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Abstract

Background: Multivariate approaches have been successfully applied to genome wide association studies. Recently,
a Partial Least Squares (PLS) based approach was introduced for mapping yeast genotype-phenotype relations, where
background information such as gene function classification, gene dispensability, recent or ancient gene copy
number variations and the presence of premature stop codons or frameshift mutations in reading frames, were used
post hoc to explain selected genes. One of the latest advancement in PLS named L-Partial Least Squares (L-PLS), where
‘L’ presents the used data structure, enables the use of background information at the modeling level. Here, a
modification of L-PLS with variable importance on projection (VIP) was implemented using a stepwise regularized
procedure for gene and background information selection. Results were compared to PLS-based procedures, where
no background information was used.

Results: Applying the proposed methodology to yeast Saccharomyces cerevisiae data, we found the relationship
between genotype-phenotype to have improved understandability. Phenotypic variations were explained by the
variations of relatively stable genes and stable background variations. The suggested procedure provides an
automatic way for genotype-phenotype mapping. The selected phenotype influencing genes were evolving 29%
faster than non-influential genes, and the current results are supported by a recently conducted study. Further power
analysis on simulated data verified that the proposed methodology selects relevant variables.

Conclusions: A modification of L-PLS with VIP in a stepwise regularized elimination procedure can improve the
understandability and stability of selected genes and background information. The approach is recommended for
genome wide association studies where background information is available.

Background
The explosive growth of data describing the natural
genetic and phenotypic variation within species, and
the corresponding emergence of populations genomic
[1] and population phenomics [2] as nascent fields of
research demands new or improved methods for explor-
ing genotype-phenotype relationships. In a recent proof of
concept study, we introduced multivariate analysis in the
form of Soft-Thresholding Partial Least Squares (ST-PLS)
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[3] for the mapping of genotype and phenotype inter-
actions in the yeast, Saccharomyces cerevisiae [4], which
has been at the center point for this development. Mul-
tivariate approaches have the potential to provide supe-
rior statistical power, increased interpretability of results
and a deeper functional understanding of the genotype-
phenotype landscape as it pays attention to relationships
between multiple genotypes and multiple phenotypes,
without producing an excessive number of hypotheses
to test. Hence, it could provide decisive advantages over
classical univariate analysis [5-9]. A caveat is the sensi-
tivity of multivariate approaches to parameter estimation
and this remains a serious challenge, partially because
variables tend to show extensive collinearity, which can
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destroy the asymptotic consistency of the PLS estima-
tors for univariate responses [10] and partially because
signal-to-noise ratios are often low. A possible solution
to the challenge of estimating parameters correctly is to
guide these estimations by including background infor-
mation on variable relationships at the modeling stage
[11]. For genotype-phenotype mapping, such information
could encompass the location of genes in the genome, the
degree of shared regulatory elements, functional related-
ness in terms of biochemical activity, molecular process
or subcellular localization of gene products or physical
interactions between gene-products. Also, for biological
interpretation of the results, focus in relational studies is
getting shifted from the selection of genes towards the
selection of groups of genes listed as background infor-
mation [12,13], but the selection of groups of genes can
be missed if only few of the corresponding genes are sig-
nificant [14]; hence a powerful structure extraction tool is
required.

Indeed, the analytical implications of including back-
ground information to optimize parameter estimation in
multivariate analysis, in the context of a three block Par-
tial Least Squares based method named L-PLS regression,
has recently been considered [15,16]. The mapping of
genotype-phenotype relations through L-PLS requires a
variable selection step. We recently [17] introduced a
backward stepwise elimination procedure in PLS for iden-
tifying codon variations discriminating different bacterial
taxa, where significant number of variables were elimi-
nated at the cost of a marginal decrease in model accuracy.
This approach was found to be superior to other multi-
variate procedures with respect to the understandability
of the model and the consistency of the estimates. Here,
we investigate whether inclusion of background informa-
tion in the parameter estimation step of a multivariate
analysis can increase the stability and understandabil-
ity when applied in the context of mapping genotype-
phenotype relationships in large data sets. Applying L-PLS
and a stepwise backward elimination procedure, we find
the inclusion of background information to enhance both
stability and understandability in an automatic way and
thus to constitute a promising way forward.

Methods
Approach
Data
Simulated data To demonstrate the efficacy of the pro-
posed procedure for variable selection when background
information on the variables is available, simulation data
from the following known model, also used by [15], is con-
sidered. E(y) = Xβ X(N×K), having K x vector follow the
multivariate normal distribution with mean-vector μ =
0 and covariance-matrix �x. Response vector y(N×1)was

assumed to follow a standard normal distribution, and
joint distribution of h = [

x� ỹ
]� is

h =
[

x
ỹ

]
∼ MVN

([
0
0

]
,
[

�x σ xỹ
σ�

xỹ 1

])
= MVN(0, �)

(1)

where σ xỹ is the covariances vector between x and ỹ.
By imposing a block diagonal structure on �x groups of
correlated x-variables were constructed by L blocks:

�x =

⎡
⎢⎢⎢⎢⎣

�k1 0 · · 0
0 �k2 · · 0
· · ·
· · ·
0 0 · · �kL

⎤
⎥⎥⎥⎥⎦ (2)

Suppose kl is the number of variables in group l
(l = 1, . . . , L). A total of L = 14 groups of vari-
ables were simulated with group sizes [ k1, . . . , k14] =
[10, 10, 10, 100, 10, 10, 10, 10, 10, 10, 10, 100, 100, 100], and
uniform correlation structures in each �kl were assumed
internally with correlations equal to [ ρ1, . . . , ρ14] =
[ 0.5, 0.5, 0.5, 0.2, 0. . . . , 0], respectively. As the defined cor-
relation matrix (2) indicates variables in different groups
that are uncorrelated, we also set the variance of each
variable equal to 1, which makes the �x a correla-
tion matrix. We assume all variables in each group
were equally relevant for prediction, and the covari-
ances used in the simulation were [ σxỹ1, · · · , σxỹ14] =
[ 0.35, −0.3, 0.25, 0.2, 0, . . . , 0], and simulated response
vector was transformed to a binary variable, coded as −1
and 1. Only the four first groups of variables were rele-
vant for classification due to their non-zero values of the
covariance with y. Since variables are grouped, variable
grouping information was used as background informa-
tion, and Z was coded as given in [15].

Real data The data set is identical to that used in a
recently conducted study [4], which did not utilize back-
ground information for parameter estimation. The data
set contains 36 Saccharomyces cerevisiae strains, includ-
ing the reference strain S288C [1,18]. Each strain has
16 chromosomes and a mitochondrial genome. In total
5791 protein-coding sequences, excluding dubious genes,
were used as reference sequences. Each genome pro-
tein coding gene element, was converted into a vector of
numeric features by sequence alignment of that element
in a particular strain to the corresponding sequence ele-
ment in the reference genome S288C. To achieve this,
all reference sequences were first aligned against them-
selves, and for each reference sequence, the maximum
alignment score, representing some coding gene of the
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S288C genome, was obtained. Then each individual S.
cerevisiae genome was BLASTed against this reference
set, using tblastx (http://blast.ncbi.nlm.nih.gov/Blast.cgi?
CMD=Web&PAGE TYPE=BlastHome). Hence for each
genome sequence a maximum bit-score was obtained,
providing a measure of to what extent the reference
sequence was found in each individual genome. Since
this score depends heavily on the length of the aligned
sequences, numeric features were finally translated by
Jukes-Cantor evolutionary distances. Numeric features
were then assembled into a matrix X(N×K) with N = 36
rows and K = 5791 columns, one column for each ref-
erence sequence element. Data for each phenotype was
assembled into a column vector y of length N = 36, where
the phenotype data were obtained by micro-cultivation
of yeast strains in 10 different environments [2,19]. High
density growth curves were parameterized [20] into mea-
sures of the reproductive rate (doubling time, Rate) and
the reproductive efficiency (gain in population density
given the available resources, Efficiency) and this results
in 20 phenotype responses.

The genome of the yeast reference strain S288C is
exceptionally richly annotated on a functional level,
reflected in that data on functional relatedness in terms
of shared Gene Ontology (GO) annotations [21] exists
for a vast majority of its gene products. In its most
extreme form, this annotation denotes genes as essential
or not essential for viability. Furthermore, information
on strain specific genetic variations with a potentially
large effect on phenotypes has recently been extracted
from population genomic data [1,2]. This information
takes the form of the presence or absence of specific gene
amplifications, reflecting potentially phenotype changing
gain-of-function mutations, and the presence or absence
of premature stop codons and frameshifts, reflecting
likely loss-of-function mutations with potential negative
effect on phenotypes. These information elements, taken
together, serve as background information classifying
genotypes in the study. Background information was
assembled into a matrix Z(L×K) with K = 5791 columns
and L = 51 rows, where each column represents a gene
and each row represents a GO term (45) or a specific
sequence variation (6). Each entry in Z is denoted ‘1’ if
the corresponding gene is associated with the respective
GO term and denoted ‘0’ if not.

Genotype-phenotype relations The data set consists of
the column vector y(N×1) representing each phenotype
one at a time, the matrix X(N×K) of genotypes based
on Jukes-Cantor evolutionary distances and the matrix
Z(L×K) of background information on genes containing
annotated levels. To mine for relations between pheno-
types and genotypes, we implemented an L-PLS approach

[15] utilizing the background information in the modeling
stage. We employed a PLS based algorithm for parsimo-
nious variable selection [17] which is implemented here
for multivariate feature selection in two stages, first for
selection of genotype variables X and then for the selec-
tion of background information variables Z. In essence, we
are looking for combinations of columns of X and rows of
Z capable of explaining the variations in each y, (see the
Algorithm section for details).

Algorithm
L-PLS supervised learning
The association between each phenotype vector y and
several genotype vectors X, where background informa-
tion Z on X is also given, was assumed to be explained
by the linear model E(y)= Xβ where β are the K × 1
vector of regression coefficients. Least square fitting was
no option because the number of samples (N = 36) was
much smaller than the number of features (K = 5791).
PLS resolves this by searching for a set of components,
‘latent vectors’ , that performs a simultaneous decomposi-
tion of X and y with the constraint that these components
explain as much as possible of the covariance between X
and y. A large number of components indicates a com-
plex relation is modeled and vice versa. However, in the
standard implementation, it does not utilize background
information Z in modeling. L-Partial Least Squares (L-
PLS) [15,22] regression provides a way to include back-
ground information in the modeling, which is also similar
to the bifocal-PLS of Eriksson et al [23]. The algorithm
utilizes the NIPALS algorithm for the extraction of latent
vectors, where relevancy of background information Z in
modeling the (y, X) relation is presented by α, as explained
below. A large value of α indicates that Z is relevant for
explaining genotype-phenotype relations. The algorithm
starts by centering as

y0 = y − 1nȳ�

X00 = X − 1nx̄�
K − x̄N 1�

K + ¯̄x1N 1�
K

Z0 = Z − z̄1�
K ,

in the following manner where ȳ is the column mean vec-
tor of y, x̄K , x̄N and ¯̄x are the column-, row- and overall
means of X, respectively, and z̄ the row means of Z. The
sequential L-PLS algorithm as given in [15]:

Choose a value of α (0 ≤ α ≤ 1)
For a = 1, . . . , A components

1) Find latent v-vectors va
x2 (K × 1) and va

z1 (K × 1) by
the NIPALS algorithm as shown in Figure 1, cycling
through ya−1, Xa−1,a−1 and Za−1.

http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastHome
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastHome
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Figure 1 L-PLS algorithm. Steps for extracting the first set of v-vectors for the L-PLS algorithm are visualized by arrows. Deflated data matrices
replace the initially centered matrices at subsequent steps of v-vector extraction. The mean-vectors used for data centering are also displayed.

For chosen α set wx as a linear combination of va
z1

and va
x2 and normalize to length equal to 1.

wa
x = αva

z1 + (1 − α)va
x2

wa
x ← wa

x/||wa
x ||

2) Construct score-vectors for X and Z, as:

ta
x = Xa−1,a−1wa

x
ta

z = wa
x

Let Tx = (t1
x, . . . , ta

x) and Tz = (t1
z , . . . , ta

z ) (= W x).
That is, the weights for X are used as scores for Z.

3) Compute Y –, X– and Z– loadings

pa
y = y�

a−1ta
x(ta

x
�ta

x)
−1

pa
x = X�

a−1,a−1ta
x(ta

x
�ta

x)
−1

pa
z = Za−1ta

z (ta
z
�ta

z )
−1

Let Py = (p1
y , . . . , pa

y ), Px = (p1
x, . . . , pa

x) and
Pz = (p1

z , . . . , pa
z ).

4) Deflate the data matrices to form residual matrices

ya = ya−1 − ta
xpa

y
�

Xa,a = Xa−1,a−1 − ta
xpa

x
�

Za = Za−1 − pa
z ta

z
�

end

In step 1) above α can be determined through cross-
validation and the data driven choice of α indicates the
relevancy of background information in modeling the
genotype-phenotype relation. A large value of α indicates
that background information, Z, is highly relevant for
explaining genotype-phenotype relations.

In essence, the L-PLS estimate of the regression coeffi-
cients for the above given model based on A components
can be derived from the weights and loadings by:

β̂ = W x(P�
x W x)

−1Py

Two stage variable elimination
Selection of variables based on Variables Importance on
Projection (VIP) [24] is an accepted approach in PLS. We
[17] recently suggested a stepwise estimation algorithm
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for parsimonious variable selection, where a consistency
based variable selection procedure is adopted, and data
has been split randomly in a predefined number of sub-
sets (test and training). For each split, a stepwise proce-
dure is adopted to select the variables. Stable variables
that are being selected by stepwise elimination from all
split of data are selected finally. This algorithm was also
implemented here, but multivariate feature selection was
performed in two distinct stages, first for selection of
genotype variables from X and then for the selection of
background information variables from Z. In both cases,
‘the worst’ variables were iteratively eliminated using a
greedy algorithm. The algorithm required the ranking of
column-variables of X and row-variables of Z. For this
VIPXk and VIPZl are defined, measuring the importance
of the column-variable k of X and the row-variable l of Z
respectively.

VIPXk =
√√√√K

A∑
a=1

[(
pa

y
�pa

y

) (
ta
xk

/‖ta
x‖

)2
]

/

A∑
a=1

(
pa

y
�pa

y

)

and

VIPZl =
√√√√L

A∑
a=1

[(
pa

y
�pa

y

) (
ta
zl
/‖ta

z ‖
)2

]
/

A∑
a=1

(
pa

y
�pa

y

)

The VIP weights the contribution of each variable
according to the variance explained by each PLS compo-
nent, and presents a combined effect of all components.
Variable k can be eliminated if VIPXk < u and simi-
larly variable l can be eliminated if VIPZl < u for some
user-defined threshold u ∈[ 0, ∞).

The stepwise elimination algorithm can be sketched as
follows: Let U0 = X.

1) For iteration g run y and Ug through cross validated
L-PLS. The matrix Ug has Kg columns, and we get
the same number of criterion values, sorted in
ascending order as VIPX(1)

, . . . , VIPX(Kg )
.

2) There are M criterion values below the cutoff u. If
M = 0, terminate the elimination here.

3) Else, let S = 	fM
 for some fraction f ∈ 〈0, 1].
Eliminate the variables corresponding to the S most
extreme criterion values.

4) If there are still more than one variable left, let Ug+1
contain these variables, and return to 1).

The fraction f determines the ‘step length’ of the elimi-
nation algorithm, where an f close to 0 will only eliminate
a few variables in every iteration. Elimination of variable
in X means an automatic elimination of the correspond-
ing column variable in Z as well, because X and Z must
have the same columns. Once the first stage elimination is
completed, the above procedure can be repeated by con-
sidering U0 = Z and VIPZk for sorting row-variables of
Z for second stage elimination. An overview of variable
elimination in both stages is given in Figure 2. The fraction
f and threshold u can be obtained through cross valida-
tion. The fractions u can be obtained separately for each
stage, but experiments revealed no big difference if we use
the same value in both stages.

From each iteration g of the elimination, we get a cross
validated root mean square error (RMSE) from training
data, here denoted by Eg . For both stages of the elimi-
nation, the number of influencing variables decreases at
each iteration, and Eg will often decrease until some opti-
mum is achieved, and then increase again as we keep
on eliminating. A potentially much simpler model can be

Figure 2 An overview of variable elimination in two stages. An overview of the variable elimination in two stages in L-PLS. Stage 1 eliminates
variables in X , using the VIPX criterion. After stage 1, we have reduced the number of columns (genes) in both X and Z. In stage 2, we eliminate
rows of Z, using the criterion VIPZ in a similar fashion.
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achieved by a relatively small increase in RMSE [17]. This
means we need a rejection level d, where for each itera-
tion beyond optimum root mean square error (RMSE ) E∗
we can compute the t-test p-value between the optimum
model response and the selected model response, to give
a perspective on the trade-of between understandability
of the model and the RMSE. Hence with a non-significant
deviation from the optimum RMSE, a significant reduc-
tion in variables, and hence better understandability, can
be achieved; for details, see [17].

Choice of variable selection method for comparison
Two variable selection methods, where background infor-
mation was not used in modeling, were compared with
our suggested procedure, where background information
was used in the modeling step. Hence,in total three mod-
els were considered, one was our suggested L-PLS with
2-stage stepwise elimination of genes and background
information (M1), the second was ordinary PLS with step-
wise elimination [17] of genes only (M2), and the third
was a Soft-Thresholding PLS (ST-PLS) [3] (M3). We have
recently used the latter approach for mapping of genotype
to phenotype information [4].

All methods were implemented in the R computing
environment www.r-project.org/.

The split of data into test and training and parameter tuning
In the proposed algorithm it is possible to eliminate
non-influential variables based on some threshold on u

and also based on the statistical significance of d. Fix-
ing the threshold u a priori could affect the performance
of the algorithm. Thus, we performed variable elimina-
tion exclusively based on d, obtaining an optimum when
using an upper limit of u = 10. We also considered
three step lengths (f = (0.1, 0.5, 1)). In the first regu-
larization step, we tried different rejection levels (d =
(0.80, 0.90, 0.95, 0.99); hence, in each iteration, variable
elimination was based on statistical significance. Model
performance was computed in the L-PLS fitting and reg-
ularized elimination fitting stages. For accurate model
estimation and to avoid over fitting, the data was split at
three levels. Figure 3 gives a graphical overview of the
procedure. At level 1, we split the data into a test set
containing 25% of the genomes and a training set contain-
ing the remaining 75%. This split was repeated 10 times,
each time sampling the test set at random, i.e. the 10 test
and training sets were partially overlapping. These splits
were used for model evaluation, where in each of the 10
instances, selected variables were used for classifying the
level 1 test set, and RMSE was computed. In the regu-
larized elimination fitting, there are two levels of cross-
validation, as indicated by the right section of Figure 3.
First, a 10-fold cross-validation was used to optimize the
fraction f and the rejection level d in the elimination part
of our algorithm. Second, at the final stage, leave-one-
out cross-validation was used to estimate all parameters
in the L-PLS method. These two procedures together
corresponds to a comprehensive ‘cross-model validation’
[17,25]. Note that the above split of the data was done

Level 1
(Estimation of overall performance)

Stepwise   
Elimination

Level 2
(Estimationof f andd )

Test(Y, X)

Train(Y, X)

Test(Y, X)

Train(Y, X)
CV-LPLS

Test(Y, X)

Train(Y, X)

Level 3
(Estimation of α and no. of components)

Figure 3 An overview of the testing/training. An overview of the testing/training procedure used in this study. The rectangles illustrate the
predictor matrix. At level 1 we split the data into a test set and a training set (25/75). This was repeated 10 times. Inside our suggested method, the
stepwise elimination, there are two levels of cross-validation. First a 10-fold cross-validation was used to optimize selection parameters f and d.
Second, a leave-one-out cross-validation was used to optimize the L-PLS parameters, such as α and the number of components.
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on y and X, while the full Z was used. Also note that
this approach should not be used if dealing with very
small sample sizes. In this situation, it is preferable to use
predefined parameters.

Results and discussion
Simulated data
For the simulation data, a power analysis was conducted
and results are presented in Figure 4. Here, the power of
selecting the correct variables as function of the infor-
mation content of Z in L-PLS α is presented. The power
analysis shows that as the information content of Z in
L-PLS i.e. α increases the ability to select the relevant
variables also increases.

Real data
To study the impact of background information on
explanatory variables for genotype-phenotype relations in
yeast, a 2-stage stepwise backward elimination procedure
in L-PLS was used. We modelled each phenotype sepa-
rately. The algorithm was illustrated using Melibiose Rate
as an example. However, the performance was very simi-
lar also for other responses (phenotypes), as presented in
Table 1. In total, we fitted 20 models, one for each phe-
notype. First, a genotype predictor matrix was derived

by blasting the genes of each genome to a S. cerevisiae
reference genome, and the best hit scores were used as
numerical inputs to a genotype matrix [4]. Gene ontology
terms, reflecting functional relatedness with regards to the
gene product participation in similar molecular processes,
together with data on gene dispensability (essential/not
essential) and data on the number of gene paralogs present
in founder genome, were used as background informa-
tion. This data essentially reflects gene relationships in
the S288C reference genome; relationships which may
or may not be conserved in the species as a whole. We
also included population genomic data reflecting the pres-
ence or absence, in each specific strain, of genetic varia-
tions with a potentially large impact on phenotypes. Gene
copy number variations reflect potential gain-of-function
mutations in particular lineages, whereas frameshift and
premature stop codon mutations reflect potential loss-of-
function mutations in respective lineages. The proposed
model was fitted to each of the 20 phenotypes, and results
are summarized in Table 1.

Figure 5 exemplifies the progression of the 2-stage
variable elimination for the phenotype Melibiose 2%
Rate, representing the rate of growth of the set of yeast
strains when supplied with carbon exclusively in the form
of the melibiose. The number of genotype variables, X,
and background information, Z, remaining after each
iteration is given in the figure. In the first stage, variable
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Figure 4 Power analysis based on simulated data. Power of selecting the correct variables as function distribution of degree of information
content of Z in L-PLS α is presented. α = 0 indicates the no background information is used in modeling, while higher value of α indicates the
higher influence of background variables in modeling.
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Table 1 An overview of model parameters and complexity

Phenotype f d α No. of RMSE No. of selected No. of selected
components genes background variables

Melibiose 2% Rate 0.1 0.99 0.73 5 0.61 30 15

Melibiose 2% Efficiency 0.1 0.99 0.65 4 0.60 30 14

Cupper chloride 0.375mM Rate 0.5 0.99 0.78 6 0.57 31 15

Cupper chloride 0.375mM Efficiency 0.1 0.90 0.51 9 0.52 30 14

NaCl 0.85M Rate 0.1 0.95 0.62 1 0.61 31 14

NaCl 1.25M Rate 0.5 0.95 0.85 2 0.80 30 15

NaCl 0.85M Efficiency 0.1 0.95 0.77 4 0.71 30 15

NaCl 1.25M Efficiency 0.1 0.99 0.67 5 0.60 30 15

Maltose 2% Rate 0.1 0.99 0.63 5 0.60 31 15

Maltose 2% Efficiency 0.1 0.90 0.54 7 0.50 30 15

Galactose 2% Rate 0.1 0.95 0.75 7 0.50 30 16

Galactose 2% Efficiency 0.1 0.95 0.56 7 0.61 30 15

Heat 37oC Rate 0.1 0.99 0.65 6 0.58 30 15

Heat 40oC Rate 0.1 0.99 0.78 6 0.82 30 15

Heat 37oC Efficiency 0.1 0.99 0.51 1 0.59 31 14

Heat 40oC Efficiency 0.5 0.90 0.62 8 0.67 30 15

Sodium arsenite oxide 3.5mM Rate 0.1 0.90 0.59 8 0.54 30 15

Sodium arsenite oxide 5mM Rate 0.1 0.99 0.66 5 0.62 30 15

Sodium arsenite oxide 3.5mM Efficiency 0.1 0.99 0.73 3 0.55 31 14

Sodium arsenite oxide 5mM Efficiency 0.1 0.90 0.51 2 0.63 31 14

The suggested approach select the model parameters at each level of 10-fold cross validation, hence the measure of central tendency is used to summaries the
results. For each fitted model mode of selected step length (f), mode of rejection level (d), mode of model complexity (α and no. of components), mean of RMSE on
test data, number of selected genes and number of selected background variables are listed.
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Figure 5 An example of selection of variables in both stages. Number of X- and Z- variables remaining in the model, after each iteration, for the
response ‘Melibiose 2% Rate’. X-variables are displayed with red curve and are scaled on vertical left axis, while Z-variables are displayed with blue
curve and are scaled on vertical right axis, both stages are shown on x-axis separately.
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reduction with respect to X, was carried out in eight iter-
ations. In the second stage, the remaining three iterations
eliminates the variables in Z. We refer to this procedure,
including both gene and background information, in an
L-PLS approach, as Method 1 (M1). We compared M1
to a similar PLS approach, M2, which implements step-
wise variable elimination on genes, with no background
information included, and M3 i.e. ST-PLS, again on
genes exclusively with no background information uti-
lized. Hence, M1 utilizes background information in the
modeling while M2 and M3 do not. In Figure 6, the distri-
bution of the information content of Z, indicating to what
extent Z is relevant for explaining genotype-phenotype
relations, in M1 is presented, together with a comparison
of the complexity of the models, the number of selected
variables and the root mean square error on training
and test data. For each split of the data, the information
content of Z in M1, the number of used components and
the number of X-variables were obtained. In the upper
left panel, the degree of influence of Z matrix in mapping
genotype-phenotype relations is presented. The degree
of influence, α, range from 0 to 1 where a higher value
indicates a high influence of background information in
genotype-phenotype mapping. With an average α = 0.7,

this indicates that the background information, in general,
have a very considerable impact on genotype-phenotype
mapping. In the top right panel, we see that the genotype-
phenotype mapping, when applied using the stepwise
elimination procedure adopted in M1 and M2, requires
a lower number of PLS components than M3 to explain
the phenotype pattern. Hence, M1 and M2 constitute
less complex models than M3, because M3 ends with
a higher number of components and a higher number
of chosen variables. The lower left panel indicates that
M1 selects a significantly lower number of genes for the
genotype-phenotype mapping than M2 and M3. This
means that noise, in terms of genes that do not actually
contribute to explaining the phenotype, is substantially
reduced when background information is included in the
modeling step. The lower center panel shows that for the
training data there was no significant difference in RMSE
between M1 and M2, but both were lower than the RMSE
for M3 (p < 0.1). When applied on test data, all methods
resulted in acceptable and similar RMSE, indicating that
overall methods perform equally well (Figure 6e), lower
right panel). However, M1 could achieve this performance
using a much smaller number of variables. The number
of variables required is a measure of the understandability
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Figure 6 The distribution of degree of informativeness of Z in L-PLS and comparison of complexity of the models, number of variables
and RMSE. Results for the phenotype ‘Melibiose 2% Rate’ are presented for three models, M1 (2-stage stepwise variable elimination in L-PLS), M2
(stepwise variable elimination in PLS) and M3 (St-PLS). In the upper left panel (a), the information content of the background information (Z) in M1
is presented. Comparison of number of used PLS components in the upper right panel (b), the number of selected variables in the lower left panel
(c), RMSE on training data in the lower center panel (d), RMSE on test data in the lower right panel (e) for each model is presented.
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of the model; hence, we conclude that M1, including
background information in the PLS modeling, should
allow for easier and more straight-forward interpretation
of results.

A key requirement of any multivariate analysis is the
stability and selectivity of the results. To evaluate model
stability and selectivity, we [17] recently introduced a sim-
ple selectivity score: if a variable is selected as one out of
m variables, it will get a score of 1/m. Repeating the selec-
tion for each split of the data, we simply add up the scores
for each variable. Thus, a variable having a large selectiv-
ity score tends to be repeatedly selected as one among a
few variables. In Figure 7, the selectivity score is sorted in
descending order and is presented for X-variables (genes)
in the upper left panel for M1, the upper right panel
for M2 and the lower left panel for M3. The selectivity
score indicating the stability of the selected Z-variables
(GO- terms) obtained from M1 is presented in the lower
left panel. M1 indeed selected many genes in a stable
way, which is a fundamental requirement for any further
analysis. A selectivity score above 0.2 for X-variables and
above 0.06 for Z-variables is significantly larger than sim-
ilar scores obtained by repeated fitting of models using
random permutation on the phenotypes. Since traits are
controlled by subsets of distinct genes [4], and some
genes in the genome are of overall importance for han-
dling variations in the external environment and affect a
disproportionate number of phenotypes [26], we expect

any method extracting relevant biological information
to have a higher selectivity score than any random selec-
tion of genes. This was indeed the case for our proposed
method M1. In fact, using the two-step L-PLS procedure,
only 30 genes were selected from M1, corresponding
to substantially higher selectivity than M2 and M3. Not
surprisingly, these genes OLI1, YEH1, ATP8, PSY3, IFM1,
SUV3, CAR1, ERG6, ILS1, YDR374C, SHO1, YDR476C,
GLO3, APL5, RIX1, GPR1, VAR1, TTI2, YLR410WB,
YDL211C, YDL218W, EHD3, MRPL28, RPT6, COX17,
STE11, SUR4, YAP1, MRPL39, YNL320W, were involved
in cellular functions directly relating to variations in the
environment: transport, stress response, response to
chemical stimulus and metabolism. They also tended to
be affected by both strong loss-of-function (premature
stop codons, frameshifts) and gain-of-function (copy
number variation) mutations, as presented in Table 2. We
found 72.% genes overlap between M1 and M2 and 67.9%
genes overlap between M1 and M3 for Melibiose 2% Rate.
The selection of background variables can be missed
if only a few of the corresponding genes are significant
[14], but the powerful structure of L-PLS, coupled with
2-stage stepwise elimination procedure, yields a stable list
of genes and background information variables, which
maps the genotype-phenotype relation. Finally, we have
listed the mapped background information and genes
for all 20 phenotypes in Table 1 and Additional file 1:
Table S1 respectively.
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Figure 7 Selectivity score. The selectivity score is sorted in descending order and is presented here for X-variables (genes) for M1, M2 and M3. Only
the first 50 values are shown from X while all 51 values are shown from Z.
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Table 2 Selectivity score based selection of GO terms and gene variations

Phenotypes Influential gene variations and GO terms

Melibiose 2% Rate Paralog, frame shift variations, transport, stop codon variations, cellular protein catabolic process, transpo-
sition, copy number variations, response to stress, DNA metabolic process, mitochondrion organization,
Essential.gene, RNA metabolic process, cellular amino acid and derivative metabolic process, response to
chemical stimulus , response to chemical stimulus and metabolism

Melibiose 2% Efficiency Copy number variations, transposition, Paralog, frame shift variations, stop codon variations, transport,
cellular amino acid and derivative metabolic process, response to chemical stimulus, cell cycle, sig-
nal transduction, conjugation, RNA metabolic process, translation, mitochondrion organization, cellular
carbohydrate metabolic process

Cupper chloride 0.375 mM Rate Stop codon variations, Paralog, transposition, frame shift variations, copy number variations, RNA metabolic
process, transport, protein modification process, response to stress, generation of precursor metabolites
and energy, cellular respiration, DNA metabolic process, transcription, response to chemical stimulus,
chromosome organization

Cupper chloride 0.375 mM Efficiency Paralog, frame shift variations, transport, transposition, stop codon variations, Essential.gene, copy num-
ber variations, cellular amino acid and derivative metabolic process, RNA metabolic process, response to
stress, protein modification process, chromosome organization, ribosome biogenesis, cell cycle, response
to chemical stimulus

NaCl 0.85 M Rate Generation of precursor metabolites and energy, cellular respiration, frame shift variations, stop codon
variations, Paralog, copy number variations, transport, heterocycle metabolic process, sporulation result-
ing in formation of a cellular spore, transposition, transcription, cellular carbohydrate metabolic process,
Essential.gene, RNA metabolic process, protein modification process

NaCl 1.25 M Rate Cellular respiration, stop codon variations, frame shift variations, Paralog, generation of precursor metabo-
lites and energy, Essential.gene, cellular lipid metabolic process, RNA metabolic process, transport,
mitochondrion organization, cofactor metabolic process, transposition, response to chemical stimulus,
transcription, DNA metabolic process

NaCl 0.85 M Efficiency Paralog, transposition, transport, conjugation, frame shift variations, stop codon variations, signal transduc-
tion, RNA metabolic process, response to stress, chromosome organization, response to chemical stimulus,
translation, ribosome biogenesis, mitochondrion organization, cellular amino acid and derivative metabolic
process

NaCl 1.25 M Efficiency Transposition, Paralog, copy number variations, frame shift variations, stop codon variations, response to
stress, protein modification process, chromosome organization, transport, cellular amino acid and deriva-
tive metabolic process, translation, conjugation, RNA metabolic process, Essential.gene, mitochondrion
organization

Maltose 2% Rate Paralog, transposition, frame shift variations, stop codon variations, RNA metabolic process, response to
chemical stimulus, transport, transcription, DNA metabolic process, copy number variations, response to
stress, protein modification process, cellular amino acid and derivative metabolic process, heterocycle
metabolic process, cellular aromatic compound metabolic process

Maltose 2% Efficiency stop codon variations, generation of precursor metabolites and energy, Paralog, cellular amino acid and
derivative metabolic process, transposition, cellular respiration, Essential.gene, protein modification pro-
cess, heterocycle metabolic process, cellular aromatic compound metabolic process, transport, frame shift
variations, RNA metabolic process, ribosome biogenesis, response to chemical stimulus

Galactose 2% Rate DNA metabolic process, stop codon variations, translation, generation of precursor metabolites and
energy, cellular respiration, Paralog, mitochondrion organization, copy number variations, cellular amino
acid and derivative metabolic process, frame shift variations, transport, Essential.gene, response to stress,
chromosome organization, meiosis

Galactose 2% Efficiency Paralog, DNA metabolic process, frame shift variations, RNA metabolic process, stop codon variations,
transport, generation of precursor metabolites and energy, cellular respiration, copy number variations,
mitochondrion organization, cellular amino acid and derivative metabolic process, heterocycle metabolic
process, transposition, protein folding, chromosome organization

Heat 37° Rate Frame shift variations, transport, Paralog, generation of precursor metabolites and energy, heterocycle
metabolic process, Essential.gene, cellular protein catabolic process, DNA metabolic process, mitochon-
drion organization, cellular respiration, transposition, stop codon variations, copy number variations, RNA
metabolic process, transcription

Heat 40° Rate Paralog, transport, frame shift variations, generation of precursor metabolites and energy, cellular protein
catabolic process, heterocycle metabolic process, copy number variations, transposition, stop codon vari-
ations, DNA metabolic process, translation, response to stress, protein modification process, conjugation,
Essential.gene
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Table 2 Selectivity score based selection of GO terms and gene variations(Continued)

Heat 37° Efficiency Generation of precursor metabolites and energy, DNA metabolic process, cellular amino acid and derivative
metabolic process, cellular respiration, heterocycle metabolic process, stop codon variations, Essential.gene,
RNA metabolic process, cofactor metabolic process, vitamin metabolic process, transposition, translation,
Paralog, frame shift variations, transport

Heat 40° Efficiency Paralog, frame shift variations, copy number variations, transport, transposition, protein modification pro-
cess, cellular carbohydrate metabolic process, cellular amino acid and derivative metabolic process, hete-
rocycle metabolic process, RNA metabolic process, response to stress, generation of precursor metabolites
and energy, cell cycle, signal transduction, conjugation

Sodium arsenite oxide 3.5 mM Rate Stop codon variations, Paralog, frame shift variations, copy number variations, cellular amino acid and deriva-
tive metabolic process, transposition, transport, response to stress, RNA metabolic process, conjugation,
translation, transcription, protein modification process, Essential.gene, chromosome organization

Sodium arsenite oxide 5 mM Rate Stop codon variations, copy number variations, transposition, frame shift variations, transport, generation of
precursor metabolites and energy, cellular respiration, Paralog, protein modification process, Essential.gene,
transcription, cell cycle, DNA metabolic process, response to chemical stimulus, ribosome biogenesis

Sodium arsenite oxide 3.5 mM Efficiency Paralog, stop codon variations, frame shift variations, transposition, copy number variations, RNA metabolic
process, cellular amino acid and derivative metabolic process, transport, DNA metabolic process, translation,
cellular carbohydrate metabolic process, peroxisome organization, response to stress, protein modification
process, transcription

Sodium arsenite oxide 5 mM Efficiency Paralog, frame shift variations, stop codon variations, transposition, copy number variations, transport, pro-
tein modification process, cellular carbohydrate metabolic process, generation of precursor metabolites and
energy, cellular respiration, Essential.gene, RNA metabolic process, response to stress, response to chemical
stimulus, translation

Selected variables from the background information matrix Z that have a selectivity score above 0.2 for each phenotype obtained through the proposed model.
Variables correspond to the presence or absence of specific gene amplifications, and the presence or absence of premature stop codons and frameshifts.

Assuming that phenotypic variation within the species
is controlled by either or both of lineage specific adaptive
mutations, emerging as a consequence of lineage specific
positive selection, or neutral variation, emerging as conse-
quence of lineage specific relaxation of selective pressure
that allow loss-of-function mutations to accumulate, we
expected phenotype defining genes to show faster evo-
lution than non-influential genes. This corresponds to a
prediction of a higher ratio of nonsynonymous versus syn-
onymous mutations since the split between S. cerevisiae
and its closest relative Saccharomyces paradoxus [27].
Indeed, we found genes identified as influential through
M1 to have been evolving 29% faster than non-influential
genes (p < 0.10). This indicates that these genes, as
a group, have been subjected to either stronger positive
selection or somewhat relaxed negative selection during
the recent yeast history and supports that M1 extracts
biologically relevant information.

Conclusion
We have suggested the use of background information
in the modeling step for genotype-phenotype mapping
through L-PLS and a stepwise elimination procedure. We
note that the derived results could give a slight decrease
in RMSEP when background information is used, but
more interestingly, this comes with more stability in the
selection of variables (genes, GO terms and variations)
used for genotype-phenotype mapping. We conclude that
the approach is worth pursuing, and future investigations
should be made to improve the computations of genotype

signals, and variable selection procedure within the PLS
framework.

Additional file

Additional file 1: Table S1. Selectivity score based selected genes. Genes
selected for each phenotype for genotype phenotype mapping by using
2-stage variable elimination and having selectivity score above 0.06.
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