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ABSTRACT We describe an information-theory-based method and associated software for computationally
identifying sister spores derived from the same meiotic tetrad. The method exploits specific DNA sequence
features of tetrads that result from meiotic centromere and allele segregation patterns. Because the method
uses only the genomic sequence, it alleviates the need for tetrad-specific barcodes or other genetic
modifications to the strains. Using this method, strains derived from randomly arrayed spores can be
efficiently grouped back into tetrads.

KEYWORDS

yeast tetrad
analysis

genetic
segregation
patterns

information
theory

dependency
detection

In many eukaryotes, including the genetically tractable yeasts Saccha-
romyces cerevisiae and Schizosaccharomyces pombe, the filamentous
fungusNeurospora crassa, and the unicellular green algaChlamydomonas
reinhardtii, it is possible to recover all four of the haploid products of
a single meiosis, tetrads. These tetrads can be characterized geneti-
cally and phenotypically. Tetrad analysis is a powerful technique that
is routinely used to make associations between genetic variation and
phenotype, uncover gene-gene interactions, and identify non-reciprocal
meiotic recombination events (e.g., gene conversions).

Themanual processes of isolating, disrupting, and arraying spores in
conventional tetrad analysis have limited its application to relatively
small-scale studies. The conventional method has two steps that are
difficult to automate, isolating tetrads away from unsporulated cells in
the culture and capturing the sister spore relationships of the resulting
progeny strains by arraying the spores in a gridded pattern. We pre-
viously described amethod, BEST (BarcodeEnabled Sorting of Tetrads)

(Ludlow et al. 2013; Scott et al. 2014), that uses a meiosis-specific GFP
fusion protein to isolate tetrads by fluorescence-activated cell sorting of
tetrads and molecular barcodes to identify sister spores of the same
tetrad by DNA sequencing.

Althoughplasmid-borne, tetrad-specificmolecularbarcodes arewell
suited for laboratory strains of S. cerevisiae, theymay not be as useful for
organisms that are less genetically tractable (e.g., with low transforma-
tion efficiency or poor maintenance of extrachromosomal plasmids) or
for the construction of non-genetically modified strains. The problem
of reconstructing tetrad information from a large set of randomly
arrayed spores can be viewed as two sub-problems: (1) finding a reliable
measure that identifies groups of four sister spores (a tetrad); and (2)
defining an appropriate search strategy to efficiently traverse a very
large set of possible spore groupings while applying this measure. Here,
we describe an information-theory-based metric that solves the first
sub-problem and software implementing a search strategy utilizing this
metric that solves the second. Because the method uses only the geno-
mic DNA sequence of the meiotic products, it can be applied to strains
or organisms for which genetic manipulation is difficult or undesirable.

METHODS

The mechanisms of recombination and chromosome
segregation produce unique genotypic signatures for
each meiosis
Meiosis is a process in which a diploid cell undergoes one round of
DNAreplication followed by two rounds of chromosome segregation
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and cell division to produce four recombinant haploid progeny. In
the first meiotic division, the two homologs of each chromosome
recombine and then segregate to the opposite poles of the meiotic
spindle. In the second meiotic division, the two chromatids of each
recombinant chromosome segregate with no further recombination
(Figure 1A). Therefore, in the absence of rare gene-conversion
events, at each position that is heterozygous in the original diploid,
exactly two spores will inherit allele “A” and exactly two will inherit
allele “B” (Figure 1A). Additionally, because sister chromatids only
segregate from each other at the second meiotic division, two of
the spores will have identical centromeric alleles for every chromo-
some, while the other two spores will both have the mirror image of
this pattern (Figure 1B). Thus, centromere allele segregation pat-
terns, constrained allele frequencies, and patterns of recombination
breakpoints can be viewed as genotypic signatures for individual
meioses. These signatures could, in principle, be used to reconstruct
tetrads computationally from the DNA sequences of randomly
arrayed spores.

Here we report a computational method, hereafter called “tetrad
reconstruction”, that uses the pattern of centromere segregation and
the constrained allele frequencies within a tetrad to infer the original
sister spore relationships of recombinant progeny. Our method takes
genotype data for all of the progeny strains as input and then proceeds
in two steps. First, the centromere segregation pattern is used to re-
duce the number of potential spore patterns to be searched. Then, the
constrained allele segregation patterns are used as the signal to identify
members of the same tetrad.

Using centromere segregation patterns to reduce the
search space for spores from the same tetrad
Withanappropriatemetricbasedonallele frequenciesor recombination
breakpoints, it is possible to distinguish a group of spores from the same
tetrad from other groups of spores. However, applying this metric in an
exhaustive, brute force search across all possible groups of spores in

a large dataset is computationally demanding. To reduce this search
space and simplify the computational problem, we implemented an
efficient heuristic based on the segregation patterns of centromeres in
tetrads, i.e., the fact that two spores of a tetrad harbor the same alleles at
each centromere and the other two spores both share the opposite
pattern (Figure 1B). Our heuristic search leverages this property by first
attempting to partition the set of all spores into clusters of spores whose
centromere-flanking markers are either a perfect match or a complete
mismatch. Unless a polymorphic marker is present at the centromere
itself, it is not possible to determine the haplotype origin (“A” or “B”) of
centromeres with absolute certainty. Therefore, we compute the
probability of each centromere coming from haplotype “A” or hap-
lotype “B” based on the alleles of the flanking markers and the
empirically-estimated recombination frequency between them and
the centromere (Appendix G). Given these probabilities, we derive a
similarity coefficient between all spores (Appendix B) and use a fast
greedy algorithm (Clauset et al. 2004) to cluster spores based on
these similarity coefficients.

There are 2N unique segregation patterns, whereN is the number of
chromosomes. However, only half of these patterns (2N-1) can uniquely
identify a tetrad, since each tetrad contains two patterns opposite to one
another (see Figure 1B). Therefore, for organisms with a sufficiently
large number of chromosomes, our clustering algorithm based on the
centromere segregation heuristic should produce small clusters that
contain all members of a given tetrad. For example, in S. cerevisiae,
which has sixteen chromosomes, the chance of two tetrads sharing
a centromere segregation pattern is 1/215. However, in an organism
with fewer chromosomes, such as S. pombe, which has only three, more
than one tetrad will often be assigned to a single cluster. In addition,
factors such as sequencing errors, or crossovers between a centromere
and its flanking markers, can also lead to false positive or false negative
tetrad assignments. Therefore, although it reduces the search space for
subsequent steps, this heuristic alone is not sufficient to accurately re-
construct tetrads.

Figure 1 (A) Behavior of a single chromosome
during meiosis. In the initial heterozygous diploid
(top) there are two copies of the “A” haplotype
(blue chromatids) and two copies of the “B” hap-
lotypes (red chromatids). Centromeres are shown
as circles. The two “A” centromeres remain paired
until the second meiotic division, as do the two
“B” centromeres. Spores (haploid meiotic prod-
ucts) are shown as dotted ovals. (B) Segregation
pattern shown for 3 chromosomes. For each chro-
mosome, segregation of the “red” or “blue” ho-
mologs to the left or to the right side at the first
meiotic division occurs at random, but for each
chromosome the two sister “red” and the two sis-
ter “blue” centromeres always remain paired until
the second meiotic division. Therefore, at each
centromere the two leftward spores always share
the same allele and the two rightward spores share
the other allele.
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Using information theory to reconstruct tetrad
relationships based on 2:2 allele segregation
The metric that we chose to use for unambiguously identifying
members of the same tetrad is based on the fact that at each marker
locus in a tetrad, two spores inherit the “A” allele and two spores inherit
the “B” allele (Figure 1). Thus, the allele patterns within a tetrad are
constrained and knowledge of the genotype of one spore changes the
allele probabilities for the other three spores. For example, at every
position where an “A” allele is observed in one spore, the probability
of the “A” allele in any of the remaining three spores of the same tetrad
changes from 50 to 33%. In contrast, knowledge of the genotype of a
spore from one tetrad does not affect the allele probabilities in spores
from different tetrads. As such, tetrad-specific relationships can be
viewed as dependencies among the four allele-vectors of a tetrad
(one vector for each spore genotype), and such dependencies can be
detected using methods from information theory. In contrast to the
centromere heuristic, this constrained allele frequency approach
uses a much larger number of genotyped markers, making the ap-
proach less sensitive to individual genotyping errors and more suc-
cessful at disambiguating tetrad assignments.

Mutual information is a well-known measure that quantifies the
amountofdependencybetweentwocategorical variables (AppendixA),
and interaction information (McGill 1954) is a multivariable general-
ization of this measure (Appendix A). While interaction information
has a number of drawbacks (Bell 2003; Jakulin and Bratko 2004;
Sakhanenko and Galas 2011), it can be used in principle to devise
measures of dependency among any number of variables. Because
the genotypes of a group of spores from the same tetrad are a set of
dependent variables, they should produce a strong interaction infor-
mation signal. In contrast, if the genotype of a spore from a different
tetrad (an independent variable) is then added to the group, the inter-
action information should be close to zero. Thus, an interaction in-
formation approach might be able to identify groups of four strains
that were sister spores from the same tetrad. Furthermore, in cases
where spores are missing or inviable, the allele vectors of the remaining

spores will still show dependencies among one another, detectable by
mutual information between two spores or interaction information
between three spores.

To test the ability of interaction information to identify groups of
spores from the same tetrad, we generated a simulated dataset of 100
S. cerevisiae tetrads with 1000 markers, 1% noise (genotyping errors),
and 5% missing data (Appendix F). We then calculated interaction
information for the real tetrads and for groups of 4-spores derived from
different tetrads. On average, true tetrads scored highly by this metric,
while incorrectly grouped spores had scores centered on zero. However,
while most incorrect groups of spores scored poorly, there were a
number of false positives, i.e., incorrect groupings that scored as highly
as some of the true tetrad groups (Figure 2A). A similar result was seen
with groups of three spores from the same tetrad vs. incorrect groupings
of 3-spores, and the overlap was even stronger in this case (Figure 2B).
These results suggest that noise in the data limits the ability of inter-
action information to cleanly distinguish correct groups of three or four
spores derived from the same tetrad from incorrect groupings.

To explore this problem further, we considered the behavior of
interaction information at multiple levels of complexity. As expected,
a real tetradhas strong interaction information signal at the 4-spore level
as well as at the 3-spore level for all subgroups of three spores (Figure 3A
and 14). In contrast, when an incorrectly assembled tetrad has a rela-
tively high interaction information signal at the 4-spore level due to
noise, this signal does not extend to its 3-spore subgroups (Figure 3A,
green oval). We also observed similar, but noisier, patterns between the
2- and 3-spore levels (Figure 3B, green oval). Thus, we hypothesized
that combining interaction information at the 4-spore and 3-spore
levels or from the 3-spore and 2-spore levels should substantially
strengthen the signal separating real 4- and 3-spore tetrads from false
ones.

To combine interaction information at different spore-number
levels, we used a measure based on differential interaction information,
called “delta” (Galas et al. 2014; Sakhanenko and Galas 2015; Galas and
Sakhanenko 2019). Differential interaction information quantifies the

Figure 2 Interaction Informa-
tion computed on groups of (A)
4 spores and (B) 3 spores. All
measures were computed on
the simulated S. cerevisiae data
(1000 markers, 100 tetrads, 1%
noise, and 5% missing data).
Panel (A) distinguishes four possi-
ble categories of 4-spore groups
based on the number of spores
derived from the same tetrad
(shown on the x-axis) and shows
a letter-value (LV) plot for each
category. The purple LV plot
shows the Interaction Information
scores for all possible real tet-
rads. Similarly, panel (B) shows
the scores for three different cat-
egories of 3-spore groups. For
the categories where all spores
are from different tetrads (the
red LV plots in (A) and (B)),
only 2 million randomly sam-
pled groups are shown. The In-

teraction Information signal associated with true sister spores is negative at the 3-spore level and positive at the 4-spore level, while it is clustered
around zero in both cases when sets contain non-sister spores.
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change in interaction information that occurs when a new variable is
added to a set of existing variables. Unlike the interaction information
measure, differential interaction information is not symmetric, but is
specific to which variable is added. A symmetric measure results from
the product of differential interaction information with all possible
choices of the added target variable, and this product is “delta”
(Appendix A).

Consistent with our hypothesis, delta performed significantly better
than interaction information indistinguishinggroups of spores fromthe
same tetrad from incorrect groupings (see Figure 4, also Figures 13
and 14). By combining information at different degree levels, the delta
measure allowed us to distinguish the real tetrads from all other 4-spore
groups, with a false positive rate of zero using the test dataset. Further-
more, the difference between real tetrads and incorrect 4-spore group-
ings was orders of magnitude larger when measured with delta as
opposed to interaction information. This difference can also be seen
at the 3-spore level: groups of 3 sister spores are separated away from
other 3-spore groups if we use delta (see Figure 4D) as opposed to
interaction information (see Figure 4C) where these two distributions
of 3-spore groups are more ambiguous.

Thresholds for identifying spores from the same tetrad
and validation using 2:2 allele segregation
Toconstruct a classifier thatusesdelta for tetrad reconstruction,weneed
to identify a threshold that distinguishes true-positive tetrads from false-
positivegroupsof sporeswithhigh likelihood.Thenullhypothesis is that
there is no difference in delta scores between groups of sister spores and
groups of spores that were selected by chance.We therefore create a null
distribution whose elements are groups of randomly selected spores,
which are mostly non-tetrad groups. Computing delta scores for all the
elementsof thenulldistribution, thedelta threshold is thendefinedbased
on a user-defined p-value. The default for 4-spore tetrads is 0.05, but

our software allows the user to adjust this parameter. A group, whose
delta score is above the threshold, is then identified as a candidate tetrad
for validation. We note that the null distributions obtained by this
permutation also include a small proportion of groups of spores from
the same tetrad, so the cutoffs are, in practice, slightly conservative.

In a real tetrad with no gene conversions every marker segregates
2:2, i.e., two spores inherit the “A” allele and two spores inherit the “B”
allele. Since this information is not explicitly used in calculating the
delta scores (which reflect the dependencies between the spore geno-
types, but not the exact form of the dependencies), it can be used as a
subsequent validation test. For a candidate tetrad to be validated and
labeled as a real tetrad, we require the fraction of markers with 2:2
segregation to be close to 1 (above 0.9 by default). For a partial,
3-spore tetrad the process is similar, but the method uses 2:1 segrega-
tion and a cutoff of 0.95. We refer to the process of identifying candi-
date tetrads, performing validation, labeling real tetrads and removing
them from the pool of spores used for further consideration as tetrad
verification.

Software implementation
Our software implementation combines the previously describedmeth-
ods as follows (Figure 5). First, spore genotypes are preprocessed to
remove duplicate spores (identified using the edit-distance between
allele vectors) and spores with a large number of missing values. Next,
the remaining spores are clustered based on their centromere-flanking
markers. Then, the software searches for real tetrads within each cluster
based on the delta score of each spore group. Afterward, all remaining
spores of all clusters that have not been assigned to a tetrad are analyzed
together to identify any remaining tetrads and then any partial tetrads,
i.e., groups of three sister spores (with one spore missing from the
dataset) and groups of two sister spores (with two spores missing from
the dataset). Finally, spores are assigned tetrad labels and output to the

Figure 3 Comparison of the
amount of information between
(A) 2-spore and 3-spore levels
and between (B) 3-spore and
4-spore levels as measured by
interaction information. All mea-
sures were computed on the same
data as in Figure 2. Panel (A)
shows the scatter plot of scores
computed on various groups of
4 spores and their 3-spore subsets
while panel (B) shows the scores
for groups of 3 spores and their
2-spore subsets. Each group is col-
ored red if all spores of the group
came from the same tetrad and
blue if at least two spores came
from a different tetrad. The scores
of the red sets are plotted in their
entirety, whereas for the blue sets
we randomly selected 2 million
groups. Green ovals indicate the
situation when, due to noise, the
interaction information shows rela-
tively high signal at one level for
a group of spores derived from
more than one tetrad. At the
level below, the signal from
these groups is close to zero.
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user. A detailed flow chart of the search is presented in Appendix D
(Figure 12).

The default method for identifying true tetrads within each centro-
mere-cluster is to carry out a direct searchof all possible combinations of
4 spores using delta. Any set of 4-spore combinations passing the delta
score threshold then undergoes the tetrad verification process and, if it
passes, is labeled a tetrad and removed from further analysis. The
search then continues among the remaining spores. However, for large
clusters, exhaustively combing the 4-spore search space in this way is
computationally expensive. Therefore, for clusters containing over five
spores, tetrads are instead identified in an indirect, two-step process.
First, because the 3-spore search space is much smaller than the equiv-
alent 4-spore space, the software computes the delta measure on all
possible 3-spore combinations and detects those that could be part of
true tetrads (hereafter triplets). Next, the remaining single spores in the
cluster are added to each triplet, and the delta scores are recalculated.
Any 4-spore groups that pass the delta score threshold and tetrad
verification process are then labeled a full tetrad and removed from
further analysis.

The indirect search method described above is an example of
a shadow search (Sakhanenko and Galas 2015). The approach le-
verages the fact that a functional dependency of N-variables usually
has a detectable signal at a lower degree (fewer variables). For tetrad
detection with the delta measure, this is in fact the case, since triplets
(3-spore groups that are subsets of a real tetrad) have strong delta
scores (Figure 4D and Figure 13A). Therefore, full tetrads can be
assembled by identifying high scoring 3-spore subsets within each
cluster and then identifying which of the remaining spores be-
long in a tetrad with each 3-spore group. While this method is more
computationally efficient, it relies on the ability of the 3-spore delta

measure to distinguish groups of spores from the same tetrad from
incorrect groupings, and this discrimination is not as accurate as the
one that uses delta calculated on 4-spores (Figure 4B vs. 4D). Thus,
when computationally feasible, the exhaustive 4-spore approach should
be used.

After the direct or indirect identification of tetrads within the
centromere clusters, the software searches for tetrads in which only
three of the four sporeshavebeenplaced in the same initial cluster (likely
due to noise or a small number of markers). This is also done using the
shadow approach. The software computes the delta measure on all
possible combinations of three spores in the centromere cluster.
Then, 3-spore groups that pass the significance filter are combined
with spores from the set of unclustered spores. The software com-
putes the deltameasure on these new sets of four spores and performs
tetrad verification.

Once every cluster of spores from the centromere clusters has been
analyzed, the software moves on to an exhaustive search for remaining
tetrads by collecting all the unlabeled spores into a single cluster and
applying a combination of shadow and direct searches. If at any point in
the search a candidate tetrad fails the verification step based on 2:2
marker segregation, its spores are put back into the search space. This
approach is then repeated for triplets, consisting of three sister spores.
Finally, any remaining pairs of two sister spores are identified using
mutual information, leaving only the unclassifiable single spores.

The software takes as input a tab delimited text file containing the
genotype of each spore. The parameters of the software are defined in
a configuration file and preset to the most frequently used values by
default. A user can adjust these values in the configuration file to get
a better performance for specific situations. Some of the parameters of
interest are

Figure 4 Comparison of the ability of Interaction Information and the delta measure to distinguish groups of sister spores from all other groups.
Panel (A) shows LV plots of Interaction Information scores computed on groups of 4 spores from the same tetrad (in blue) and on all other groups
of 4 spores (in orange). Panel (B) shows delta scores computed on the same 4-spore sets. Similarly, panels (C) and (D) show Interaction Information
and delta scores computed on triplets of sister spores (in blue) and triplets of spores from different tetrads (in orange). All measures were
computed on the same data as in Figure 2.
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• CEN_CALLING controls whether to estimate the recombination
frequency from the data or skip it and use the S. cerevisiae default
specified by COS_PER_MEGA. Estimating recombination fre-
quency on large datasets could be slow, so one might want to skip
it, use a published value, or estimate it once before varying other
parameters.

• CLUSTERING controls whether we employ the centromere-based
clustering first, or go straight to the exhaustive search.

• SIMILARITY_COEFFICIENT is a threshold for centromere simi-
larity between two spores, controlling when the software calls two
spores similar. Using the similarity coefficient, we are able to con-
siderably reduce the search space speeding up the processing of large
data sets. Smaller centromere similarity coefficient cutoffs result in
larger numbers of smaller clusters. Increasing this cutoff will merge

the clusters together until they become one cluster – the entire data
set. The user should set the cutoff such that there are manymedium
size (under 300 spores) clusters.

• D4_PVALUE and D3_PVALUE specify the cutoffs for the p-value
of the Delta4 andDelta3 scores. To avoid false positives, the user can
increase the stringency of the search by lowering the p-value of the
Delta4 and Delta3 scores. The user can also adjust the segregation
cutoffs (SEG_CUTOFF_D4 and SEG_CUTOFF_D3) to filter out
the false positives.

The full list of the parameters with their descriptions is given in the
readme file of the software. The software also comes with the set of
examples described in this paper and the corresponding configuration
files to process these examples. The information-theory-based depen-
dency detection is implemented in C, whereas the rest of the software is
implemented in Python. The software is available at FigShare.

Data availability

FileS1.rar contains the code of the tetrad assembly software, as well as
code used to generate the simulated data, the information files and the
test data. FileS2.rar contains all the simulated data used in the paper to
test our software. Supplemental material available at FigShare: https://
doi.org/10.25387/g3.8111405.

RESULTS

Testing the software on simulated and real datasets
We first applied the software to simulated datasets. We generated three
sets of error-free S. cerevisiae tetrad genotypes (see Appendix F for
more details), including recombination events and recording spore
relationships: Small (100 tetrads and 1,000 markers), Medium
(1,000 tetrads and 10,000 markers), and Large (1,000 tetrads and
100,000 markers). For each of these datasets we created multiple test
cases by reducing the number of markers and adding various amounts
of missing values and levels of noise (Table 1).

We used this simulated data to perform a thorough evaluation
of the individual components of the software in various situations.
Specifically, we analyzed the performance of allele calling at centro-
meres, spore clustering based on similarity coefficients, and tetrad
verification using segregation scores. Appendix C shows the details
of the evaluation on the simulated dataset Small.

In general, the total number of markers in the data affected the
estimation of the allele calls at centromeres and consequently the initial
clustering of the spores. Low numbers of markers caused problems in
clustering through several mechanisms. These included poor precision
in estimating global recombination parameters and difficulties in ac-
curately estimating the allele at the centromere due to a lack of flanking
markers or because the flanking markers were too far apart.

The proportion of missing data, on the other hand, did not have a
strongeffectoncentromereallelecallpredictionsor sporeclustering, and
any effect was fully overcome by using more markers. The noise in the
data (genotyping errors), however, had a notable impact on the per-
formance of the software. High levels of noise strongly affected
the estimation of the alleles at the centromeres and spore clustering
(Appendix C). This problem can, however, also be overcome by in-
creasing the number of markers used. Furthermore, the noise affected
the strength of the true tetrad signal relative to the background, making
it harder to distinguish the true tetrads statistically from the other
4-spore sets. We note that this was the case for both the delta measure
as well as the 2:2 segregation measure. The quantitation of this effect is
described in Appendix C.

Figure 5 A general overview of the flow of the software for tetrad
detection.
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After testing the individual components of our software in this way,
we then tested our software on a handful of simulated test sets derived
from the sets Small,Medium, and Large and compared the final tetrad
assignments to ground truth from the simulations. All the tests were
performed on a desktop with Intel Core i7-7820X CPU @ 3.60GHz
(8 cores, 16 threads) and 64 GB RAM. Table 1 summarizes these tests
and shows the corresponding optimal parameter settings of the soft-
ware and the resulting performance. A comprehensive list of the tests
performed is presented in Table 4 of Appendix H.

Table 1 shows that the software is able to achieve 100% accuracy with
no false positives in almost all the tests: only in tests on theMedium set
with only 10% of the original marker set and with 10% noise was the
accuracy lower, albeit still 99.8%. In these tests some 4-spore groups
scored as high as the real tetrads due to noise in the relatively small
number of markers, resulting in two missed tetrads, one false positive
tetrad assignment, and one false positive triplet assignment.

The runtime of all the tests without noise was very reasonable: Small
tests took under 12 sec,Medium tests took under 4 min, and Large tests
took under 11min. Although with the addition of noise, the runtime of
Small tests did not change much due to the small size, it changed
drastically forMedium and Large tests. At 5% noise,Medium and Large
tests took under 28 min and 37 min correspondingly. Increasing noise
to 10% made the runtime go up considerably: Medium tests took
14-27 hr (depending on the size) and Large tests took 31-94 hr. In
general, including more markers in the test sets increases the time it
takes to calculate each delta score. Without noise, the clustering of
spores is very effective, allowing for the search space to be divided into
multiple small clusters fully containing tetrads, thus keeping the num-
ber of delta calculations low and resulting in a short runtime. With
noise however, the initial clustering does not work as well, which in-
evitably increases the total number of delta calculations necessary and
thus increases the runtime.

n Table 1 The tetrad detection software applied to various simulated test sets. Three simulated datasets are shown (indicated in the
column Set): Small (100 tetrads, 1000 markers), Medium (1000 tetrads, 10000 markers), and Large (1000 tetrads, 100000 markers). The
first four columns of the table show the various parameters of the simulated data considered: Nt shows the number of tetrads in the set,
Nm shows the number of randomly selected markers as well as the percentage of the original set of markers, and columns Noise and
Missing show the amount of noise and missing values (in percent) added to the data. The software was run on these test sets with different
parameters. The table shows only the parameter settings that produced the optimal result. For the results of the software with other
settings see Table 4 in Appendix H. Column “Cent calling” shows whether the software estimates the recombination frequency empirically
or uses its default value derived from published data (Mancera et al. 2008). The column “Sim coeff.” shows the similarity threshold being
used. The columns 2:2 cutoff and 2:1 cutoff show the cutoff values for 2:2 and 2:1 segregation score for the software to call two spores
sisters. The last two columns show the performance of the software, the total runtime (Intel Core i7-7820X CPU @ 3.60GHz and 64 GB
RAM) and the percent of total tetrads detected by the software. Note that in all the cases when the software detected 100% of tetrads,
there were no false positives. In the case when 99.8% of tetrads were detected, there was 1 false positive tetrad and 1 false positive triplet
(with 1 spore unassigned)

Test set parameters Software parameters Performance

Set Nt Nm Noise % Missing % Cent. calling Sim coeff 2:2 cutoff 2:1 cutoff Run time
Detected
tetrads %

Small 100 500 (50%) 0 0 yes 0.21 0.9 0.95 6.0 100%
0 5 yes 0.19 0.9 0.95 5.7 100%
0 10 yes 0.2 0.9 0.95 6.2 100%
5 0 yes 0.2 0.75 0.88 6.7 100%

10 0 yes 0.24 0.6 0.83 8.1 100%
984 (100%) 0 0 yes 0.13 0.9 0.95 12.9 100%

0 5 yes 0.14 0.9 0.95 12.3 100%
0 10 yes 0.13 0.9 0.95 12.1 100%
5 0 yes 0.2 0.75 0.88 14.3 100%

10 0 yes 0.22 0.6 0.83 16.0 100%
Medium 1000 1000 (10%) 0 0 no 0.12 0.9 0.95 02:10.2 100%

0 5 no 0.11 0.9 0.95 02:37.4 100%
0 10 no 0.12 0.9 0.95 02:27.2 100%
5 0 no 0.14 0.75 0.88 27:15.2 100%

10 0 no 0.16 0.6 0.83 14:14:47.7 99.80%
9984 (100%) 0 0 no 0.1 0.9 0.95 03:38.2 100%

0 5 no 0.1 0.9 0.95 04:09.1 100%
0 10 no 0.09 0.9 0.95 03:32.5 100%
5 0 no 0.12 0.75 0.88 17:35.0 100%

10 0 no 0.17 0.6 0.83 26:43:15.6 100%
Large 1000 10000 (10%) 0 0 no 0.07 0.9 0.95 03:28.3 100%

0 5 no 0.12 0.9 0.95 03:40.0 100%
0 10 no 0.09 0.9 0.95 03:35.7 100%
5 0 no 0.12 0.75 0.88 18:46.4 100%

10 0 no 0.16 0.6 0.83 31:13:42.7 100%
50000 (50%) 0 0 no 0.07 0.9 0.95 10:45.2 100%

0 5 no 0.05 0.9 0.95 08:33.1 100%
0 10 no 0.07 0.9 0.95 10:40.6 100%
5 0 no 0.12 0.75 0.88 36:59.5 100%

10 0 no 0.14 0.6 0.83 93:53:41.7 100%
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Toachieve the best performance,we varied two software parameters,
the similarity coefficient threshold and the segregation cutoffs. In test
cases where the number of markers was large, the default similarity
coefficient threshold resulted in a small number of very large clusters,
causing the software to take a considerable amount of time to complete
a run (Appendix C). Lowering this threshold increased the number of
clusters while reducing their size, which divided the search space more
efficiently and resulted in faster processing. Users of this software
should consider these options, since the level of noise in experimental
datasets is usually not known.

Whennonoise is present, clustering allows the software to subdivide
the spores into setsof same-tetrad spores, identifyingall the tetrads at the
divide-and-conquer phase (see Figure 5). In this situation, keeping the
clusters small results in smaller processing time. For the test cases with
noise however the clustering does not work as well and, as a result, only
some tetrads are identified at the divide-and-conquer phase leading to
more time spent in the exhaustive search phase (see Figure 5). In this
case making the clusters larger allows the software to extract more
tetrads at the divide-and-conquer phase, thus reducing the amount
of computation at the exhaustive search phase and the overall pro-
cessing time. Therefore, for the cases with noise (in particular when
the noise level is 10%) the similarity threshold had to be increased
relative to the same sized dataset without noise resulting in larger
clusters. Furthermore, in the presence of noise the default values of
the segregation cutoffs are too stringent, resulting in poor accuracy,
since many true tetrads were dismissed. See Appendix C for more
details about the effects of the similarity coefficient and the segre-
gation cutoffs.

We then applied the software to real biological data from two
published datasets. Dataset D1 consists of 412 spores from man-
ually dissected tetrads and the tetrad relationship between spores
was recorded by the experimenter (Sirr et al. 2017). Dataset D2 con-
sists of 3,200 spores that were randomly arrayed on an agar plate, but
that contained a tetrad-specific plasmid barcode (Ludlow et al. 2013).
In both cases, the genotype markers were generated by RAD-seq as
described in the original publications (Ludlow et al. 2013; Sirr et al.
2017). Using these datasets allowed us to compare the effectiveness of
our method to the experimentally derived tetrad assignments, which
we treated as “ground truth” (Table 2).

For dataset D1, using the default parameters the software achieved
over 98% full-tetrad accuracy and over 96% accuracy of identifying
triplets (tetrads missing 1 spore). For dataset D2, after filtering out the
duplicate spores, our software with default parameters showed 100%
agreement between identified tetrads and the barcodes (sum of number
of confirmed and consistent tetrads from Table 2). However, almost
60% of triplets identified by the software in default mode were in
disagreement with the barcodes. Filtering to removemarkers with large
numbers of missing values improved the 3-spore performance on data-
set D2 by almost 30%. Note also that filtering markers allowed identi-
fying considerably more tetrads and triplets.

DISCUSSION
We have described a computational method, based on our previously
developed information theory dependency analysis that reconstitutes
tetrads using only information from genome sequencing of the meiotic
progeny. This method avoids the need for tetrad-specific barcoding or
genetic modification of any kind. Instead, ourmethod uses information
associated with specific features of tetrad genome sequences, features
that result from the mechanisms ofmeiosis. The software reported here
is both simple to use and highly effective in reconstituting tetrads. This
approachcan significantly increase thepowerof tetradanalysis in several

ways, most notably by vastly increasing the numbers of tetrads that can
be analyzed with minimal effort.

Our software integrates a heuristic method for clustering, using
centromere proximal markers, with an information theory-based
method for signal detection. On both simulated and real data, the
software achieves a remarkably high success rate, even in the presence
of lost spores and sources of experimental noise. The applications for
this software include, the analysis of meiotic recombination and the
study of gene conversions or other non-reciprocal genetic events in
which a subset of markers deviate from the expected 2:2 segregation
pattern. Although the software operates under the assumption that
there isnogene conversion, it can successfully handle caseswhere some
amount of gene conversion is present. Since gene conversion results in
somemarkers deviating from the 2:2 segregation pattern, the software
will perform in the same way it does in the presence of a comparable
amount of noise.

The software can also be applied to any organism in which it is
possible to isolate the four products ofmeiosis. Our software is based on

n Table 2 The tetrad detection software applied to real biological
datasets. (a) Evaluation of the software on dataset D1 using the
default parameter setting. Since all the spores in D1 are already
labeled according to their tetrad assignment (from manual
dissection), we were able to count the number of tetrads
identified by the software that were either in agreement with
the data labels (correct tetrads), or not (false tetrads), as well as
the number of tetrads that the software was not able to identify
(missed tetrads). The triplets were counted in the same way. (b)
Evaluation of the software on dataset D2 using either the default
parameter setting or filtering markers with too many missing values
(corresponding to the second and third columns). Although there is
no known tetrad assignment of the spores in D2, the spores were
barcoded, with spores derived from the same tetrad sharing a
barcode. As a result we counted the number of tetrads identified
by the software comprised of same-barcode spores (confirmed
tetrads). We also counted consistent tetrads comprised of either
same-barcode spores or spores with no barcode and incorrect
tetrads whose spores have different barcodes. The sum of
confirmed, consistent and incorrect tetrads is the total number of
tetrads identified by the software. The triplets were counted in the
same way

(a) D1_Default

Spores 412
Markers 536
Run time 12s
Correct tetrads 50 98.04%
Missed tetrads 1 1.96%
False tetrads 1 1.96%
Correct triplets 52 96.30%
Missed triplets 2 3.70%
False triplets 7 11.86%

(b) D2_Default D2_Filter_markers

Spores 2666 2666
Markers 579 531
Run time 68m23s 54m57s
Confirmed tetrads 181 84.98% 230 84.56%
Consistent tetrads 32 15.02% 42 15.44%
Incorrect tetrads 0 0.00% 0 0.00%
Total tetrads 213 272
Confirmed triplets 91 21.67% 215 47.36%
Consistent triplets 78 18.57% 92 20.26%
Incorrect triplets 251 59.76% 147 32.38%
Total triplets 420 454
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an information theory method, which does not make any assump-
tions about the data and its underlying structure. Although the
genome structure of S. pombe is significantly different from that
of S. cerevisiae, the analysis method described here will work equally
well on this organism. Because the software only uses the centro-
mere allele patterns of the organism to reduce the search space and
thus decrease run times, it can be effectively applied to organisms
with smaller numbers of chromosomes. For example, in S. pombe,
which has only three chromosomes, the method would still produce
several, albeit large, clusters of spores and thus productively divide
the search space. In such cases, the software would be able to pro-
duce the same results, although with longer run times. Another
difference is that S. pombe has a lower recombination rate than
S. cerevisiae (Clément-Ziza et al. 2014; Fowler et al. 2014) and thus
a smaller number of 2:2 segregation patterns. In such organisms, the
performance of our software will be similar to its performance in
S. cerevisiae with fewer markers.
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APPENDIX A

Information theory based measures of dependence.
In the analysis of complex biological systems we needmeasures that can detect synergistic, multiple variable dependencies. Mutual information

is a well-known measure that quantifies the amount of dependency between two variables:

IðX;YÞ ¼ HðXÞ þ HðYÞ2HðX;YÞ ¼
X

x2X;y2Y
pðx; yÞlog pðx; yÞ

pðxÞpðyÞ (1)

where HðXÞ is entropy of variable X defined as HðXÞ ¼ 2
P
i
PðxiÞlogPðxiÞ. Interaction information has been proposed (McGill 1954) as a

multivariable generalization of mutual information. This measure has a number of advantages and drawbacks (Bell 2003; Jakulin and Bratko

2004; Sakhanenko and Galas 2011) but can be used to devise powerful measures of dependency for any number of variables. The interaction
information for three variables, for example, quantifies the difference between the two-variable interaction information (mutual information),
with and without knowledge of the third variable:

IðX;Y ;ZÞ ¼ IðX;YÞ2 IðX;Y jZÞ ¼ HðXÞ þ HðYÞ þ HðZÞ2HðX;YÞ2HðX;ZÞ2HðY ;ZÞ þ HðX;Y ;ZÞ: (2)

Here IðX;Y jZÞ is conditional mutual information, HðXÞ is entropy of variable X and HðX;Y;ZÞ is a joint entropy of the three variables. Note
that the conditional mutual information is actually a difference between interaction informations for two and three variables – a differential
interaction information. A general form of interaction information for the set of nn variables, in terms of marginal entropies can be written as:

IðnnÞ ¼ 2
X

t4nn

ð21ÞjtjHðtÞ: (3)

In this paper we use a symmetric product of differential interaction information, which we call “delta” (Galas et al. 2014; Sakhanenko and Galas
2015; Galas and Sakhanenko 2019). Differential interaction information quantifies the change in interaction information that occurs when we
add another variable to a set of variables, so for three variables it is defined as:

DðfX;Yg;ZÞ ¼ 2 IðX;YjZÞ ¼ IðX;Y ;ZÞ2 IðX;YÞ ¼ HðZÞ2HðX;ZÞ2HðY;ZÞ þ HðX;Y;ZÞ: (4)

If nn ¼ fX1;X2; . . . ;Xng and ni ¼ nn 2 fXig, then the differential interaction information can be defined in general as

Dðni;XiÞ ¼ IðnnÞ2 IðniÞ ¼
X

t4nnjXi2t
ð21Þjtjþ1HðtÞ: (5)

Note that, unlike interaction information, differential interaction information is not symmetric, since Xi in equation 5 is a special variable. In
order to create a symmetric measure, we take the product of differential interaction information with all possible choices of the target variable:

Dm� ¼
Ym

i¼1

Dðni;XiÞ: (6)

We refer to Dm� as the delta measure, for m variables. Although this is a general, multi-variable measure, in this paper we focus on delta
computed only on 3- and 4-variable sets. We use 3 and 4-variable delta, as well as the pair-wise measure, mutual information, to scan the data
from large sets of yeast spores and detect and assemble spore tetrads and their components.

APPENDIX B

Spore similarity
Inorder to be able to cluster the spores,weneed todefineameasure of similarity of two spores based on allelic information at the centromeres.We

first start with a deterministic case, when the alleles near the centromeres are known.
Consider two vectorsX and Y , whose elements are either 1 or 2, representing allele calls at the centromere for the two corresponding spores.We

can then define a vector d ¼ ½di�Ni¼1 such that di ¼ 1 if Xi ¼ Yi, and 0 otherwise, where N is the number of centromeres. Note that if we define a
vector b ¼ ½bi� such that bi ¼ 0 if Xi ¼ Yi, and 1 otherwise, then b ¼ 12 d

Consequently, we define S, the coefficient of similarity of X and Y , as follows

S ¼ 1
N

XN

i¼1

di

The coefficient of anti-similarity U is defined similarly to S, but using vector b instead. Note that by definition U ¼ 12 S.
Given the allele calls at the centromeres, we can compute S for all possible pairs of spores and then cluster the spores based on their similarity at

the centromeres. Inmost biological examples, however, the allele values at the centromeres are unknown.We can however estimate what the allele is
at each centromere based on the recombination frequency in a given data set and the allele calls at the markers flanking the centromeres (see
Appendix G), and consequently we can estimate the coefficient of similarity between spores.

Given the probabilities PðXi ¼ aÞ and PðYi ¼ bÞ that spores X and Y have alleles a and b at the centromere i, we can define the probability that
X and Y are identical at ith position as pi:
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pi ¼ PðXi ¼ YiÞ ¼ PðXi ¼ Yi ¼ 1Þ þ PðXi ¼ Yi ¼ 2Þ

If Xi and Yi are independent, then the definition above can be simplified as

pi ¼ PðXi ¼ 1ÞPðYi ¼ 1Þ þ PðXi ¼ 2ÞPðYi ¼ 2Þ

Since we do not know the values of X and Y, we cannot compute the similarity coefficient directly, thus we need to estimate it. An estimated
coefficient of similarity ~S is computed by taking the expectation of S:

~S ¼ E½S� ¼ 1
N

XN

i¼1

pi

Note that an estimated coefficient of anti-similarity is ~U ¼ 12 E½S�.
Asanexample,weapply this similarity coefficient to the simulateddata set of 400 spores and500markerswithnonoiseormissingvalues. For each

pair of spores we compute the similarity coefficient based on the centromere allele estimates. Figure 6 shows the distributions of coefficients for the
spores from the same tetrad and for the spores from different tetrads.

This figure shows the expected pattern that, for centromeric alleles, each tetrad consists of two pairs of identical spores that are reflections of one
another.The reflected spores in each tetrad formadistributionnear 0,whereas the completely identical spores formadistributionnear 1.Ontheother
hand, the spores from different tetrads form a normal distribution centered around 0.5.

From Figure 6 it is clear that we can use the similarity coefficient to cluster the spores from the same tetrads. The distributions from Figure 6 can
be transformed by “folding” it in on itself as follows, S’ ¼ 0:52 j0:52 Sj, such that S’ is close to 0 when spores are from the same tetrads and

Figure 6 Distribution of estimated similarity coefficients for spore pairs from the same tetrad (in red) and from different tetrads (in blue) computed
on the simulated data set (500 markers, 400 spores, 0% noise, 0% missing).

Figure 7 Average (A) and stan-
dard deviation (B) of the number
of incorrect allele calls at the
centromeres computed on the
simulated data set (500 markers,
400 spores). The x-axis corre-
sponds to the fraction of the
missing values in the data set.
Each line (and the color gradi-
ent) corresponds to the noise
level, ranging from 0 to 25%.
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around 0.5 when the spores are from different tetrads. The scores in between correspond to situations when the allele call estimates at the
centromere are not enough to identify the spores from the same tetrad due to noise and missing data. We need to find a threshold T that
simultaneously maximizes the number of same tetrad spores with S’ , T as well as the number of spores from different tetrads with S’. T . We
determined that T ¼ 0:2 is the optimal threshold to correctly estimate the centromere allele calls when the number of markers is sufficient and the
noise and missing data are minimal.

APPENDIX C

Effects of noise and missing values on software components
Wenow investigate how the noise andmissing values affect the components of the software.We generated a number of simulated data sets with

varying number of markers and spores, as indicated in the text.We treated the data set as a long vector and added noise by flipping the values of the
vector at randomly selected positions. Similarly, we added missing values by erasing the values of the vector at randomly selected positions. We
considered different levels of noise and missing values, up to 25% for both.

Allele calling at centromeres: Using the simulated data we looked at the effects of noise and missing data on the estimation of alleles at the
centromeres. As expected, increasing noisemakes the centromere allele estimates worse (see Figure 7). On the other hand, the estimates do not seem
to be affected by the amount of missing data.

We also observed that a smaller number ofmarkersmakes the estimateworse. This is becausewith fewermarkers, some chromosomes either lack
flanking markers or their flanking markers are very far apart, making predicting centromere alleles difficult. Figure 8 shows that as the distance
between flanking markers increases, the number of incorrect allele calls tends to increase.

Figure 8 The distance between the flanking markers vs. the fraction of incorrect allele calls for each centromere computed on the simulated data
set (500 markers, 400 spores, no noise, and the fraction of the missing values ranging from 0 to 25%).

Figure 9 Distributions of cen-
tromere similarity coefficients
between pairs of spores from
the same tetrad (in red) and from
different tetrads (in blue). Panel
(A) shows the similarity coeffi-
cients computed from the simu-
lated data set consisting of
400 spores and 100 randomly
selected markers, whereas
500 markers were selected to
compute the coefficients in (B).
The data set had no noise or
missing values.

2082 | N. A. Sakhanenko et al.



Similarity coefficients:Wenow look at the similarity coefficients. Since the centromere allele estimatesbecome lessprecisewhen too fewmarkers are
selected, it is expected that the centromere similarity coefficientswill also not performwell. Figure 9 shows that the range of similarity scores narrows
when fewer markers are used and the coefficient distribution of spores from the same tetrads starts to overlap that of spores from different tetrads,
making it harder to cluster the spores. Note that, on the one hand, a value around 0.2 is optimal in the case of 500 markers, but on the other hand,
it is not even nearly optimal in the case of 100 markers.

A similar effect is observed when we add noise to the data set. Figure 10 shows that the distribution of similarity coefficients for spores from the
same tetrads gradually moves from the extremes toward the middle and becomes indistinguishable from the distribution of spores from different

Figure 10 Distributions of cen-
tromere similarity coefficients
between pairs of spores from
the same tetrad (in red) and from
different tetrads (in blue). The
simulated data of 500 markers
and 400 spores was generated
at 4 different levels of noise, (A)
0%, (B) 5%, (C) 20%, and (D) 25%.
The data sets had no missing
values.

Figure 11 Similar to Figure 10,
but this time the simulated data
were generated using 4 different
levels of missing information, (A)
0%, (B) 5%, (C) 20%, and (D) 25%,
and no noise was added.
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tetrads. Note that the 0.2 threshold is still usable when the noise level is relatively low, and stops working when the noise is over 5%.
On the other hand, as Figure 11 shows,missing data generally does not have a significant effect on the similarity coefficients.Moreover, this is the

case even when rather few markers are considered (100 markers).

Segregation scores: For a 4-spore set, the 2:2 segregation score measures the fraction of genetic positions where two spores have allele “A” and the
other two spores have allele “B”. Therefore, for a perfect tetrad the 2:2 segregation score is 1. This changes however when we add noise to the data
set. If p is the probability of a genetic position having noise (probability of a flipped value), then the 2:2 segregation score of a tetrad is

12 4p3ð12 pÞ þ 2p2ð12pÞ2 þ 4pð12pÞ3 ¼ 12 2pð12 pÞð3p2 2 3pþ 2Þ:

Similarly, for a 3-spore subset of a tetrad, the 2:1 segregation score decreases from 1 to: 12 p2ð12 pÞ þ pð12pÞ2 ¼ 12 pðp2 1Þ. Note that both 2:2
and 2:1 segregation scores are minimal when p ¼ 0:5. Table 3 shows the 2:2 and 2:1 segregation scores for true tetrads under different levels of noise.

APPENDIX D

Components of the software
The tetrad softwareconsistsof fourmaincomponents: thepreprocessingsteps, theheuristic search, thedirect search, and thepost-processingsteps

(see Figure 12).
The preprocessing component (steps A-C in green in Figure 12) reads the data in and cleans it by removing spores with too many missing data

points, while flagging any duplicate spores. At the next step, the software pre-computes the significance thresholds – the delta scores that correspond

n Table 3 The change of the 2:2 and 2:1 segregation values depending on the noise level

Noise 2:2 segregation 2:1 segregation

0.01 1-0.039 = 0.961 1-0.0099 = 0.9901
0.05 1-0.1765 = 0.8235 1-0.0475 = 0.9525
0.1 1-0.3114 = 0.6886 1-0.09 = 0.91
0.15 1-0.4125 = 0.5875 1-0.1275 = 0.8725
0.2 1-0.4864 = 0.5136 1-0.16 = 0.84
0.25 1-0.5391 = 0.4609 1-0.1875 = 0.8125

Figure 12 Detailed view of the
software for tetrad detection. The
flow is shown sequentially top to
bottom, left to right, with the steps
labeled with a letter/number. Four
different components of the soft-
ware are identified with different
colors (see the legend on the top
of the figure): the preprocessing is
in green, the heuristic search is in
red, the direct search is in blue,
and the post-processing is in yel-
low. The general functions are
shown in the boxes with their
resulting sets of tuples shown in
ovals. The thin arrows show where
the tuple sets are being used as
inputs to functions. Most of the
general functions shown are self-
explanatory. Function Search(N,Set)
searches for N-tuples of spores
from Set. A thin arrow entering
Search(4,Set) function indicates
that this is a shadow search that
traverses all possible quads of
spores consisting of a triplet identi-
fied by the arrow and a spore from
Set. Function Global Search(N) cor-
responds to a search for N-tuples
among all the remaining spores.
Set ClusterN in the argument of a
search function traverses all clusters
of spores with size N = 3, 4, or 5+.
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to a user-defined level of significance (p-value=0.05 by default set by the software parameters D4_PVALUE, D3_PVALUE, D2_PVALUE) for
quads, triplets, and pairs. These thresholds correspond to the minimal delta scores required for a tuple to be considered a real tetrad or part of a
real tetrad. To compute the thresholds, the software generates a set of N random tuples set by the parameter RANDOM_SAMPLE_SIZE (equal
10000 by default), calculates delta scores, and finds the score corresponding to the preset p-value. Finally, the preprocessing component attempts
to cluster the spores based on their centromere similarity (the user may choose to switch the clustering off by setting the parameter CLUS-
TERING to 0). To cluster the spores, the software first estimates the recombination frequency as a function of physical distance (see Appendix
G). On large datasets this step can take too long, therefore the user can skip it (by setting CEN_CALLING to 0) and use the default value of the
conversion factor (COS_PER_MEGA=3.7) derived from (Mancera et al. 2008). Given the recombination frequency, the physical position of
centromere-flanking markers and the alleles observed there (see Appendix G), the software computes similarity coefficient between all pairs of
spores (see Appendix B) and constructs a graph of spores such that two spores represented by nodes are connected with an edge if their
similarity coefficient is above the threshold SIMILARITY_COEFFICIENT (the default value is 0.2). Note that this threshold can be adjusted by
the user for better performance (see Appendix C). Given the graph, the software detects clusters of highly connected spores using the fast

Figure 13 Comparison of delta
with interaction information for
3- and 4-spore cases. All mea-
sures were computed on the
simulated data (1000 markers,
100 tetrads, 1% noise, and 5%
missing data). Panel (A) shows
the scatter plot of Interaction
Information scores vs. delta scores
computed on all possible groups
of 3 spores. Panel (B) shows the
scatter plot of the scores com-
puted on all possible groups of
4 spores. Each group is colored
based on the number of sister
spores in a tuple. Note that only
1million randomly sampled tuples
are shown for the groups of tuples
with no sister spores.

Figure 14 Comparison of the
amount of information between
2-spore and 3-spore levels
(A-B) and between 3-spore and
4-spore levels (C-D) as mea-
sured by interaction information
(A, C) and delta (B, D). All mea-
sures were computed on the
same data as in Figure 2. Panels
(A-B) show the scatter plot of
scores computed on all possible
groups of 3 spores and their two-
spore subsets while panels (C-D)
show the scores for groups of
4 spores and their 3-spore sub-
sets. Each group is colored red
if all spores of the group came
from the same tetrad, blue if all
spores except one came from the
same tetrad, and green other-
wise. The scores of the blue and
red sets are plotted in their en-
tirety, whereas for the green sets
we randomly selected 1 million
groups.
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n Table 4 The tetrad detection software applied to various simulated test sets using multiple different parameter settings

param noise miss
cen

calling sim
D4

p-value
Seg
2:2

Seg
2:1 Run time Acc.

small_default Small (100 tetrads/
1000 markers)

Half (500 markers) 0 0 yes 0.2 0.05 0.9 0.95 6.1 100%
small_500_00 0 0 yes 0.21 0.05 0.9 0.95 6.0 100%
small_default 0 0.05 yes 0.2 0.05 0.9 0.95 5.8 100%
small_500_m05 0 0.05 yes 0.19 0.05 0.9 0.95 5.7 100%
small_default 0 0.1 yes 0.2 0.05 0.9 0.95 6.2 100%
small_500_m10 0 0.1 yes 0.19 0.05 0.9 0.95 6.2 100%
small_default_n05 0.05 0 yes 0.2 0.05 0.75 0.88 6.7 100%
small_500_05 0.05 0 yes 0.21 0.05 0.75 0.88 6.7 100%
small_default_n10 0.1 0 yes 0.2 0.05 0.6 0.83 19.0 100%
small_500_10 0.1 0 yes 0.24 0.05 0.6 0.83 8.1 100%
small_default Full (984 markers) 0 0 yes 0.2 0.05 0.9 0.95 13.6 100%
small_984_00_a 0 0 yes 0.13 0.05 0.9 0.95 12.9 100%
small_984_00_b 0 0 yes 0.18 0.05 0.9 0.95 13.3 100%
small_default 0 0.05 yes 0.2 0.05 0.9 0.95 13.3 100%
small_984_m05_a 0 0.05 yes 0.14 0.05 0.9 0.95 12.3 100%
small_984_m05_b 0 0.05 yes 0.17 0.05 0.9 0.95 12.8 100%
small_default 0 0.1 yes 0.2 0.05 0.9 0.95 13.5 100%
small_984_m10_a 0 0.1 yes 0.13 0.05 0.9 0.95 12.1 100%
small_984_m10_b 0 0.1 yes 0.18 0.05 0.9 0.95 13.1 100%
small_default_n05 0.05 0 yes 0.2 0.05 0.75 0.88 14.3 100%
small_984_05 0.05 0 yes 0.2 0.05 0.75 0.88 14.4 100%
small_default_n10 0.1 0 yes 0.2 0.05 0.6 0.83 18.0 100%
small_984_10 0.1 0 yes 0.22 0.05 0.6 0.83 16.0 100%
medium_default Medium (1000 tetrads/

10000 markers)
10% set (1000

markers)
0 0 no 0.11 0.05 0.9 0.95 02:11.1 100%

medium_1000_00 0 0 no 0.12 0.05 0.9 0.95 02:10.2 100%
medium_default 0 0.05 no 0.11 0.05 0.9 0.95 02:37.4 100%
medium_1000_m05 0 0.05 no 0.12 0.05 0.9 0.95 02:48.3 100%
medium_default 0 0.1 no 0.11 0.05 0.9 0.95 02:54.9 100%
medium_1000_m10 0 0.1 no 0.12 0.05 0.9 0.95 02:27.2 100%
medium_default_n05 0.05 0 no 0.11 0.05 0.75 0.88 02:15:16.7 100%
medium_1000_05_a 0.05 0 no 0.14 0.05 0.75 0.88 27:15.2 100%
medium_1000_05_b 0.05 0 no 0.16 0.05 0.75 0.88 35:54.9 100%
medium_default_n10 0.1 0 no 0.15 0.05 0.6 0.83 20:06:24.1 99.8%
medium_1000_10_a 0.1 0 no 0.15 0.08 0.6 0.83 19:21:00.7 99.8%
medium_1000_10_b 0.1 0 no 0.16 0.08 0.6 0.83 14:14:47.7 99.8%
medium_1000_10_c 0.1 0 no 0.17 0.08 0.6 0.83 10:54:27.6 99.0%
medium_default Full (9984 markers) 0 0 no 0.11 0.05 0.9 0.95 03:39.1 100%
medium_9984_00_a 0 0 no 0.1 0.05 0.9 0.95 03:38.2 100%
medium_9984_00_b 0 0 no 0.12 0.05 0.9 0.95 03:42.0 100%
medium_default 0 0.05 no 0.11 0.05 0.9 0.95 04:12.3 100%
medium_9984_m05_a 0 0.05 no 0.1 0.05 0.9 0.95 04:09.1 100%
medium_9984_m05_b 0 0.05 no 0.12 0.05 0.9 0.95 04:13.2 100%
medium_default 0 0.1 no 0.11 0.05 0.9 0.95 03:38.2 100%
medium_9984_m10_a 0 0.1 no 0.09 0.05 0.9 0.95 03:32.5 100%
medium_9984_m10_b 0 0.1 no 0.12 0.05 0.9 0.95 03:36.2 100%
medium_default_n05 0.05 0 no 0.11 0.05 0.75 0.88 33:42.0 100%
medium_9984_05_a 0.05 0 no 0.12 0.05 0.75 0.88 17:35.0 100%
medium_9984_05_b 0.05 0 no 0.13 0.05 0.75 0.88 41:01.2 100%
medium_default_n10 0.1 0 no 0.15 0.05 0.6 0.83 50:53:33.1 100%
medium_9984_10_a 0.1 0 no 0.16 0.05 0.6 0.83 39:08:46.5 100%
medium_9984_10_b 0.1 0 no 0.17 0.05 0.6 0.83 26:43:15.6 100%

(continued)
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algorithm for community detection in large graphs (Clauset et al. 2004). We used the implementation of the algorithm from the python igraph
library (function community_fastgreedy).

If the user chooses to use clustering of the spores, then the software continues by executing the heuristic search component (steps 1-13 in red
in Figure 12). During the heuristic search the software attempts to detect all tetrads within each cluster either by searching for the tetrads directly
(step 1) or indirectly using a shadow approach by first computing all triplets (step 3) and then looking for tetrads as a combination of a triplet with
another spore from the cluster (step 4). After that, the heuristic search attempts to use the remaining triplets detected within each cluster to detect
the tetrads outside the clusters by combining each triplet with each spore outside a cluster – a version of a shadow search (steps 6, 9, and 12).
The tetrads, detected at each step of the heuristic search, are removed from the downstream analysis, which considerably reduces the size of
the search at later steps.

Once the heuristic search is complete, the software proceeds to execute the direct search component (steps 14-22 in blue in Figure 12). The
search takes all the remaining spores and uses the shadow approach to first find candidate triplets (step 14) and then to detect the tetrads that
consist of a triplet and another spore. Once the shadow search is complete, the software proceeds to search for tetrads exhaustively (step 17).
After that, the software extracts the remaining unused triplets, consisting of three sister spores, and searches for pairs of sister spores among the
remaining group.

The last component of the software (step D in yellow in Figure 12) assembles all the detected tuples, labels them, and outputs in a user-friendly
format.

APPENDIX E

Comparison between Interaction Information and Delta at different levels
Figure 13 shows a general comparison between Interaction Information and Delta at 3-variable level as well as 4-variable level. Conversely,

Figure 14 shows the relationship between 3-variable and 4-variable (as well as 2-variable and 3-variable) Interaction Informations and Deltas.

APPENDIX F

Yeast data simulation
Error-free budding yeast tetrad genotypes were simulated in the form of a table using a customR script (see tetrad_sim_1_commented.R file in

the software package), with each row representing a single spore and each column a randomly generated marker position. The number of
marker positions and tetrads are specified by the user. Tetrads are encoded as consecutive groups of 4 spores with the first 2 spore rows having
the same centromere alleles and the second 2 having the mirror pattern. Parental alleles are encoded as “1” and “2”. In every tetrad, each
chromosome experienced one randomly placed obligatory crossover, plus an average (Poisson) of 6 further randomly placed crossovers
per megabase (Mancera et al. 2008).

APPENDIX G

Probability of crossovers
We estimated the probability that each centromere was derived from the “A” or “B” haplotypes based on the alleles observed at the markers

flanking each centromere and the probability of crossovers occurring in the centromere-marker intervals. These probabilities were calculated from

n Table 4, continued

param noise miss
cen

calling sim
D4

p-value
Seg
2:2

Seg
2:1 Run time Acc.

large_default Large (1000 tetrads/
100000 markers)

10% set (10000
markers)

0 0 no 0.12 0.05 0.9 0.95 03:36.6 100%
large_10K_00 0 0 no 0.07 0.05 0.9 0.95 03:28.3 100%
large_default 0 0.05 no 0.12 0.05 0.9 0.95 03:40.0 100%
large_10K_m05 0 0.05 no 0.11 0.05 0.9 0.95 03:42.3 100%
large_default 0 0.1 no 0.12 0.05 0.9 0.95 03:45.0 100%
large_10K_m10 0 0.1 no 0.09 0.05 0.9 0.95 03:35.7 100%
large_default_n05 0.5 0 no 0.12 0.05 0.75 0.88 18:46.4 100%
large_10K_05_a 0.5 0 no 0.13 0.05 0.75 0.88 44:50.8 100%
large_default_n10 0.1 0 no 0.14 0.05 0.6 0.83 48:06:51.2 100%
large_10K_10_a 0.1 0 no 0.16 0.05 0.6 0.83 31:13:42.7 100%
large_default Half (50000

markers)
0 0 no 0.12 0.05 0.9 0.95 10:51.9 100%

large_50K_00_a 0 0 no 0.07 0.05 0.9 0.95 10:45.2 100%
large_default 0 0.05 no 0.12 0.05 0.9 0.95 10:41.2 100%
large_50K_m05_a 0 0.05 no 0.05 0.05 0.9 0.95 08:33.1 100%
large_default 0 0.1 no 0.12 0.05 0.9 0.95 10:43.9 100%
large_50K_m10_a 0 0.1 no 0.07 0.05 0.9 0.95 10:40.6 100%
large_default_n05 0.5 0 no 0.12 0.05 0.75 0.88 36:59.5 100%
large_50K_05_a 0.5 0 no 0.14 0.05 0.75 0.88 03:34:11.0 100%
large_default_n10 0.1 0 no 0.14 0.05 0.6 0.83 296:17:18.6 100%
large_50K_10_a 0.1 0 no 0.15 0.05 0.6 0.83 198:09:45.4 100%
large_50K_10_b 0.1 0 no 0.17 0.05 0.6 0.83 93:53:41.7 100%
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the physical sizes of the intervals (in basepairs) using a global estimate of the relationship between physical and genetic distance. This estimate
(b) was derived by fitting Haldane’s formula with physical distance replacing genetic distance to the observed recombinant fraction between
all markers within 250kb of one another. Specifically the formula

r ¼ 12 ebð22Þp;

where r is a recombinant fraction, p is physical distance in bp, and b is the conversion factor between genetic and physical distance, was fit
using the nls (non-linear least squares) command in R.

As an alternative to this approach, the estimate of total crossovers per meiosis from (Mancera et al. 2008) can be used to provide a coefficient
for converting physical to genetic distances in S. cerevisiae.

APPENDIX H

Complete set of simulated tests
Our software was tested on a simulated test sets derived from the sets Small, Medium, and Large and compared the final tetrad assignments

to ground truth from the simulations. Table 4 presents the comprehensive list performed tests.
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