46 The sensitivity is defined as the
rate of true positives, ie, correctly classified patients, divided by
the number of total patient classifications. The specificity is
defined as the rate of true negatives, ie, correctly classified
healthy controls, divided by the number of total healthy
classifications.

Apart from the overall performance of the SVM, we also
investigated which features contained the highest predictive
value, ie, which features were most consistently picked by the
SVMs by looking at the number of times a certain feature was
included in the SVM by automatic feature selection.

2.10. Statistical analysis

Statistical analysis was performed using FieldTrip51 and custom-
written Matlab scripts. The significance level for all statistical tests
was set to 0.05 two-tailed. The underlying statistical test for all
permutation tests was an unpaired T-test. We used cluster-
based permutation tests with a cluster threshold of 0.05 to
compare patients with healthy controls for all local analyses and
the global power spectrum analysis.46 We report maximal and
minimal T-values (t_max/min) for all cluster-based permutation
tests that did not find any clusters. The other global measures
were compared using nonparametric permutation tests, permut-
ing between the patient group and healthy control group.46 To
account for multiple comparisons within a specific measure, we
corrected all P-values of tests that were performed on all 4
frequency bands using the Holm–Bonferroni method.33 To test
whether the accuracy of the SVMs was above random chance
level, we computed a nonparametric permutation test on the
accuracy distribution of the SVM trained on the real data against
the accuracy distribution of the SVM trained on the randomly
labeled data. Here, a nonparametric permutation test was used
to decrease the variety of different statistical tests. Pearson’s r

was calculated to find correlations between brain measures and
clinical parameters and tested for statistical significance against
the null hypothesis of no correlation. Resulting P-values were
again corrected for multiple comparisons across the 4 frequency
bands using the Holm–Bonferroni method, if applicable.

2.11. Data availability

All scripts and data are available on request.
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3. Results

3.1. Global measures of brain activity

We first investigated whether chronic pain was associated with
global changes of oscillatory brain activity. We determined the
peak frequency of EEG activity in chronic pain patients and
healthy controls by averaging the power spectra across all
epochs and electrodes and determining themaximal power in the
frequency range of 6 to 14 Hz. Peak frequency was 9.86 1.2 Hz
(mean6SD) in chronic pain patients and 10.06 1.4 Hz in healthy
controls and did not differ significantly between groups (non-
parametric permutation test, P 5 0.20, Fig. 2A). Other common
approaches to determine the peak frequency, by computing the
center of gravity, analyzing longer time windows (5 seconds) for
increased spectral resolution, or computing the peak frequency
on individual epochs and then averaging, did not show
a difference between groups either (nonparametric permutation
tests, P $ 0.14).

Next, we examined whether chronic pain was associated with
global changes of oscillatory brain activity at any frequency
between 1 and 100 Hz. To this end, we compared the global
power spectrum of EEG activity averaged across all electrodes
between chronic pain patients and healthy controls. The results
did not reveal any significant difference between the 2 groups at
any frequency (cluster-based permutation statistics clustered
across frequencies, t_max/min 5 1.7/21.5; Fig. 2B). When
controlling for intersubject differences in overall power by
calculating power relative to the total power across all electrodes
and frequencies for each participant, the results did not show
a significant difference between patients and controls either
(t_max/min 5 1.4/21.7).

Thus, we did not observe global changes of the peak frequency
or the power spectrum of oscillatory brain activity in chronic pain
patients.

3.2. Local measures of brain activity

We further assessed whether chronic pain was associated with
local changes of oscillatory brain activity. We therefore calculated
topographical maps of brain activity for theta (4-8 Hz), alpha (8-13
Hz), beta (14-30 Hz), and gamma (60-100 Hz) frequency bands.
Group comparisons of the topographical maps did not show
significant differences between patients and controls in any
frequency band (cluster-based permutation statistics clustered
across electrodes, t_max/min 5 2.0/21.4, Fig. 2C). When
controlling for intersubject differences in overall power by
calculating relative power, the results did not show a significant
difference between patients and controls either (t_max/min 5
2.5/23.2).

Thus, our findings did not show local changes of oscillatory
brain activity in chronic pain patients in any frequency band.

3.3. Local measures of functional connectivity

Next, we explored whether chronic pain was associated with
changes of functional connectivity, which is a measure of neural
communication. To reduce potential confounds by field spread
and volume conduction effects,60 we performed all connectivity
analyses in source space using 2020 voxels with a size of 13 13
1 cm3. We first investigated whether chronic pain was associated
with local changes of functional connectivity in any brain region or
any frequency band. To this end, we calculated the connectivity
strength for each voxel and frequency band. Connectivity
strength was defined as the average connectivity of a specific
voxel to all other voxels of the brain, which yields one connectivity
strength value for each voxel. This allows for visualizing
connectivity strength in a topographical map and applying the
same statistical approaches used for the analysis of local brain
activity. Analysis of phase-based connectivity (Fig. 3A) showed
that chronic pain patients’ connectivity strength in the theta band
was significantly increased (cluster-based permutation test, P
[corrected/uncorrected] 5 0.045/0.011, Cohen’s d 5 0.40) in
comparison with the control group. The strongest contrast was
found in the supplementary motor area (MNI 5 [210, 10, 70]).
Moreover, we also found that patients showed a significantly
increased connectivity strength in the gamma band (cluster-
based permutation test, P [corrected/uncorrected] 5 0.0072/
0.0018, Cohen’s d 5 0.59), which was maximal in the anterior
prefrontal cortex (MNI 5 [240, 40, 30]). Because in both
frequency bands only a single extended cluster of increased
connectivity was found, the increase likely reflects frontal
connectivity within the clusters rather than connectivity to targets
outside of the clusters. No significant clusters were found in the
alpha and beta bands (alpha: P_min [corrected/uncorrected] 5
1/0.61, t_max 5 2.8; beta: P_min [corrected/uncorrected] 5
0.71/0.18, t_max 5 3.5). Analysis of amplitude-based connec-
tivity did not show any significant differences in connectivity
strength between chronic pain patients and healthy controls in
any brain region or any frequency band. (Fig. 3B, t_max/min 5
0.4/21.2).

To further assess connectivity patterns of chronic pain
patients, we performed graph theory–based network analysis.
We first examined the local properties of brain networks in chronic
pain patients. A basic property of a node is the number of its
connections to other nodes, which is termed the degree.

Figure 2. Global and local measures of brain activity. (A) Violin plot of the
dominant peak frequencies computed on the average across all electrodes of
chronic pain patients (CP, red) and healthy controls (HC, blue). A non-
parametric permutation test showed no significant difference (P 5 0.20)
between the 2 groups. (B) Global power spectra of CP (red) and HC (blue),
averaged across all electrodes and shown for the frequencies 1 to 100 Hz, with
a bandstop filter at 45 to 55 Hz to remove line noise. A cluster-based
permutation test clustered across frequencies did not show any significant
differences (t_max/min 5 1.7/21.5). (C) Scalp topographies of power
differences between CP and HC at theta, alpha, beta, and gamma
frequencies, averaged across frequencies in each band. The colormap shows
the t-values of a cluster-based permutation test. No significant clusters were
found in any frequency band (theta t_max/min5 1.5/20.6, alpha t_max/min5
0.62/21.2, beta t_max/min 5 1.0/21.4, gamma t_max/min 5 2.1/20.7).
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Conceptually, the degree is closely related to the connectivity
strength analyzed in the previous step, the essential difference
being that the edges are thresholded, whereas the connectivity

strength considers all connections. We computed the degree of
every voxel and compared it between patients and controls. No
difference indegreewas found in any frequency band. This applied
similarly to phase-based and amplitude-based measures of
connectivity (PLV: P_min [corrected/uncorrected] 5 0.51/0.13,
t_max 5 4.2; AEC: P_min [corrected/uncorrected] 5 1/0.56,
t_max5 3.0). In addition, we computed the weighted degree, ie,
a thresholded but not binarized connectivity matrix. Cluster-
based permutation tests of the weighted degree showed no
significant differences between patients and controls in any
frequency band either (PLV: P_min [corrected/uncorrected] 5
0.24/0.061, t_max5 4.3; AEC: P_min [corrected/uncorrected]5
1/0.31, t_max 5 3.2). This lack of a difference in (weighted)
degree indicates that the difference in connectivity strength is not
confined to the strongest connections but instead applies to
connections of all strengths.

Another well-established measure that characterizes nodes is
the CC. This measure assesses the number of connections of
neighboring nodes, ie, it measures the local integration of a node
served by short-range connectivity. Comparing the CCs of all
nodes between patients and controls did not show any significant
differences at any frequency band, neither for phase-based nor
amplitude-based connectivity (PLV: P_min [corrected/
uncorrected] 5 0.12/0.030, t_max 5 3.3, AEC: P_min
[corrected/uncorrected] 5 1/0.28, t_max 5 3.8).

Taken together, the analysis of local measures of functional
connectivity showed increases of phase-based connectivity in

frontal and prefrontal cortices at theta and gamma frequencies in
chronic pain patients. The increase in the theta band was of small
effect size (Cohen’s d 5 0.40), whereas the increase in the
gamma band was of medium effect size (Cohen’s d 5 0.59).

3.4. Global measures of functional connectivity

We next investigated whether chronic pain was associated with
changes of global measures of functional connectivity and
therefore computed graph measures that characterize different
and complementary global properties of brain networks. Figure 4
summarizes the results of the global graph measures. First, we
calculated the gCC, which is commonly interpreted as ameasure
of functional segregation in a network. We found no differences in
gCC between chronic pain patients and healthy controls
(Table 3; P_min [corrected/uncorrected] 5 0.088/0.022). Sec-
ond, we assessed the global efficiency, which provides an
account of the ease of long-distance communication and is
commonly interpreted as a measure of functional integration in
a network. After accounting for multiple comparisons, we found
evidence for a decrease of global efficiency in patients in the
gamma frequency band when investigating phase-based con-
nectivity (Table 3; P [corrected/uncorrected] 5 0.013/0.0032).
The effect size of this difference was small (Cohen’s d 5 0.44).
Third, we computed the small-worldness, which is associated
with communication efficiency within a network. We detected no
changes in small-worldness between the 2 groups (Table 3;
P_min [corrected/uncorrected] 5 0.26/0.064). Fourth, we
analyzed the hub disruption index, which has been shown to
differ between chronic pain patients and controls in previous
functional magnetic resonance imaging studies.44,45 It shows
potential shifts of connections that manifest on a global scale. Our
results did not show a difference of the hub disruption index in any
frequency band when comparing chronic pain patients with
healthy controls (Table 3; P_min [corrected/uncorrected] 5
1/0.32).

In summary, global graph measures of functional connectivity
showed a decrease of global efficiency at gamma frequencies in
chronic pain patients. This decrease was of small effect size
(Cohen’s d 5 0.44).

3.5. Additional functional connectivity analyses

First, as muscle artifacts may cause spurious synchrony, we have
analyzed connectivity between EMG signals and EEG signals.
Electromyography signals were recorded from the right neck and
masseter muscles and band-pass filtered at theta (4-8 Hz) and
gamma (60-100 Hz) frequencies. Electroencephalography sig-
nals were band-pass filtered source signals from peak voxels of
clusters where statistically significant group differences in EEG
connectivity were found at theta (MNI coordinates5 [210 10 70])
and gamma (MNI coordinates 5 [240 40 30]) frequencies.
Statistical comparisons of PLV-based EMG-EEG connectivity did
not show any significant differences between chronic pain
patients and healthy controls. In particular, nonparametric
permutation tests comparing EMG-EEG connectivity band-
pass filtered in the theta band (4-8 Hz) between groups yielded
P-values of 0.3 (neck muscles) and 0.08 (masseter). Group
comparisons of EMG-EEG connectivity band-pass filtered in the
gamma band (60-100 Hz) yielded P-values of 0.6 (neck muscles)
and 0.7 (masseter). These findings argue against a contamination
of the observed connectivity differences between chronic pain
patients and healthy controls by muscle artifacts.

Figure 3. Local measures of functional connectivity. Brain topographies of the
comparison of connectivity strength between chronic pain patients (CP) and
healthy controls (HC) in the theta, alpha, beta, and gamma band frequencies,
averaged across frequencies in each band, are shown. Connectivity strength
was calculated as the average connectivity of one voxel to all other voxels of the
brain. The colormaps show the t-values. Significant results are masked, ie, all
voxels but the ones belonging to a significant cluster are grayed out. When no
significant clusters are found, nothing is grayed out to show potential trends.
(A) Phase-based connectivity (phase locking value, PLV). A significant increase
of chronic pain patients’ connectivity strength was observed in the theta band
(P [corrected/uncorrected] 5 0.045/0.011, t_max 5 3.8, Cohen’s d 5 0.40)
and the gamma band (P [corrected/uncorrected] 5 0.0072/0.0018, t_max 5
5.1, Cohen’s d 5 0.59). (B) Amplitude-based connectivity (orthogonalized
amplitude envelope correlation, AEC). No significant differences were found
in any frequency band (theta t_max/min 5 0.4/20.6, alpha t_max/min 5
0.1/20.7, beta t_max/min 5 20.3/21.2, gamma t_max/min 5 0.0/21.1).
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Second, we tested whether changes of functional connectivity
in chronic pain patients can be detected using another common
phase-based connectivity measure (dwPLI).66,78 The dwPLI
differs from the PLV by capturing nonzero phase lag connectivity
only. The dwPLI is therefore not susceptible to volume
conduction, which can yield artificial connectivity effects at the
cost of reduced sensitivity because real synchrony at zero phase
lag is also discarded. The results of the cluster-based permuta-
tion tests did not reveal any local difference in functional
connectivity between patients and controls (P_min [corrected/
uncorrected]5 0.48/0.12, t_min523.0). This indicates that zero
phase lag connectivity plays an important role in the increased
frontal connectivity of patients. Concerning global graph meas-
ures (Table 4), the hub disruption index was significantly lower in
chronic pain patients in the gamma band (P [corrected/
uncorrected] ,0.001/,0.001, Cohen’s d 5 0.63). This differ-
ence together with a lack of a difference in the corresponding

PLV-based analysis indicates that the differencemainly applies to
nonzero phase lag connectivity.

Third, we performed control network analyses by calculating all
graph measures with different edge densities using all 3
connectivity measures. This was done to examine the robustness
of our results, which were based on a threshold of 10% strongest
connections. No significant group differences in local graph
measures were found for any of the connectivity measures.
Regarding global measures, the global efficiency in the gamma
band calculated with the PLV (5% edge density, P [corrected] 5
0.011, Cohen’s d 5 0.44; 20% edge density, P [corrected] 5
0.0080, Cohen’s d 5 0.44) and the hub disruption index in the
gamma band calculated with the dwPLI (5% edge density,
P [corrected] ,0.001, Cohen’s d 5 0.61; 20% edge density,
P [corrected] ,0.001, Cohen’s d 5 0.61) were both significantly
lower in chronic pain patients irrespective of edge density and
therefore showed a consistent and robust effect.

Figure 4. Global graph theoretical measures of functional connectivity. The radar plots show 4 global graph measures in 4 frequency bands based on
(A) phase-based and (B) amplitude-based connectivity measures. The clockwise arrangement follows the following pattern: theta, alpha, beta, and
gamma repeated for the 4 graph measures: global clustering coefficient, global efficiency, small-worldness, and absolute values of the hub disruption
index. The red lines show the chronic pain patients’ (CP) values, whereas the blue lines represent the healthy controls’ (HC) values. Error bars show the
SD. For visualization purposes, the symmetric error bars are only drawn in a single radial direction. Axes run from the center (50) to the outside (51).
For visualization purposes, the small-worldness and hub disruption index were scaled with a factor of 0.2. (A) Phase-based connectivity (phase locking
value, PLV). The global efficiency in the gamma band was significantly decreased in chronic pain patients (nonparametric permutation test,
P [corrected/uncorrected] 5 0.013/0.0032, Cohen’s d 5 0.44). No other measure revealed a significant difference when compared between groups,
see Table 3 for details. (B) Amplitude-based connectivity (orthogonalized amplitude envelope correlation, AEC). No significant difference between
groups was observed, Table 3 for statistical details.

Table 3

Comparisons of global graph measures of functional

connectivity between chronic pain patients and healthy

controls.

PLV AEC

Theta Alpha Beta Gamma Theta Alpha Beta Gamma

gCC 0.084 0.040 0.092 0.022 0.22 0.92 0.29 0.38

gEff 0.052 0.13 0.084 0.0032 0.17 0.78 0.30 0.74

S 0.17 0.24 0.24 0.064 0.30 0.92 0.094 0.24

kd 0.77 0.64 0.94 0.88 0.066 0.32 0.99 0.88

Uncorrected P-values of nonparametric permutation tests comparing global graph measures between

groups. After correction for multiple comparisons using the Holm–Bonferroni method across the 4 frequency

bands to take cross-spectral dependencies into account, only the PLV-based global efficiency in the gamma

band was significantly lower in patients. (P [corrected] 5 0.013, Cohen’s d 5 0.44).

AEC, amplitude envelope correlation; gCC, global clustering coefficient; gEff, global efficiency; kd, hub

disruption index; PLV, phase locking value; S, small-worldness.

Table 4

Comparisons of global graphmeasures between chronic pain

patients and healthy controls—debiased weighted phase lag

index (dwPLI).

dwPLI

Theta Alpha Beta Gamma

gCC 0.088 0.45 0.017 0.47

gEff 0.29 0.051 0.20 0.12

S 0.085 0.30 0.090 0.29

kd 0.048 0.20 0.43 <0.001
Uncorrected P-values of nonparametric permutation tests comparing global graph measures between

groups. After correction for multiple comparisons using the Holm–Bonferroni method across the 4

frequency bands to take cross-spectral dependencies into account, only the dwPLI-based hub

disruption index (kd) in the gamma band was significantly lower in patients (P [corrected] 5 0.00,

Cohen’s d 5 0.63).

gCC, global clustering coefficient; gEff, global efficiency; kd, hub disruption index; S, small-worldness.
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Finally, we tested whether depression plays a critical role in
explaining differences between patients and controls. We
therefore aimed to replicate the significant findings after excluding
patients with a clinically relevant depression (BDI-II score $18, n
5 36). This reanalysis did not qualitatively change any of the
previously significant results. Frontal connectivity was increased
for chronic pain patients without depression in the theta (P
[corrected] 5 0.0080, Cohen’s d 5 0.65) and gamma (P
[corrected] 5 0.0048, Cohen’s d 5 0.68) bands. Similarly, PLV-
based global efficiency (P [corrected]5 0.014, Cohen’s d5 0.42)
and the dwPLI-based hub disruption index (P [corrected]
,0.001, d 5 0.75) were decreased at gamma frequencies in
chronic pain patients without depression.

In summary, the PLV global efficiency and the dwPLI hub
disruption index in the gamma band were consistently changed in
chronic pain patients even when excluding patients with de-
pression. Bothmeasures were decreased in chronic pain patients,
the PLV global efficiency showing a small effect size and the dwPLI
hub disruption index showing a medium effect size.

3.6. Relationship between brain activity/functional
connectivity and clinical parameters

We further investigated the relationships of brain-based activity
and connectivity measures with clinical parameters. To reduce
the number of statistical tests, we restrained our analyses to
selected measures of brain activity and brain connectivity, which
were associated with clinical parameters of chronic pain patients
in previous studies.10,17,21,28,39,45,58,59,67,75 We thus computed

correlations between the global peak frequency, mean global
power in the 4 frequency bands, the hub disruption index, and the
following major clinical parameters: current pain intensity,
average pain intensity in the past 4 weeks, pain duration, pain
disability, mental and physical quality of life, depression, and
medication as quantified by the medication quantification scale.
In addition, we correlated the significant clusters in the theta and
gamma PLV connectivity, the PLV global efficiency in the gamma
band, and the dwPLI hub disruption index with the same clinical
parameters. The results showed no significant correlations (Fig.
5). Thus, we did not observe any relations of measures of brain
activity and functional connectivity with clinical parameters
including medication. This suggests that increases of frontal
connectivity and global network changes in chronic pain patients
do not scale with disease characteristics but rather characterize
the state of chronic pain per se.

3.7. Machine learning approach

Finally, we performed amultivariate machine learning approach. This
approach extends the previous univariate approaches by taking
patterns of brain activity and connectivity into account rather than
singlepiecesof information in isolation.Moreover, it complements the
previous descriptive group analyses by adding a predictive, single-
subject analysis. We used an SVM classifier to test whether patterns
of brain activity and/or connectivity can distinguish between chronic
pain patients and healthy controls. We trained a linear SVM on all
aforementioned measures of brain activity and functional connectiv-
ity, using an automated sequential feature selection algorithm. The

Figure 5.Correlations between clinical/behavioral parameters and brain activity/functional connectivity measures. The cell values show the strength and direction
of the correlations (Pearson’s r) and the color depicts the uncorrected P values. Only correlations showing a trend (P , 0.1) are shown. No correlation was
statistically significant after Holm–Bonferroni correction for multiple comparisons across the 4 frequency bands. AEC, measure is based on the orthogonalized
amplitude envelope correlation; Avg. pain, average pain intensity in the past 4 weeks; BDI, Beck Depression Inventory II; conn, connectivity strength; Curr. pain,
current pain intensity; dwPLI, measure is based on the debiasedweighted phase lag index; gEff, global efficiency; kd, hub disruption index; Pain dur., pain duration;
peak freq, peak frequency; PDI, pain disability index; PLV, measure is based on the phase locking value; VR12-MCS, Veterans’s RANDmental component score;
MQS, medication quantification scale; VR12-PCS, Veterans’s RAND physical component score.
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performance of the SVM was evaluated using a 10-fold cross-
validation. The resulting mean accuracy was 57% 6 4% with
a sensitivity of 60% 6 5% and a specificity of 57% 6 5%. To test
whether this result exceeds chance level, we repeated the whole
procedurewith the samedata but randomly shuffled labels of chronic
pain patients and healthy controls. This resulted in a permutation
distribution with 50%6 5% accuracy. A nonparametric permutation
test of the 2 accuracy distributions (Fig. 6A) confirmed that the real
model was significantly more accurate than random guessing (P ,
0.001). Finally, we were interested to know which features of brain
activity and/or connectivity were most relevant for the classification.
The automatic feature selection on average picked 5.5 features for
the SVMs. We therefore show the 5 most frequently picked features
in Figure 6B. These features were chosenwith a rate of 10% to 15%
each and all 5 are measures of phase-based connectivity (PLV or
dwPLI). Thus, in more than 50% of classifications, phase-based
connectivity in frontal brain areaswas chosenby theSVMs. Themost
relevant features were phase-based connectivity measures in frontal
brain areas at gamma (MNI:240, 30, 40 and230, 50, 10) and theta
(MNI:220, 50, 40) frequencies.

Thus, a multivariate machine learning approach could statis-
tically significantly distinguish between chronic pain patients and
healthy controls based on EEG measures of brain activity and
connectivity. In particular, frontal phase-based connectivity at
theta and gamma frequencies provided important information for
the classification.

4. Discussion

In this study, we systematically exploited the potential of EEG to
determine abnormalities of brain function in chronic pain. Defining

such abnormalities promises to advance the understanding of the
neural basis of chronic pain. Moreover, they might serve as
a brain-based marker and novel treatment target of chronic pain.
To this end, we analyzed resting-state EEG recordings of a large
cohort of patients suffering from chronic pain and compared
them with those of age- and sex-matched healthy controls. The
analyses ranged from simple global measures of brain activity to
sophisticated connectivity and network analyses in source space.
All analyses were data-driven and each analysis was rigorously
corrected for multiple comparisons. To the very best of our
knowledge, this approach represents the most extensive
analysis of EEG data from one of the largest cohorts of chronic
pain patients so far. The results show that global measures of
brain activity and brain connectivity as measured by EEG did
not differ between chronic pain patients and a healthy control
group. However, our approach revealed a stronger phase-
based connectivity at theta and gamma frequencies in the
prefrontal cortex of chronic pain patients. Furthermore, we
observed a global reorganization of brain networks in the
gamma frequency band. Based on patterns of brain activity
and connectivity, a multivariate machine learning approach
could classify chronic pain patients and healthy controls with
an accuracy of 57%.

Previous resting-state EEG studies investigating alterations in
chronic pain patients mainly reported an increase in theta power
together with a slowing of the global peak frequency compared
with healthy controls.7,58,76,79 These findings have been related
to the TCD model of chronic pain.41,42 In this model, abnormal
nociceptive input causes abnormal thalamic bursts at theta
frequencies. These theta oscillations are transmitted to the
cerebral cortex where they result in disinhibition of neighboring
areas, abnormal oscillations at gamma frequencies, and even-
tually in ongoing pain. This model is highly appealing, but
evidence is still sparse. The present completely data-driven
approach in a large cohort of chronic pain patients neither shows
increased theta power nor a shift of global peak frequency and
therefore does not directly support the TCD model of chronic
pain.

The univariate comparisons of brain activity/connectivity between
groups and the multivariate machine learning approach congruently
indicated increased functional connectivity of the prefrontal cortex in
chronic pain patients. These findings are in accordance with
fMRI3,31,72 and EEG47 studies as well as with recent reviews and
theories,2,55,62 which have shown that structural and functional
alterations in the prefrontal cortex play an important role in chronic
pain. A more precise localization of the connectivity increases in the
prefrontal cortex is beyond the spatial resolution of EEG. Hence, it
remains unclear how the present observations relate to themultitude
of functions represented in the prefrontal cortex, which include
motor, cognitive control, emotional, evaluative, and modulatory
functions.16,37However, a role of theprefrontal cortex in chronic pain
points to an important function of emotional-evaluative,motivational,
and decision-making circuits rather than sensory circuits in chronic
pain.2,55

Our findings revealed that chronic pain is associated with
frontal connectivity increases and a global disturbance of brain
network organization at gamma frequencies. Mechanistically,
gamma oscillations have been related to the activity of inhibitory
parvalbumin-positive GABAergic interneurons.9 In an animal
model of chronic pain, these interneurons have been implicated
in the modulation of pyramidal cell firing in the prefrontal cortex
and pain behavior.85 This link between GABAergic inhibition,
gammaoscillations, prefrontal cortex activity, and pain behavior is
in accordance with the present observations. Functionally,

Figure 6. Multivariate machine learning approach to classify chronic pain
patients and healthy controls. (A) Distribution of mean accuracies resulting
from a 10-fold cross-validation. The blue histogram shows the results trained
on the actual data including all features of brain activity and connectivity. The
gray histogram shows a support vector machine (SVM) trained on data with
randomly permuted labels. The SVM trained on the real data shows an
accuracy of 576 4%, significantly higher than the accuracy of the SVM trained
on randomly permuted data, 50 6 5% (P , 0.001). (B) The 5 most predictive
features, ie, those selected most consistently by the SVMs. Specific measures
are color-coded, and the size of the spheres represents how often a specific
feature was selected. The most frequently selected features were phase
locking value (PLV)-based connectivity of the prefrontal cortex (MNI:240, 30,
40 and230, 50, 10) in the gammaband, whichwere selected in 15%and 12%
of SVMs, respectively, and debiased weighted phase lag index (dwPLI) based
clustering coefficient of the prefrontal cortex (MNI: 220, 50, 40) in the theta
band, which was selected in 15% of SVMs. All other features were selected
with a frequency of less than 10%. MNI, Montreal Neurological Institute.
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gamma oscillations likely represent a basic feature of neuronal
signaling and communication,19,25,81 which seems to be
particularly related to the local processing and feedforward
communication of currently important stimuli.19,25,53 These
concepts would be in line with an association of chronic pain
with prefrontal gamma oscillations possibly signaling the emo-
tional, motivational, and evaluative aspects of pain.

In addition, decreases of global efficiency and hub disruption
index in the gamma band indicate that chronic pain is not only
associated with local changes of functional connectivity but also
a global reorganization of brain networks. This is in accordance
with recent fMRI studies that have shown global changes of
functional connectivity at infraslow frequencies below 0.1 Hz.44,45

The present findings complement these studies by showing that
global changes of functional connectivity also occur in the gamma
band at much higher frequencies between 60 and 100 Hz.

The present machine learning approach shows that applying
an SVM classifier to resting-state EEG data allows to distinguish
between chronic pain patients and healthy controls with 57%
accuracy. A recent study that pursued a closely related EEG
approach showed accuracies of .90% for the classification of
chronic pain patients vs healthy controls,76 which were not
achieved in this study. The reasons for this disparity remain
unclear because the available information on the previous
approach does not allow for precise replication. Although the
accuracy of the present study is far from being sufficient for
practical purposes, this result has important implications. First, it
indicates that prefrontal synchrony at theta and gamma
frequencies might play a role in the pathophysiology of chronic
pain. Second, the present approach might represent a step
further towards a much sought-after brain-based marker of
pain.15,71 fMRI recordings have already shown that, in principle, it
is possible to establish such amarker.44,80 The present approach
complements these fMRI approaches by using EEG recordings.
Third, abnormal patterns of EEG activity in chronic pain might
represent potential targets for novel therapeutic strategies such
as non-invasive brain stimulation techniques54 and/or neuro-
feedback approaches.63 In particular, the emerging transcranial
alternating current stimulation technique54 allows for the
frequency-specific modulation of neuronal oscillations and
synchrony and might, thus, represent a promising approach to
modulate pain.

Several limitations of this study need to be pointed out. First,
abnormal oscillations and synchrony are observed in many
neurological diseases including depression69,70 and the speci-
ficity of the present results for chronic pain remains unclear.
However, changes of prefrontal theta and gamma synchrony
were similarly found when patients with depression were
excluded. Moreover, the causal relationship between the
observed changes of brain function and chronic pain remains
unclear. However, a potential lack of specificity and/or causality
does not necessarily limit the clinical usefulness and validity of
a brain-based marker of chronic pain.15 Second, field spread
and/or muscle artifacts can cause spurious synchrony of EEG
signals. A rigorous artifact correction procedure and analysis in
source space are best practice to reduce these effects.
Moreover, the present analyses are based on comparisons
between groups, and systematic differences of volume conduc-
tion between groups are unlikely. Furthermore, a lack of group
differences in amplitude of oscillatory of brain activity argues
against volume conduction effects on the observed group
differences in connectivity. In addition, a lack of connectivity
between EMG and EEG signals argues against a contamination
of the observed differences in EEG connectivity by EMG signals.

Nevertheless, muscle artifacts and volume conduction remain an
inherent and delicate confound of EEG signals. Third, drug effects
cannot be ultimately ruled out. We excluded patients taking
benzodiazepines, which have known effects on EEG signals.4

However, in our representative cohort of chronic pain patients,
most patients took nonopioid analgesics, opioids, and/or
antidepressants. To control for drug effects, we quantified
medication and found no significant correlations between
medication and the observed EEG effects. Therefore, it is unlikely
but not impossible that our effects are solely driven by drug
effects. Fourth, for each measure of brain activity and connec-
tivity, we have corrected for multiple comparisons across
frequency and/or space. However, we have not corrected for
multiple comparisons across the different measures of brain
activity and brain connectivity. This has been done to decrease
the risk of false-negative findings. However, it increases the risk of
false-positive findings so that the current findings need replication
and reproduction.

In conclusion, our data-driven, systematic, and extensive
analysis of EEG data from a large cohort of chronic pain patients
shows that local and global measures of brain activity did not
differ between chronic pain patients and a healthy control group.
These negative findings might help to clarify inconsistencies in
previous studies and guide future research. Moreover, our study
reveals increased prefrontal synchrony together with global
network reorganization at gamma frequencies in chronic pain,
which allows for differentiating chronic pain patients from healthy
controls. These findings advance the understanding of the brain
mechanisms of chronic pain. Beyond, the present observations
might represent a step further towards a safe, low-cost, broadly
available, and potentially mobile brain-based marker of pain.
However, substantial challenges concerning the possibility of
false-positive findings and the accuracy, specificity, and validity of
such a marker remain to be overcome. Finally, the findings might
open new therapeutic perspectives by revealing a potential target
for novel noninvasive brain stimulation and neurofeedback
strategies.
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