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Abstract
Implicit	and	explicit	use	of	expert	knowledge	to	inform	ecological	analyses	is	becoming	
increasingly	 common	because	 it	often	 represents	 the	 sole	 source	of	 information	 in	
many	circumstances.	Thus,	there	is	a	need	to	develop	statistical	methods	that	explic-
itly	 incorporate	 expert	 knowledge,	 and	 can	 successfully	 leverage	 this	 information	
while	properly	accounting	for	associated	uncertainty	during	analysis.	Studies	of	cause-	
specific	 mortality	 provide	 an	 example	 of	 implicit	 use	 of	 expert	 knowledge	 when	
causes-	of-	death	are	uncertain	and	assigned	based	on	the	observer’s	knowledge	of	the	
most	likely	cause.	To	explicitly	incorporate	this	use	of	expert	knowledge	and	the	as-
sociated	uncertainty,	we	developed	a	statistical	model	 for	estimating	cause-	specific	
mortality	using	a	data	augmentation	approach	within	a	Bayesian	hierarchical	frame-
work.	Specifically,	for	each	mortality	event,	we	elicited	the	observer’s	belief	of	cause-	
of-	death	 by	 having	 them	 specify	 the	 probability	 that	 the	 death	 was	 due	 to	 each	
potential	cause.	These	probabilities	were	then	used	as	prior	predictive	values	within	
our	framework.	This	hierarchical	framework	permitted	a	simple	and	rigorous	estima-
tion	method	 that	was	 easily	modified	 to	 include	 covariate	 effects	 and	 regularizing	
terms.	 Although	 applied	 to	 survival	 analysis,	 this	 method	 can	 be	 extended	 to	 any	
event-	time	analysis	with	multiple	event	types,	for	which	there	is	uncertainty	regarding	
the	true	outcome.	We	conducted	simulations	to	determine	how	our	framework	com-
pared	to	traditional	approaches	that	use	expert	knowledge	implicitly	and	assume	that	
cause-	of-	death	is	specified	accurately.	Simulation	results	supported	the	inclusion	of	
observer	uncertainty	in	cause-	of-	death	assignment	in	modeling	of	cause-	specific	mor-
tality	to	improve	model	performance	and	inference.	Finally,	we	applied	the	statistical	
model	 we	 developed	 and	 a	 traditional	 method	 to	 cause-	specific	 survival	 data	 for	
white-	tailed	deer,	and	compared	results.	We	demonstrate	that	model	selection	results	
changed	 between	 the	 two	 approaches,	 and	 incorporating	 observer	 knowledge	 in	
cause-	of-	death	 increased	 the	 variability	 associated	with	parameter	 estimates	when	
compared	to	the	traditional	approach.	These	differences	between	the	two	approaches	
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1  | INTRODUCTION

Expert	 knowledge	 is	 increasingly	 being	 recognized	 as	 an	 import-
ant	 source	 of	 information	 in	 ecological	 modeling	 for	 management,	
research,	 and	 policy	 development	 (Drescher	 et	al.,	 2013;	 Kuhnert,	
Martin,	 &	 Griffiths,	 2010)	 and	 is	 particularly	 valuable	 when	 other	
empirical	sources	of	 information	are	 lacking	(e.g.,	emergence	of	new	
infectious	disease	or	rare	species’	habitat	preferences).	Development	
of	 methods	 incorporating	 expert	 knowledge	 into	 statistical	 models	
has	blossomed	(Albert	et	al.,	2012;	Low	Choy,	O’Leary,	&	Mengersen,	
2009),	especially	within	the	Bayesian	paradigm	that	inherently	views	
probability	as	a	measure	of	uncertainty	(Gelman	et	al.,	2014;	Lindley,	
2000).	This	interpretation	facilitates	a	rigorous	approach	to	integrating	
expert	knowledge	via	prior	distributions	(Albert	et	al.,	2012;	Low	Choy	
et	al.,	2009).

Use	of	expert	knowledge	has	been	criticized	as	subjective	and	un-
repeatable	 (Cox,	2000;	Drescher	et	al.,	2013;	Johnson	&	Gillingham,	
2004;	Kuhnert	et	al.,	2010).	However,	expert	knowledge	often	is	used	
implicitly	 in	 ecological	 studies,	 although	 typically	 not	 recognized	 as	
such.	Instances	of	implicit	use	generally	arise	when	an	outcome	of	in-
terest	cannot	be	assessed	with	certainty,	and	response	variables	are	
assigned	 based	 on	 a	 researcher’s	 judgment.	This	 assigned	 response	
value	 is	 then	 treated	as	 a	 fixed,	 known	value	with	 analytical	 proce-
dures	proceeding	in	standard	fashion,	while	ignoring	the	implicit	use	
of	 expert	 knowledge	 and	 potential	 inherent	 uncertainty	 associated	
with	the	observer’s	assignment.	However,	to	properly	account	for	the	
uncertainty	during	analyses	and	model	 selection	procedures,	and	 to	
ensure	proper	inference	is	made	regarding	the	hypotheses	of	interest,	
the	 researcher’s	 uncertainty	 associated	with	 each	 of	 their	 assigned	
responses	 should	 be	 quantified	 and	 incorporated	 into	 estimation	
procedures.

To	demonstrate	the	importance	of	explicitly	rather	than	implicitly	
incorporating	 expert	 knowledge	 into	 statistical	 developments,	 we	
focus	 on	 estimation	 of	 cause-	specific	 mortality.	 Ecological	 studies	
investigating	cause-	specific	mortality	 typically	 rely	on	capturing	and	
marking	 individuals	with	 tracking	 transmitters	 (Heisey	 &	 Patterson,	
2006;	Pollock,	Winterstein,	Bunck,	&	Curtis,	1989;	Walsh,	Dreitz,	&	
Heisey,	2015)	that	allow	researchers	to	monitor	animals	and	identify	
time	of	death.	Researchers	investigate	these	mortality	events	and	as-
sign	a	cause-	of-	death	based	on	their	expert	knowledge.	These	types	of	
studies	represent	implicit	use	of	expert	knowledge	because	cause-	of-	
death	assignments	are	associated	with	varying	degrees	of	certainty.	For	
example,	cause-	of-	death	of	a	hunter-	killed	animal	may	be	considered	

known	when	reported	to	the	researcher	or	observed	directly,	whereas	
there	 may	 be	 large	 uncertainty	 associated	 with	 cause-	of-	death	 in	
other	instances	(e.g.,	distinguishing	between	predation	and	starvation	
followed	by	 scavenging).	 In	 this	 latter	 case,	 simply	 choosing	 a	 “best	
guess”	 of	 cause-	of-	death	 based	 on	 the	 researcher’s	 knowledge	 can	
lead	to	misclassification,	potential	bias	in	the	cause-	specific	hazards,	
an	underestimation	of	the	variance	of	parameter	estimates,	and	incor-
rect	model	selection	results	(Liberg	et	al.,	2012;	Moreno-	Betancur	&	
Latouche,	2013;	Van	Rompaye,	Jaffar,	&	Goetghebeur,	2012).	To	pro-
vide	more	accurate	estimate	of	cause-	specific	hazards,	and	explicitly	
model	expert	knowledge	regarding	uncertainty	in	cause-	of-	death	as-
signments,	we	extend	current	statistical	modeling	approaches	(Cross	
et	al.,	2015)	to	incorporate	uncertainty	in	cause-	of-	death	assignments	
using	 a	 data	 augmentation	 (Tanner	&	Wong,	 1987)	 approach	 based	
upon	prior	 predictive	values	 (PP)	 elicited	 from	 the	 researcher	when	
they	assigned	each	cause-	of-	death.

Our	objectives	were	to	(1)	describe	an	approach	for	including	ex-
pert	knowledge	regarding	uncertainty	of	event	type	into	a	hierarchi-
cal	model	of	cause-	specific	and	baseline	hazards,	(2)	simulate	data	to	
demonstrate	performance	of	model	with	uncertainty	including	effects	
on	accuracy	and	precision,	(3)	predict	annual	cause-	specific	mortality	
outside	the	hunting	season	for	white-	tailed	deer	using	our	hierarchical	
modeling	framework,	and	4)	compare	parameter	estimates	using	our	
approach	with	those	from	the	standard	approach.

2  | METHODS

Our	 approach	 to	 estimate	 cause-	specific	 mortality	 expands	 on	 the	
two-	component	model	of	Cross	et	al.	(2015).	For	the	first	component,	
we	modeled	 the	overall	 event	hazard	using	 the	 conditional	 survival	
function	 (Kalbfleisch	&	Prentice,	1980)	where	we	defined	the	over-
all	event	hazard	as	any	death	irrespective	of	the	source	of	mortality,	
excluding	known	censoring	events	(e.g.,	survived	to	the	end	of	study,	
dropped	collar).	The	likelihood	contribution	of	the	ith	subject	was	as	
follows:

where Ti	=	time	 of	 death;	 ei	=	time	 of	 entry;	 ri	=	time	 that	 the	 sub-
ject	was	 last	 known	 to	 be	 alive;	 si	=	time	 subject	was	 first	 encoun-
tered	dead;	and	h	(t)	=	instantaneous	hazard.	This	formulation	allows	
left-	truncated	and	 interval-	censored	data.	Under	 the	assumption	of	

Pr(r≤Ti< s|Ti≥ e)=exp

(
− �

ri

ei

h(t)dt

)[
1−exp

(
− �

si

ri

h(t)dt

)]
,

can	impact	reported	results,	and	therefore,	it	is	critical	to	explicitly	incorporate	expert	
knowledge	in	statistical	methods	to	ensure	rigorous	inference.
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independence	of	 individual	fates,	 likelihood	contributions	were	mul-
tiplied	across	subjects.

For	 estimation,	we	assumed	 r	 and	 s	were	 integers,	 and	 approxi-
mated	 the	 cumulative	 hazard	 function	 using	 a	 piece-	wise	 constant	
hazard	 model:	 ∫ s

r
h(t)dt=

s∑
r

Λu,	 where	 the	 unit	 cumulative	 hazard,	
Λu= ∫ r+1

r
h(t)dt.	We	 focused	our	modeling	 efforts	 on	 the	 natural	 log	

of	the	unit	cumulative	hazard,	and	incorporated	covariates	as	follows:	
ln	(Λi,u)	=	γu + βj,uxi,j,u	 ln	(Λi,u)	=	γu + βj,uxi,j,u,	 where	 γu	 represents	 the	
baseline	 log	cumulative	hazard	for	the	uth	 interval;	xi,j,u =	the	 jth	co-
variate	for	the	ith	subject	during	the	uth	interval;	and	βj,u	=	is	the	effect	
of	the	jth	covariate	during	the	uth	interval	and	is	the	log	hazard	ratio.	
This	formulation	closely	follows	the	stepwise	generalized	linear	model	
approach	using	the	complementary	 log–log	 link	or	 the	discrete	data	
proportional	hazards	model	 (Heisey,	Shaffer,	&	White,	2007;	Heisey	
et	al.,	2010;	Prentice	&	Gloeckler,	1978).

To	 account	 for	 the	 competing	 risks	 nature	 of	 various	 potential	
sources	of	mortality,	we	partitioned	the	overall	event	hazard	by	each	
source	of	mortality	in	the	second	component	of	our	model.	Conditional	
on	death,	we	used	the	categorical	distribution	to	estimate	the	proba-
bilities	the	death	was	due	to	the	various	potential	sources	of	mortality,	
hereafter	called	cause-	specific	probabilities	(Cross	et	al.,	2015;	Figure	
S1).	The	probability	an	individual’s	death	was	associated	with	a	specific	
source	of	mortality	 (πk)	was	modeled	as:	causei,u,k	~	Categorical[πu,k],	
where	causei,u,k	=		indicator	(1	or	0)	if	cause-	of-	death	for	the	ith	sub-
ject	during	the	uth	 interval	was	assigned	by	the	observer	to	the	kth	
source	of	mortality.	Additionally,	as	described	below	in	our	applied	ex-
ample,	covariate	information	can	be	incorporated	via	the	multinomial	
logit	model:

where x′
i,u
	is	a	row	vector	of	covariates	and	β	is	the	vector	of	parameters.

Thus,	combining	our	model	components	yields	the	following	joint	
probability	that	a	subject	was	alive	through	interval	U	−	1,	died	during	
interval	U,	and	the	cause-	of-	death	was	assigned	to	the	kth	source	of	
mortality:

2.1 | Accounting for uncertainty in cause- of- 
death assignment

In	 the	 final	 step	 in	model	 development,	we	 incorporated	 observ-
ers’	expert	knowledge	regarding	likely	cause-	of-	death	for	each	dead	
individual.	Within	the	Bayesian	paradigm	that	views	probability	as	
a	measure	of	uncertainty,	we	extended	our	two-	component	model	
by	 eliciting	 the	 observer’s	 knowledge,	 via	 PP,	 that	 each	 potential	
source	of	mortality	was	the	true	cause-	of-	death.	Our	approach	fol-
lows	classical	misclassification	theory	(Hoenig,	Hanumara,	&	Heisey,	
2002)	 that	 involves	 two	 sets	 of	 “atomic”	 parameters	 from	which	

quantities	 of	 interest	 are	 constructed.	 These	 sets	 are	 referred	 to	
as	(1)	the	misclassification	parameters	that	describe	the	probability	
of	an	observer	assigning	a	cause-	of-	death	conditional	on	 the	 true	
cause-	of-	death	 and	 (2)	 prevalence	 parameters	 that	 describe	 the	
true	probability	of	dying	due	to	each	potential	source	of	mortality.	
Misclassification	 appears	 to	 have	 received	 its	 first	 applications	 in	
epidemiological	disease	testing	where	misclassification	parameters	
generalize	 the	 binary	 epidemiological	 concepts	 of	 test	 sensitivity	
and	specificity.

In	our	model,	we	assumed	a	mortality,	m,	was	randomly	selected	
and	the	source	of	mortality	is	identified	with	an	integer	value,	say	1,…,K. 
Each	mortality	had	two	associated	random	variables:	(1)	the	true	fate,	
Am = i	that	was	latent/unobserved	and	(2)	Em = j	was	the	error-	prone	
classification	by	 the	observer.	We	defined	each	prevalence	parame-
ter	as	Pr

(
Am= i

)
=πi	that	was	the	cause-	specific	fate	proportion.	The	

misclassification	 parameters	 were	 defined	 as	 Pr
(
Em= j|Am= i

)
=ϕij,	

and	 for	a	 fixed	 i,	 these	sum	to	1	across	 j.	Each	of	 these	parameters	
represents	the	probability,	given	the	latent	fate	is	i,	and	the	observer	
assigned	 the	mth	mortality	 to	 source	 j.	 They	 are	 nuisance	 parame-
ters	that	must	be	accommodated	to	prevent	inaccurate	estimation	of	
parameters	 of	 biological	 interest	 (i.e.,	 prevalence).	The	 remainder	 of	
our	model	is	constructed	from	these	prevalence	and	misclassification	
parameters.

Our	 framework	 is	 based	 on	 the	 assumption	 that	 the	 observer	
uses	evidence	at	the	death	site	to	make	their	best	guess	regarding	
source	 of	mortality,	Em.	 Thus,	 although	Em	 denotes	 an	 error-	prone	
assignment,	 it	can	also	be	thought	of	as	representing	the	summary	
of	death	site	evidence.	Thus,	we	argue	the	PPs	are	the	summary	of	
the	observers’	best	guesses	of	the	probability	the	true	fate	Am	was	of	
type	 i,	given	the	observer	concluded	Em = j	based	on	the	death	site	
evidence.	More	formally,	the	PPs	are	guesses	of	ηij=Pr

(
Am= i|Em= j

)
. 

In	epidemiology,	such	quantities	are	referred	to	as	“predictive	values”	
because	they	represent	the	value	of	observed	quantities	(test	results)	
for	 predicting	 the	 true	 biological	 state	 of	 interest.	The	 joint	 distri-
bution	 of	 the	 combinations	 of	 the	 bivariate	 categorical	 variables,	
Pr

(
Am= i,Em= j

)
,	is	given	as:

Prior	predictive	values	can	be	constructed	from	Γ	by	simply	nor-
malizing	the	columns	of	the	jth	row	to	sum	to	1:

Of	course,	it	would	be	preferable	for	observers	to	have	reported	
the	true	fate	Am,	but	this	is	often	infeasible.	Therefore,	in	lieu	of	ob-
serving	Am’s	directly,	a	correction	was	necessary	 to	 the	Em’s	 to	esti-
mate	prevalence.	Assuming	mortality	m	was	drawn	randomly,	the	Em’s	
are	 representative	 of	 the	 population	 distribution	 of	 Em’s,	 and	 if	 the	

πi,u,k=

⎡
⎢⎢⎢⎢⎣

exp (x�
i,u
�)

K∑
k=1

exp (x�
i,u
�)

⎤
⎥⎥⎥⎥⎦
,

Pr (t<Ti< t+Δ,K=k|Ti> t)=ψi,k,u=exp

(
−

U−1∑
u=1

Λi,u

)
×
[
1−exp

(
Λi,U

)]
×πi,u,k.
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.
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expected	value	of	Pr
(
Am= i|Em= j

)
	is	taken	with	respect	to	the	Em,	we	

obtain	the	expected	value	of	Am,	or	the	prevalence.	This	is	the	justifica-
tion	of	our	data	augmentation-	like	approach,	described	below,	where	
we	drew	 random	 samples	 from	 the	PP	distribution	 that	we	 assume	
represents	an	approximation	to	Pr

(
Am= i|Em= j

)
.	This	provided	a	more	

accurate	 approximation	 of	 the	 “true”	 data	Am	 than	 using	 the	 error-	
prone	assignments,	Em.	Our	simulations	test	this	theory	using	a	rather	
conservative	approach	to	generating	reasonable	PPs.

To	 provide	 an	 example	 of	 the	 implementation	 of	 the	 elicitation	
process,	assume	an	observer	believed	Em	=	“source	1.”	We	then	elic-
ited	the	likelihood	of	each	mortality	source	being	the	cause-	of-	death	
given Em	=	“source	1,”	for	which	the	observer	assigned	η1,1=0.75	and	
η2,1=0.25	 for	the	two	potential	mortality	sources.	This	provided	the	
vector,	PP	=	 [0.75,	0.25]	that	 inherently	quantified	their	uncertainty	
of	the	true	cause-	of-	death,	Am.	If	the	observer	was	completely	certain,	
“source	1”	was	the	cause-	of-	death	they	would	specify	η1,1=1,	and	all	
remaining	ηi,j=0.

Once	we	had	elicited	observer-	specified	PP	for	each	mortality,	we	
used	data	augmentation	methods	 (Tanner	&	Wong,	1987)	within	an	
MCMC	algorithm	to	estimate	overall	event	hazard	and	cause-	specific	
probabilities,	while	 incorporating	 observer-	specified	 PP.	We	 treated	
true	cause-	of-	death	for	each	individual	as	an	unobserved,	latent	vari-
able,	and	during	each	MCMC	iteration,	this	cause-	of-	death	was	drawn	
from	a	categorical	distribution	whose	parameters	are	specified	by	the	
PP	for	that	individual.

In	 summary,	 our	 statistical	 approach	 uses	 a	 two-	component	
model	 to	 estimate	 overall	 event	 hazard	 rate	 and	 cause-	specific	
probabilities,	 and	 incorporates	 expert	 knowledge	 to	 quantify	 the	
uncertainty	of	true	cause-	of-	death.	Implementing	this	model	within	
a	 Bayesian	 hierarchical	 framework	 permits	 a	 simple	 and	 rigorous	
estimation	method	that	can	be	modified	easily	to	include	covariate	
effects	and	regularizing	terms.	Lastly,	although	formulated	in	terms	
of	 survival	 analysis,	 this	 approach	 is	 applicable	 to	 any	event-	time	
analyses	where	multiple	 types	of	events	are	possible,	 there	 is	un-
certainty	 in	 the	event	 type,	and	expert	knowledge	can	be	elicited	
regarding	the	type	of	event.

2.2 | Simulations

We	evaluated	the	performance	of	our	statistical	approach	relative	
to	current	techniques	via	simulation.	We	simulated	mortality	data-
sets	for	50	individuals,	and	we	generated	failure	times	for	each	in-
dividual	using	an	exponential	distribution	with	a	rate	of	0.1.	We	set	
our	study	 length	to	36	months,	and	 individuals	whose	failure	time	
exceeded	the	length	of	the	study	were	considered	right-	censored.	
We	 determined	 the	 observer-	assigned	 cause-	of-	death	 for	 each	
individual	mortality	 using	 unequal	 probability	 sampling	where	 the	
sampling	 weight	 for	 the	 jth	 potential	 sources	 of	 mortality,	 Pr(Em 
= j),	was	 the	 sum	of	 jth	 row	of	Γ.	Next	 using	 unequal	 probability	
sampling	with	 sampling	weights	 =	ηij,	 as	 described	 above,	we	 de-
termined	true	cause-	of-	death	conditional	on	the	observer-	assigned	
cause-	of-	death.	Lastly,	we	created	the	vector	of	PP	for	each	mor-
tality.	 We	 generated	 these	 values	 from	 a	 Dirichlet	 distribution	

with	 parameters	 equal	 to	 the	 jth	 row	 of	Γ,	 corresponding	 to	 the	
observer-	assigned	cause-	of-	death	determined	previously.	This	dis-
tribution	was	constrained	such	that	the	jth	element	of	the	PP	vec-
tor	was	the	maximum	element.	This	constraint	is	needed	to	ensure	
the	observer-	assigned	cause-	of-	death	will	have	the	largest	PP.	We	
implemented	the	constraint	using	a	naïve	rejection	sampler	(Robert,	
1995).

To	assess	 the	 influence	of	varying	 the	prevalence	 (πi)	 and	mis-
classification	parameters	 (ϕij),	we	evaluated	four	different	patterns	
of	mortality	by	setting	the	vector	of	prevalence	parameters	to	one	of	
the	following:	(1)	[0.4,	0.3,	0.2,	0.1];	(2)	[0.1,	0.2,	0.3,	0.4];	(3)	[0.45,	
0.45,	 0.05,	 0.05];	 or	 (4)	 [0.7,	 0.1,	 0.1,	 0.1].	We	 also	 created	 nine	
confusion/misclassification	 matrices	where	 the	 diagonal	 elements	
(i.e.,	 probability	 of	 correctly	 assigning	 cause-	of-	death)	were	 equal	
and	 ranged	 from	0.25	 to	1.00,	and	off-	diagonal	elements	were	all	
equal,	indicating	if	cause-	of-	death	was	incorrectly	assigned,	each	re-
maining	source	of	mortality	was	equally	likely	to	be	assigned	as	the	
cause-	of-	death	 (see	Supporting	 Information).	Additionally,	we	cre-
ated	a	classification	matrix	to	represent	the	common	field	situation	
where	the	first	two	mortality	sources	are	more	likely	to	be	confused	
with	each	other,	while	the	remaining	sources	of	mortality	tend	to	be	
correctly	classified.	The	classification	matrix	(C10)	we	used	for	this	
scenario	was	as	follows:

Lastly,	we	created	a	classification	matrix	where	the	first	source	
of	mortality	may	be	confused	with	a	second,	but	the	second	is	cor-
rectly	 classified	 at	 a	 high	 rate,	 and	 remaining	 sources	 tend	 to	 be	
correctly	 classified.	The	 associated	 classification	matrix	 (C11)	was	
as	follows:

We	generated	500	datasets	under	each	combination	of	the	preva-
lence	and	misclassification	parameters.

Once	we	 generated	 data,	we	 estimated	 the	 hazard	 and	 prob-
ability	 of	 dying	 from	 the	 four	 sources	 of	 mortality	 using	 current	
Bayesian	 approaches	 that	 assume	 no	 uncertainty	 in	 the	 assign-
ment	of	the	cause-	of-	death	 (Cross	et	al.,	2015),	our	approach	that	
includes	 expert	 knowledge	 via	 observer	 prior	 distributions	 as	 de-
scribed	above,	and	compared	them	to	a	model	 in	which	observers	
correctly	 assigned	 cause-	of-	death.	 For	 each	 model’s	 parameters,	
we	created	three	MCMC	chains,	and	ran	them	for	15,000	iterations	
with	 a	 1,500	 iteration	 burn-	in	 period	 that	 in	 preliminary	 analyses	
did	not	exhibit	evidence	of	nonconvergence.	We	used	a	normal	(0,	
106)	prior	 for	 the	natural	 log	of	 the	hazard	 rate,	 and	we	specified	
the	parameters	for	the	Dirichlet	prior	distribution	=	[1,	1,	1,	1]	for	
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the	vector	of	multinomial	probabilities	associated	with	dying	 from	
each	source	of	morality	under	 the	current	approach.	We	repeated	
the	 above	 data	 and	 estimation	 procedures	 for	 each	 dataset,	 and	
compared	 these	 modeling	 approaches	 by	 evaluating	 percentage	
relative	bias,	standard	deviation,	and	credible	interval	coverage	for	
each	parameter	across	datasets.	All	simulations	were	conducted	in	
JAGS	(Plummer,	2003)	via	the	statistical	program	R	(R	Development	
Core	 Team,	 2016)	 in	 conjunction	 with	 the	 R2JAGS	 library	 (Su	 &	
Yajima,	2015).	The	algorithms	we	used	to	conduct	 the	simulations	
and	a	detailed	description	of	 them	are	 included	 in	 the	Supporting	
Information.

2.3 | Applied example: cause- specific hazard models

We	used	our	statistical	approach	to	estimate	cause-	specific	mortality	
rates	of	white-	tailed	deer	(Odocoileus virginianus)	outside	the	hunting	
season	from	2011	to	2014	across	a	5,905-	km2	study	area	in	the	north-
ern	 forest	 region	of	Wisconsin,	USA.	We	 fitted	 captured	deer	with	
VHF	radiocollars	(Advanced	Telemetry	Systems	Inc.,	Minnesota,	USA)	
and	monitored	all	radiocollared	deer	survival	1–3	times	per	week.	We	
immediately	censored	deer,	determined	to	be	lost	to	follow-	up	inde-
pendent	of	fate,	after	their	last	known	alive	telemetry	signal	was	con-
firmed.	All	animal	handling	was	approved	by	University	of	Wisconsin	
Animal	Care	and	Use	Committee	(Research	Animal	Resources	Center,	
protocol	number	A01446).

Mortalities	were	classified	into	three	possible	sources	of	mor-
tality:	 predation,	 human-	associated	 causes,	 and	 all	 other	 causes.	
To	determine	the	PP	vector	for	possible	mortality	sources	when	a	
collar	signaled	mortality,	 trained	field	personnel	conducted	a	site	
investigation	and,	if	possible,	a	carcass	necropsy.	Additionally,	they	
documented	 time	 of	 year,	 recent	 temperature,	 snow	 cover,	 and	
local	 predator	 abundance	 to	 help	 inform	 potential	 fate	 determi-
nation	and	assignment	of	PP	values.	All	information	was	recorded	
on	datasheets.	We	then	interviewed	field	personnel	and	reviewed	
datasheets	 to	 assign	PP	when	 fate	was	 uncertain.	 Specifically	 to	
standardize	assignment	of	PP,	we	a	priori	developed	a	set	of	guide-
lines	for	assigning	points	toward	each	of	the	three	causes	based	on	
confidence	in	each	cause.	For	example,	when	assigning	points	for	
wolf	predation,	we	initially	assigned	90	points	if	we	were	confident	
in	 the	cause,	70	points	 if	 the	cause	was	 likely,	30	points	 if	 there	

was	some	chance,	and	10	points	 if	 there	was	a	slight	chance	the	
cause	was	 indeed	the	fate.	These	four	 levels	of	points	could	also	
be	 increased	or	decreased	 from	 their	 initial	values	 if	 these	 start-
ing	 point	 values	were	 not	 sufficient	 to	 reflect	 our	 confidence	 in	
a	cause	based	on	 the	evidence	at	 the	site.	We	then	summed	the	
points	across	all	causes	that	were	grouped	into	our	three	possible	
sources	 of	mortality.	 For	 example,	 for	 predation,	we	 summed	 all	
the	points	associated	with	each	type	of	predation	(i.e.,	wolf,	coy-
ote,	 bobcat,	 other).	 Once	 points	 had	 been	 assigned	 for	 all	 three	
possible	sources	of	mortality,	we	standardized	the	points	by	divid-
ing	the	cause-	specific	score	by	the	total	among	all	three	possible	
sources	of	mortality,	providing	the	PP	vector	(see	Appendix	S1	for	
detailed	protocol).	 In	the	event,	we	were	not	confident	 in	the	as-
signed	PP,	we	re-	visited	the	findings	with	a	group	of	professionals	
(e.g.,	field	biologists,	predator	and	deer	research	scientists,	veter-
inarians),	 and	 adjusted	 the	PP	 associated	with	 that	 individual,	 as	
described	above.

For	 estimation,	 we	 pooled	 all	 data	 from	 radiocollared	 deer	
≥7	months	 old	 collected	 from	1	day	 immediately	 following	 to	 1	day	
immediately	 preceding	 the	 hunting	 season,	 and	 treated	 information	
for	 each	 individual	 as	 independent	 across	 years.	 Data	 used	 for	 the	
overall	hazard	analysis	consisted	of	encounter	histories	with	a	single	
record	 for	 every	 four	weeks	 (monthly;	 nine	 total	 intervals)	 the	 deer	
was	available.	 If	a	deer	was	captured	during	an	 interval,	 it	was	con-
sidered	available	if	the	capture	date	occurred	during	the	first	half	of	
the	interval.

To	 estimate	 the	 hazard	 of	 dying	 outside	 the	 hunting	 season	
and	 associated	 cause-	specific	 probabilities,	 we	 examined	 sev-
eral	 models	 with	 additive	 age	 and	 study	 year	 effects	 (AGEadd,	
YEARadd).	Our	full,	additive	overall	hazard	model	was	as	follows:	γu,-

year,age = γ0,u + βyear + βage,	where	γu,year,age	=	interval-	specific	 log	haz-
ard	for	each	year	and	age	group	and	γ0,u	=	intercept	for	each	interval.	
To	share	information	and	borrow	strength	across	intervals,	we	regu-
larized	γ0,u	using	the	following	hierarchical	structure:	γ0,u∼N

(
γ0,σ

2
)

,	 where	 γ
0
∼N

(
0,100

2
)
	 and	 σ∼Uniform

(
0,10

)
.	 We	 also	 investi-

gated	 age	 interaction	models	 (AGEint)	 and	 year	 interaction	models	
(YEARint).	Within	 the	 age	 interaction	model,	we	 replaced	 γ0,u	with	
a	separate	interval	 intercept	for	each	age	group,	γ0,u,age,		and	it	was	
regularized	in	the	same	manner	described	for	γ0,u.	We	used	age	in-
teraction	models	to	investigate	the	hypothesis:	Survival	of	juveniles	

Age (months) Year Available Human Predation Other

7–15 2011 44 2	(2.00) 9	(8.150) 3	(3.850)

7–15 2012 31 1	(1.00) 0	(0.000) 0	(0.000)

7–15 2013 68 3	(3.68) 14	(12.320) 5	(6.000)

7–15 2014 103 2	(1.95) 30	(27.227) 8	(10.823)

>19 2011 61 4	(3.90) 5	(4.750) 2	(2.350)

>19 2012 87 1	(1.20) 9	(7.900) 1	(1.900)

>19 2013 93 1	(1.00) 7	(6.700) 5	(5.300)

>19 2014 87 3	(2.30) 8	(8.050) 2	(2.650)

All 2011–2014 574 17	(17.030) 82	(75.097) 26	(32.873)

TABLE  1 Sample	sizes	for	radiocollared	
white-	tailed	deer	available	and	cause-	
specific	events	(based	on	the	cause	with	
the	highest	observer-	specified	probability)	
by	age	and	year	for	survival	outside	the	
hunting	season.	Parenthetical	information	
is	the	sum	of	event	probabilities	based	on	
expert	knowledge.	Three	different	sources	
of	mortality	were	investigated,	namely	
human-	caused	mortality	(human),	
predation	events	(predation),	and	all	other	
causes	(other)
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(~7–15	months	old)	may	be	more	sensitive	to	annual	variation	than	
adults	(>19	months	old).	Similarly,	we	constructed	interaction	models	
for	each	year	of	study.	Lastly,	we	examined	a	model	with	γ0,u	being	
the	sole	parameter,	and	it	was	regularized	as	described	above	and	we	
refer	to	hereafter	as	the	“BASELINE”	model.	Example	BUGS	code	is	
provided	in	the	Supporting	Information,	and	model	descriptions	are	
provided	in	Figures	S2	and	S3.

To	keep	our	 suite	of	biologically	 relevant	models	 small,	we	used	
a	 stepwise	 model	 selection	 procedure	 to	 select	 among	 competing	
models	for	the	overall	hazard	of	dying	(Burnham	&	Anderson,	2002).	
First,	we	selected	among	different	additive	and	interaction	year	or	age	
models,	separately.	We	then	combined	parameters	from	best-	fit	age	
and	year	models	(if	they	had	better	fit	than	the	BASELINE	model)	and	
compared	against	age-		or	year-	only	models.	We	evaluated	model	 fit	
using	DIC	values	and	selected	the	most	parsimonious	model,	based	on	
lowest	DIC	value,	from	which	to	make	an	inference.

We	constructed	the	same	suite	of	models	for	each	cause-	specific	
probability.	 This	 ensured	 that	we	 could	 assess	 covariate	 effects	 on	
each	potential	source	of	mortality	separately.	For	example,	using	the	
multinomial	logit	model,	we	evaluated	the	variation	among	study	areas	
and	 years:	 ϕu,k=ϕ0,u,k+x�

i,u,k
βu,k	 We	 regularized	 ϕu,k	 for	 each	 cause	

across	intervals:

We	specified	priors	for	the	hyperparameters	as:

where ρj	 represents	conditional	probability	of	death	due	to	preda-
tion.	We	 used	 the	 gamma	distribution	 to	 specify	 a	Dirichlet	 prior	
for	ρ⃗	(Lunn,	Jackson,	Best,	Thomas,	&	Spiegelhalter,	2013).	We	used	
a	 diffuse	 prior	with	 values	 of	 1	 for	 αk.	We	 used	 the	 same	model	
selection	procedure	for	models	of	cause-	specific	probabilities	as	de-
scribed	above.

During	 each	 MCMC	 iteration,	 we	 included	 expert	 knowledge	
using	the	elicited	probabilities	of	 the	 likely	cause-	of-	death	 (PP)	by	
augmenting	 the	 causes-	of-	death	 that	were	 presumed	 known	with	
random	 realizations	 from	 the	 Categorical

(
PPu,k

)
	 distributions	 for	

those	mortalities	where	cause-	of-	death	was	uncertain.	These	aug-
mented	causes	were	then	used	to	model	cause-	specific	probabilities	
(i.e.,	causeaugi,u,k∼Categorical

(
πu,k

)
).)

To	 emulate	 current	 models	 and	 compare	 approaches,	 we	
assumed	 cause	 of	 mortality	 was	 known	 with	 certainty	 for	 all	
mortalities	 by	 treating	 the	 cause-	of-	death	 with	 the	 highest	 prob-
ability	 as	 the	 “known”	 cause.	 We	 compared	 results	 from	 models	
including	 uncertainty	 to	 those	 that	 assumed	 the	 cause-	of-	death	 
was	known.

Similar	to	our	simulation	analysis,	we	created	three	MCMC	chains	
and	ran	each	chain	for	15,000	iterations.	However,	we	used	a	10,000	
iteration	burn-	in	period	that	based	on	standard	diagnostics	provided	
no	evidence	of	nonconvergence.	We	conducted	all	MCMC	algorithm	
analyses	 for	 our	 applied	 example	 using	 WinBUGS	 (Spiegelhalter,	

ϕ0,u,k∼N
(
ϕ0,k,σ

2
k

)
.

ϕ0,k= ln

(
ρk

ρj

)
,

ρk=
gk
K∑
i=1

gi

,

gk∼Gamma (αk,αk),

σk∼Uniform
(
0,10

)
,

TABLE  2 Log	hazard	models	of	Wisconsin	white-	tailed	deer	from	
2011	to	2014.	Models	allowed	for	a	time-	varying	baseline	with	nine	
monthly	intervals	based	on	an	interval	regularizing	parameter.	The	
BASELINE	model	only	estimated	interval-	specific	parameters	
assuming	no	difference	among	adult	and	juvenile	deer	(AGE)	and	
YEAR.	Subscripts	add	estimated	additive	differences	among	age	
classes	or	years	and	int	estimated	independent	age	or	year	effect

Modela DIC pD Δ DIC

AGEint	+	YEARint 977.69 40.01 0.00

AGEint 998.00 14.63 20.32

AGEadd 1001.58 9.19 23.90

YEARint 1016.42 26.52 38.74

YEARadd 1017.72 11.22 40.04

BASELINE 1030.64 8.16 52.96

aAdditional	model	description	included	in	Figure	S3.

TABLE  3 Parameter	estimates	for	log	hazard	models	including	an	
independent	year	and	age	effects	for	Wisconsin	white-	tailed	deer	
from	2011	to	2014.	Model	included	a	regularizing	parameter	for	
different	log	hazards	among	nine	monthly	intervals	each	year,	
different	for	juveniles	(~7–15	months	old;	N(γ0,year,juvenile,σ2year,juvenile))	
and	adults	(>19	months	old;	N(γ0,year,adult,σ2year,adult)).	All	parameters	are	
on	the	log	hazard	scale

Parametera Mean SE 2.50% 97.50%

γ0,2011,juvenile −3.559 1.124 −6.460 −2.173

σ2011,juvenile 1.816 1.406 0.228 5.735

γ0,2012,juvenile −11.757 5.120 −23.890 −4.970

σ2012,juvenile 5.217 2.830 0.383 9.768

γ0,2013,juvenile −5.322 2.121 −10.860 −2.526

σ2013,juvenile 3.746 2.084 1.058 8.935

γ0,2014,juvenile −3.170 0.739 −4.874 −1.949

σ2014,juvenile 1.696 0.881 0.638 3.958

γ0,2011,adult −3.784 0.408 −4.694 −3.116

σ2011,adult 0.504 0.442 0.013 1.610

γ0,2012,adult −4.759 1.043 −7.473 −3.506

σ2012,adult 1.570 1.342 0.099 5.304

γ0,2013,adult −5.407 1.354 −8.754 −3.544

σ2013,adult 2.416 1.462 0.790 6.632

γ0,2014,adult −4.050 0.480 −5.148 −3.324

σ2014,adult 0.669 0.606 0.034 2.148

Deviance 937.677 10.580 918.400 960.000

aAdditional	model	description	included	in	Figure	S3.
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Thomas,	&	Best,	2002)	in	conjunction	with	R2WinBUGS	library	(Sturtz,	
Ligges,	&	Gelman,	2005).

3  | RESULTS

3.1 | Simulations

Our	model	 outperformed	 current	 approaches	 with	 lower	 bias	 and	
higher	 credible	 interval	 coverage	 of	 parameters,	 regardless	 of	 the	
true	 probabilities	 of	 cause-	of-	death/prevalence	 rates	 or	 probabil-
ity	of	correctly	assigning	 the	cause-	of-	death/misclassification	 rates	
(Figures	 S4–S13).	 The	 one	 exception	 was	 for	 classification	 matrix	
C11	where	confidence	 interval	coverage	 for	 the	parameter	 for	 the	
second	 cause-	of-	death	 was	 slightly	 less.	 As	 expected,	 our	 model	
generally	 increased	the	standard	deviation	of	all	parameters	across	
all	simulations	compared	to	current	approaches.	Additionally,	as	mis-
classification	decreased,	our	model	more	rapidly	approached	the	per-
formance	of	the	model	for	which	there	was	no	misclassification	error.

3.2 | Applied example

We	used	information	from	433	unique,	radiocollared	deer	≥7	months	
old	 to	 evaluate	mortality	 outside	 the	 hunting	 season	 between	 2011	
and	2014.	Because	deer	that	survive	can	be	used	for	subsequent	years,	
we	evaluated	more	encounter	histories	than	the	number	of	unique,	ra-
diocollared	deer	(Van	Deelen,	Campa,	&	Haufler,	1997).	We	included	
encounter	history	sample	sizes	and	fate	information	in	Table	1.	There	
were	57	of	125	mortality	events	that	included	uncertainty	in	fate	deter-
mination.	The	average	user-	specified	PP	for	these	events	was	0.106	for	
human	causes,	0.563	for	predation	and	0.331	for	other	causes.

Based	on	DIC	values,	 the	overall	hazard	model,	component	1	of	
our	model,	best	supported	by	the	data	 included	an	 interaction	term	
for	year	and	age	group	(Table	2).	Parameter	estimates	for	the	log	of	the	
overall	hazard	of	dying	suggested	lower	survival	with	greater	variation	
among	monthly	intervals	for	juveniles	(7–15	months	old)	compared	to	
adults	in	2011,	2013,	and	2014.	In	2012,	adults	had	a	higher	average	
monthly	hazard	than	juveniles	(Table	3,	Figure	1).

F IGURE  1 Regularized	estimates	of	the	hazard	of	dying	with	95%	credible	intervals	for	each	4-	week	interval	(N	=	9)	for	hazards	outside	the	
hunting	season	for	juveniles	(~7–15	months	old)	and	adult	(>19	months	old)	white-	tailed	deer	from	2011	to	2014	in	Wisconsin,	USA,	using	a	
model	with	independent	year	and	age	effects
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Model	 selection	 results	 for	 cause-	specific	 probabilities	 includ-
ing	 expert	 knowledge	 demonstrated	 no	 evidence	 for	 a	 difference	
in	 years	 or	 age	 groups	with	 the	 BASELINE	 model	 being	 selected	
as	the	most	parsimonious	(Table	4).	 In	contrast,	when	we	assumed	
cause-	of-	death	was	known,	model	rankings	changed.	The	most	par-
simonious	model,	which	received	no	support	when	including	expert	
knowledge	 (∆DIC	 =4.14;	 Table	4),	 contained	 independent	 annual	
cause-	specific	 probabilities	 (Table	4).	 The	 BASELINE	model	was	 a	
competing	model	(∆DIC	=0.17).	When	we	compared	parameter	esti-
mates	from	the	BASELINE	model	that	did	not	include	expert	knowl-
edge	 to	 the	 BASELINE	model	 including	 observer-	specified	 priors,	

as	 expected,	 SD	 decreased	 for	 intercept	 parameter	 offsets	 of	 the	
multinomial	probabilities.

Using	the	BASELINE	model	incorporating	expert	knowledge,	esti-
mates	of	cause-	specific	probabilities	suggested	the	highest	probabil-
ity	associated	with	predation	followed	by	other	causes-	of-	death	and	
finally	human-	associated	causes	(Table	5,	Figure	2).	Monthly	credible	
intervals	for	predation	probabilities	did	not	overlap	the	credible	inter-
vals	of	the	other	two	categories	of	causes	in	any	month	except	4,	6,	
7,	and	8	 (Figure	2).	 In	contrast,	when	we	did	not	 incorporate	expert	
knowledge,	differences	between	conditional	probabilities	of	the	three	
causes-	of-	death	occurred	only	in	2014	(Table	5).

TABLE  4 Comparison	for	cause-	specific	probability	models	for	each	suite	of	models,	including	uncertainty	and	no	uncertainty	associated	
with	mortality	cause,	for	Wisconsin	white-	tailed	deer	from	2011	to	2014.	All	models	allowed	for	different	cause-	specific	categorical	
probabilities	among	nine	4-	week	intervals	based	on	an	interval	regularizing	parameter.	The	BASELINE	model	only	estimates	interval-	specific	
parameters	assuming	no	difference	among	AGE	and	YEAR.	Subscripts	add	estimated	additive	differences	among	age	classes	or	years	and	int	
estimated	independent	age	or	year	effect

Including uncertainty No uncertainty

Modela DIC pD Δ DIC Modela DIC pD Δ DIC

BASELINE 237.74 36.10 0.00 YEARint 219.637 29.795 0.00

YEARadd 238.74 42.06 0.99 BASELINE 219.807 8.823 0.17

AGEadd 240.47 37.87 2.73 AGEadd 222.087 10.611 2.45

YEARint 241.89 74.33 4.14 AGEint 223.826 16.315 4.19

AGEint 243.77 48.23 6.03 YEARadd 226.439 14.625 6.80

aAdditional	model	description	included	in	Figure	S3.

Expert knowledge Parametera Mean SD 2.50% 97.50%

Yes η0,human −1.722 0.433 −2.579 −0.851

No η0,human,2011 −0.855 0.704 −2.351 0.488

No η0,human,2012 −1.446 1.073 −3.767 0.560

No η0,human,2013 −1.293 1.401 −4.281 1.283

No η0,human,2014 −2.151 0.967 −4.310 −0.249

Yes σhuman 0.682 0.580 0.041 2.168

No σhuman,2011 1.381 1.406 0.032 5.367

No σhuman,2012 2.353 2.197 0.081 8.416

No σhuman,2013 5.479 2.476 1.134 9.731

No σhuman,2014 2.295 2.207 0.071 8.367

Yes η0,other −1.415 0.415 −2.304 −0.662

No η0,other,2011 −1.721 1.195 −4.421 0.334

No η0,other,2012 −1.898 1.344 −4.870 0.519

No η0,other,2013 −0.863 0.982 −3.023 1.101

No η0,other,2014 −1.475 0.489 −2.515 −0.577

Yes σother 0.649 0.494 0.064 1.880

No σother,2011 3.136 2.153 0.346 8.719

No σother,2012 3.312 2.603 0.121 9.276

No σother,2013 2.722 2.449 0.073 8.921

No σother,2014 0.639 0.660 0.026 2.330

Yes Deviance 201.639 8.500 185.500 218.700

No Deviance 189.842 8.174 174.900 207.000

aAdditional	model	description	included	in	Figure	S3.

TABLE  5 Comparison	of	parameter	
estimates	for	the	model	of	cause-	specific	
probabilities	for	the	model	including	expert	
knowledge	in	cause-	of-	death	assignments	
and	the	model	with	no	uncertainty	in	these	
assignments	for	Wisconsin	white-	tailed	
deer	from	2011	to	2014.	Both	model	were	
regularized	for	different	cause-	specific	
probabilities	among	nine	monthly	intervals,	
but	the	model	with	no	expert	knowledge	
included	independent	year	effects:	
N(η0,k,. ,σ

2

k,.
).	Three	causes	were	modeled,	

namely	human,	predation	(reference),	and	
all	other	causes.	All	parameters	are	on	the	
log	odds	scale
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The	product	of	components	1	and	2	of	our	model	 incorporating	
observer	 prior	 information	 illustrates	 the	 unconditional	 probability	
of	dying	 from	each	 source	of	mortality	 (i.e.,	monthly	and	age	group	
cause-	specific	mortality;	Figure	3).	Annual	predation	rates	outside	the	
hunting	season	ranged	from	0.038	 in	2012	to	0.355	 in	2014	for	 ju-
veniles	and	0.098	 in	2013	 to	0.142	 in	2011	 for	adults.	The	highest	
nonpredation	annual	mortality	rate	was	0.093	for	other	in	2014.

4  | DISCUSSION

4.1 | Simulations

Our	simulations	demonstrated	that	the	explicit	use	of	expert	knowl-
edge	provided	a	substantial	improvement	in	terms	of	reduced	bias	and	
credible	interval	coverage	of	estimated	parameters	when	investigat-
ing	cause-	specific	mortality.	Conversely,	failing	to	include	this	knowl-
edge	resulted	in	large	biases	and	poor	coverage	of	credible	intervals	of	
cause-	specific	parameter	estimates	that	likely	would	impact	inference.	

Therefore,	when	modeling	cause-	specific	mortality,	simulation	results	
support	the	inclusion	of	expert	knowledge	regarding	observer	uncer-
tainty	 in	cause-	of-	death	assignment	 to	 improve	model	performance	
and	ensure	rigorous	inference.

4.2 | Applied example

Acknowledging	true	cause-	of-	death	was	uncertain	 in	~45%	of	ob-
served	 mortalities	 clearly	 impacted	 inference.	 When	 we	 did	 not	
include	expert	knowledge	regarding	likelihood	of	the	various	causes-	
of-	death,	we	selected	a	cause-	specific	categorical	probability	model	
with	independent	annual	estimates	and	we	assumed	cause-	specific	
probabilities	varied	across	years.	However,	these	 independent	an-
nual	 estimates	 were	 not	 supported	 when	 expert	 knowledge	 was	
included	in	our	model.	This	difference	arose	from	an	inappropriate	
increase	in	precision	of	parameter	estimates	in	the	model	that	did	
not	 include	 expert	 knowledge.	 Additionally	 conditional	 on	 dying,	
probability	 of	 mortality	 due	 to	 predation	was	 significantly	 higher	

F IGURE  2 Regularized	estimates	for	
cause-	specific	categorical	probabilities	
with	95%	credible	intervals	for	each	4-	
week	interval	(N	=	9)	outside	the	hunting	
season	from	2011	to	2014	in	Wisconsin,	
USA,	using	our	BASELINE	model	and	
including	expert	knowledge	regarding	
the	uncertainty	of	the	cause-	of-	death	
assignments
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than	other	causes	when	including	expert	knowledge,	whereas	when	
uncertainties	 in	 cause-	of-	death	 assignments	were	 ignored,	 it	 was	
only	estimated	to	be	higher	in	the	final	study	year.	This	has	signifi-
cant	 implications	 for	 conservation	 and	management	because	mis-
interpretation	of	contribution	of	different	sources	of	mortality	can	
lead	to	inappropriate	and	often	controversial	actions	(e.g.,	predator	
control).	 Thus	 even	 in	 this	 case,	where	 only	 ~45%	of	 the	morali-
ties	had	some	uncertainty	associated	with	their	cause,	use	of	expert	
knowledge	was	not	just	an	academic	exercise,	but	had	direct	influ-
ence	on	scientific	inference.

There	were	noticeable	differences	between	the	sizes	of	credible	inter-
vals	around	individual	hazard	rate	estimates	between	years,	particularly	
for	juveniles	(Figure	1),	which	is	attributable	to	a	variation	in	sample	sizes	
and	the	number	of	marked	deer	dying	annually.	For	example,	the	hazard	
rates	for	juveniles	in	2012	are	noticeably	more	precise	across	four-	week	
intervals	when	compared	to	other	study	years.	This	is	because	only	one	
marked	juvenile	deer	died	in	2012,	which	led	to	low	and	precise	estimates	
of	the	hazard	rates.	Mortality	was	considerably	higher	in	other	years.

The	 results	 reported	 from	 our	 model,	 including	 expert	 knowl-
edge,	 align	well	with	 previous	 research	 and	 biological	 expectations.	

F IGURE  3 Regularized	estimates	for	overall	probability	of	mortality	due	to	humans,	predation,	and	all	other	causes	with	95%	credible	
intervals	for	each	4-	week	interval	(N	=	9)	outside	the	hunting	season	for	adult	(>19	months	old;	black	lines	with	solid	circles)	and	juvenile	(~7–
15	months	old;	dashed	gray	lines	with	open	circles)	white-	tailed	deer	from	2011	to	2014	in	Wisconsin,	USA,	using	a	model	with	independent	
year	and	age	effects	for	the	overall	hazard	and	the	BASELINE	model	for	multinomial	logit	cause-	specific	categorical	probabilities
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For	 example,	 during	 the	 four	years	 of	 our	 study,	we	 documented	 a	
wide	range	of	mortality	patterns	among	years	and	age	groups	(Norton,	
2015).	Juvenile	mortality	rates	were	higher	than	adult	mortality	rates	
outside	the	hunting	season;	however,	these	differences	varied	within	
years	(Figure	1),	possibly	related	to	winter	severity	(Norton,	2015).

In	 agreement	 with	 others	 (Gaillard,	 Festa-	Bianchet,	 &	 Yoccoz,	
1998;	Gaillard,	Festa-	Bianchet,	Yoccoz,	Loison,	&	Toigo,	2000),	there	
was	much	less	annual	variation	for	adults,	and	total	mortality	ranged	
only	6.7%	among	all	four	years.	Monthly	cumulative	hazard	predic-
tions	for	juveniles	were	usually	higher	than	adult	hazards,	and	they	
increased	earlier	and	decreased	later,	through	months	4	and	5	(~end	
of	May).	This	supports	other	findings	that	adults	are	 less	sensitive	
to	overwinter	stress	(DelGiudice,	Fieberg,	Riggs,	Carstensen	Powell,	
&	Pan,	2006;	Gaillard	et	al.,	 1998,	2000;	 Lukacs	et	al.,	 2009),	 and	
effects	 of	 winter	 may	 affect	 juveniles	 through	 late	 winter,	 even	
through	May	 in	our	 case,	when	 there	was	 an	 abundance	of	nutri-
tious	vegetation.

When	 examining	 the	 specific	 causes	 of	 mortality,	 predation	
events	 occurred	 at	 the	 highest	 probability,	 similar	 to	McNay	 and	
Voller	 (1995),	 followed	 by	 other,	 then	 human	 events.	 The	 differ-
ence	 between	 predation	 and	 nonpredation	mortality	 sources	was	
more	apparent	in	the	beginning	of	the	year,	than	during	the	winter	
months.

5  | CONCLUSION

Our	 model	 development	 overcomes	 the	 inability	 of	 current	 tech-
niques	 to	 capture	 additional	 variability	 associated	 with	 observer	
uncertainty	in	cause-	of-	death	assignments,	and	provides	a	means	of	
incorporating	expert	knowledge	into	cause-	specific	mortality	models	
in	a	rigorous	manner.	The	results	from	our	simulation	and	applied	ex-
ample	clearly	demonstrate	the	importance	of	using	expert	knowledge	
explicitly	to	account	for	uncertainty	of	outcomes,	not	only	for	proper	
accounting	of	variability,	but	also	for	drawing	appropriate	inference	
from	 the	 statistical	 analyses.	 Lastly,	our	modeling	approach	can	be	
extended	to	other	types	of	ecological	 investigations	(e.g.,	dispersal,	
migration,	disease	status)	where	expert	knowledge	is	implicitly	used	
because	of	uncertainty	 regarding	outcomes,	 and	provides	a	 frame-
work	for	explicitly	integrating	expert	knowledge	into	the	structure	of	
ecological	models.
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