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SUMMARY

Notch is a conserved signaling pathway that is essential for metazoan development and 

homeostasis; dysregulated signaling underlies the pathophysiology of numerous human diseases. 

Receptor-ligand interactions result in gene expression changes, which are regulated by the 

transcription factor RBPJ. RBPJ forms a complex with the intracellular domain of the Notch 

receptor and the coactivator Mastermind to activate transcription, but it can also function as a 

repressor by interacting with corepressor proteins. Here, we determine the structure of RBPJ 

bound to the corepressor SHARP and DNA, revealing its mode of binding to RBPJ. We tested 

structure-based mutants in biophysical and biochemical-cellular as-says to characterize the role of 

RBPJ as a repressor, clearly demonstrating that RBPJ mutants deficient for SHARP binding are 

incapable of repressing transcription of genes responsive to Notch signaling in cells. Altogether, 

our structure-function studies provide significant insights into the repressor function of RBPJ.
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In Brief

Yuan et al. determine the X-ray structure of the corepressor SHARP bound to RBPJ, the nuclear 

effector of the Notch pathway. The structure-function analysis provides insights into corepressor 

binding to RBPJ and how RBPJ functions as a repressor of transcription of Notch target genes.

INTRODUCTION

The Notch pathway is a cell-to-cell signaling mechanism that is indispensable for cell fate 

decisions during prenatal development and postnatal tissue homeostasis (Kovall et al., 2017; 

Bray, 2016). Aberrant signaling underlies the pathogenesis of many human diseases, 

including certain types of cancer, congenital defects, and cardiovascular disease (Siebel and 

Lendahl, 2017). Given its association with human disease, there have been extensive efforts 

to identify reagents that pharmaceutically modulate the Notch pathway, with most efforts 

focused on modalities that curtail overactive Notch signaling (Braune and Lendahl, 2016). 

However, there is a need to identify targets that, when drugged, result in upregulated 

signaling to treat diseases associated with insufficient Notch activity (Siebel and Lendahl, 

2017).

Signaling is initiated when Notch receptors interact with a DSL (Delta, Serrate, Lag-2) 

ligand, which results in proteolytic cleavage of Notch (Kovall and Blacklow, 2010). This 

releases the intracellular domain of Notch (NICD) from the cell membrane, allowing NICD 

to translocate to the nucleus. NICD directly binds the transcription factor RBPJ 

(recombining binding protein J-kappa, also known as CSL [CBF1/RBPJ, Su(H), Lag-1]) and 

recruits a member of the Mastermind (MAM) family of transcriptional coactivators 

(Mastermind-like [MAML1–MAML3] in mammals), resulting in transcriptional activation 

of Notch target genes (Borggrefe and Oswald, 2009). RBPJ can also function as a repressor 

by interacting with corepressor proteins such as SHARP (SMRT/HDAC1-associated 

repressor protein, also known as MINT [Msx2-interacting nuclear target] or SPEN [split 
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ends]) (Kuroda et al., 2003; Oswald et al., 2002), Hairless in Drosophila melanogaster 
(Maier, 2006), FHL1 (four and a half LIM domains 1, also known as KyoT2) (Taniguchi et 

al., 1998), L3MBTL3 (lethal 3 malignant brain tumor-like 3) (Xu et al., 2017), and RITA1 

(RBPJ-interacting and tubulin-associated) (Tabaja et al., 2017; Wacker et al., 2011). 

Corepressors are part of higher-order transcriptional repression complexes that contain 

histone-modifying activity; e.g., histone deacetylase or histone demethylase, which convert 

chromatin into a transcriptionally repressed state (Borggrefe and Oswald, 2009).

Crystal structures have revealed that all RBPJ orthologs contain a conserved structural core 

composed of three domains, termed NTD (N-terminal domain), BTD (β-trefoil domain), and 

CTD (C-terminal domain) (Figures 1A and 1B; Wilson and Kovall, 2006; Nam et al., 2006; 

Kovall and Hendrickson, 2004). The NTD and CTD are immunoglobulin (Ig) domains that 

are structurally similar to the Rel homology region (RHR) of transcription factors such as 

NF-κB (nuclear factor κB) and NFAT (nuclear factor of activated T cells), whereas the fold 

of the BTD is related to cytokine and growth factor structures such as interleukin1 and FGF 

(fibroblast growth factor). The NTD and BTD form an electropositive surface that interacts 

with DNA. In the transcriptionally active RBPJ-NICD-MAM ternary complex bound to 

DNA (Figures 1A and 1B), the RBPJ associated molecule (RAM) and Ankyrin repeat 

(ANK) domains of NICD bind the BTD and CTD of RBPJ, respectively, whereas MAM 

interacts with the CTD-ANK interface and the NTD (Wilson and Kovall, 2006; Nam et al., 

2006). In addition to the activator complex, several RBPJ-core-pressor structures have been 

determined, including the Drosophila corepressor Hairless bound to Su(H) (the fly RBPJ 

ortholog) (Yuan et al., 2016) as well as FHL1 and RITA1 bound to RBPJ (Tabaja et al., 

2017; Collins et al., 2014). These studies reveal that Hairless binds the CTD of Su(H), 

whereas FHL1 and RITA1 bind the BTD of RBPJ, similar to the RAM domain of NICD.

SHARP is a large multidomain transcriptional coregulator protein that has folded functional 

domains separated by long intrinsically disordered regions (Figure 1B). Notably, SHARP 

has no sequence similarity with any of the previously identified corepressors that bind RBPJ. 

SHARP was originally identified in yeast two-hybrid screens for factors that interact with 

SMRT-NCoR and the transcription factor MSX2 (Shi et al., 2001; Newberry et al., 1999). 

SHARP has traditionally been thought of as a corepressor because it binds SMRT-NCoR 

through its C-terminal Spen paralog and ortholog C-terminal (SPOC) domain and represses 

transcription (Shi et al., 2001); however, it has also been shown that SHARP can recruit the 

KMT2D coactivator complex to Notch target genes (Oswald et al., 2016). Previously, we 

defined a region in SHARP that binds RBPJ, termed RBPID (RBPJ-interacting domain; 

Figure 1B) and showed that RBPJ and SHARP form a high-affinity complex (VanderWielen 

et al., 2011; Oswald et al., 2002).

Here we determine the X-ray structure of the RBPJ-SHARP corepressor complex bound to 

DNA. We identify structure-based mutants that are essential for RBPJ-mediated repression 

and characterize these mutants both in vitro and in cellular assays. Taken together, our 

studies reveal the conserved interface of the RBPJ-SHARP corepressor complex, which 

provides molecular insights into RBPJ repressor function, and identify a potential site on 

RBPJ that could be pharmacologically targeted to upregulate Notch signaling.
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RESULTS

SHARP Forms a Bipartite Interaction with RBPJ

As shown in Figures 1C and 1D, SHARP interacts with two distinct surfaces on RBPJ, 

contacting its CTD and the BTD, which is consistent with previous binding studies 

(VanderWielen et al., 2011). Starting at the N terminus of its RBPID, SHARP forms a β-

hairpin motif that binds between the two β sheets that compose the Ig domain of the CTD. 

The second β strand of SHARP, residues 2,788–2,794, pairs with β strand βg of the CTD, 

extending this from a three- to a five-stranded β sheet (Figure 1E). The SHARP-CTD 

interaction is followed by a short linker region that is poorly ordered and makes no contacts 

with RBPJ. The C-terminal portion of the SHARP RBPID binds in an extended fashion 

across the BTD in a manner that is structurally similar to the RAM domain of NICD (Wilson 

and Kovall, 2006; Figures 1C and 1D). The complex between SHARP and RBPJ is mainly 

driven by hydrophobic interactions between nonpolar side chains on SHARP and the CTD 

and BTD of RBPJ (Figure 1D), with SHARP residues L2791 and I2811 largely anchoring its 

interaction with the CTD and BTD of RBPJ, respectively (Table 1; Figure S1). Additionally, 

there are key ionic interactions that appear to play auxiliary roles in complex formation, 

including salt bridges between E2786 of SHARP and R438 of the CTD (Figure 1E) and 

K2807 of SHARP and the BTD residue E259 (Figure 1D). It should also be mentioned that, 

when complexed with SHARP, RBPJ maintains similar contacts with DNA, suggesting that 

SHARP binding does not affect the affinity of RBPJ for DNA, which is consistent with 

previous binding studies (VanderWielen et al., 2011).

As shown in Figure 1E, SHARP binding to RBPJ induces a structural change in the CTD 

that results in translation of β strands βf and βg outward, modestly expanding the CTD by as 

much as ~4 Å. A significant structural rearrangement is also observed for the loop that 

connects strand βe with βf, which strikingly repositions W441 from a buried to a solvent-

exposed conformation when comparing unbound RBPJ with the RBPJ-SHARP complex 

(Figure 1E). The repositioning of W441 allows E2786 of SHARP to form a salt bridge with 

R438 of RBPJ. This structural rearrangement has not been observed for any other RBPJ 

structure determined to date.

Structural Comparison of Coregulator Binding Sites on RBPJ

NICD, together with MAM and RBPJ, forms a transcriptionally active ternary complex 

(Kovall and Blacklow, 2010). NICD interacts with high affinity to RBPJ (Johnson et al., 

2010; Friedmann et al., 2008; Del Bianco et al., 2008; Lubman et al., 2007), binding the 

BTD and CTD of RBPJ via its RAM and ANK domains, respectively (Wilson and Kovall, 

2006; Nam et al., 2006). Figure 2A compares the interfaces SHARP and NICD-MAM use to 

interact with RBPJ, illustrating the overlap of these binding sites. There is partial overlap of 

the SHARP and ANK-MAM binding sites on the CTD of RBPJ, whereas there is completely 

overlapping binding of SHARP and the RAM domain of NICD on the BTD of RBPJ. 

Although SHARP and ANK-MAM use different strategies and target different key residues 

to interact with the CTD; clearly, binding of SHARP and binding of ANK-MAM to the CTD 

are mutually exclusive (Figure 2A). Despite the absence of sequence similarity between 

SHARP and the RAM domain of NICD, unexpectedly, SHARP interacts with the BTD in a 
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manner that is structurally virtually identical to how RAM as well as the corepressors FHL1 

and RITA1 interact with the BTD (Figure 2B). As shown in Figure 2B, RAM and other 

coregulators that bind the BTD have a characteristic hydrophobic tetrapeptide sequence (-

fWfP-) that is essential for binding the BTD and serves as the linchpin for high-affinity 

interactions. SHARP is lacking this and other conserved elements that contribute to 

interactions with the BTD (Johnson et al., 2010). However, structural alignment of SHARP 

with RAM and other BTD binders reveals some sequence conservation of hydrophobic 

residues that play important roles in SHARP-RBPJ complex formation, including I2804, 

A2806, I2808, I2811, and P2812 (Figure 2B).

The corepressor Hairless is the major antagonist of Notch signaling in Drosophila and 

directly binds the CTD of Su(H) (the fly RBPJ ortholog) with high affinity to repress Notch 

target gene transcription in flies (Yuan et al., 2016; Maier et al., 2011). Although there is no 

sequence similarity between SHARP and Hairless, these two corepressors have evolved to 

bind the same CTD interface on RBPJ and Su(H), respectively (Figures 2C and 2D). 

However, there are major structural differences in how SHARP and Hairless form complexes 

with the CTD. In contrast to SHARP, which only induces a modest conformational change 

in CTD, Hairless binding dramatically opens up the Ig domain of the CTD, interacting with 

residues that form the hydro-phobic core of the CTD (Yuan et al., 2016). This allows 

Hairless to bind exclusively to the CTD with high affinity (Maier et al., 2011).

The CTD is structurally similar to the Rel homology region–C-terminal (RHR-C) domains 

of transcription factors such as NF-κB and NFAT (Kovall and Hendrickson, 2004). Figure 

2E shows an overlay of the CTD from RBPJ with the RHR-C domain from NFAT. 

Importantly, the CTD deviates from canonical RHR-C domains by the absence of β strand a′ 
(βa′), which lies between the two β sheets that compose the Ig domain of a canonical RHR-

C domain. Strikingly, SHARP binding to the CTD serves as a structural surrogate for βa′, 

occupying this region in the complex structure (Figure 2E), which has interesting 

implications for how binding sites have developed on RBPJ and will be discussed further 

below (Figure 2F).

Binding Analysis of RBPJ and SHARP Mutants

To gain further insights into RBPJ-SHARP complex formation and SHARP function and to 

validate our structural studies, we used a combination of assays, both in vitro and in cells, to 

analyze structure-based mutants. As shown in Table 1 and Figure S1, we used isothermal 

titration calorimetry (ITC) to quantitate binding between SHARP and RBPJ mutants. 

SHARP binds RBPJ with high affinity (Kd ~ 5 nM), where binding is enthalpically driven 

and entropically unfavorable (Table 1), in accordance with the RBPID of SHARP being an 

intrinsically disordered region (VanderWielen et al., 2011). Consistent with its side chain 

burying ~84 Å2 in the SHARP-CTD complex, mutation of L2791 to alanine (L2791A) in 

SHARP resulted in a more than 350-fold decrease in binding (ΔΔG° = 3.4 kcal/mol; Table 1; 

Figure 1D). The SHARP mutants V2789A and Y2793A also significantly reduced binding 

to RBPJ by more than 10-fold and more than 20-fold, respectively (Table 1; Figure S1), in 

agreement with these residues also burying considerable amounts of surface area at the 

SHARP-CTD interface (V2789 = 54 Å2 and Y2793 = 118 Å2) (Figure 1D). The side chain 
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of SHARP residue I2811 is buried at the BTD-SHARP interface (Figure 1D), lying within a 

small hydrophobic pocket and burying a substantial 160 Å2. Mutation of I2811 to alanine 

(I2811A) results in more than a 60-fold reduction in binding (Table 1; Figure S1). Mutation 

of K2807 (K2807A), which makes electrostatic interactions with E259 of the BTD (Figure 

1D), results in a much more modest effect on binding (~6 fold; Table 1; Figure S1). 

Consistent with SHARP binding independently to the BTD and CTD, which results in an 

avidity effect (VanderWielen et al., 2011), single alanine mutants are unable to completely 

abrogate binding. However, the SHARP double mutant L2791A/I2811A, which targets 

mutations to key residues that interact with the BTD and CTD (Figure 1D), results in a 

complete loss of binding in our ITC studies (Table 1).

Similarly, we performed ITC binding studies with structure-based RBPJ mutants and native 

SHARP. As controls, we performed differential scanning fluorimetry (DSF) to confirm that 

our RBPJ mutants were correctly folded (Figure S2A), electro-phoretic mobility shift assay 

(EMSA) to show that our RBPJ mutants bind DNA similarly to wild-type (WT) (Figure 

S2B), immunofluorescence microscopy to demonstrate that our RBPJ mutants properly 

localize to the nucleus (Figure S2C), and coimmunoprecipitation (coIP) from cells to show 

that our RBPJ mutants still bind NICD (Figure S2D). However, we were unable to purify 

and test, by ITC, some RBPJ mutants that target key residues in the CTD-SHARP complex 

(e.g., F468A) because these residues are buried within the hydrophobic core of the CTD and 

are required for proper folding of RBPJ. Nonetheless, as shown in Figures 1D and S1 and 

Table 1, mutation of L388 (L388A), which buries ~103Å2 in the complex, results in an 

approximately 70-fold reduction in binding, whereas the CTD mutants L386A, L397A, and 

L466A had only a minor effect on SHARP binding (Table 1; Figures 1D and S1), consistent 

with these residues burying much less surface area at the CTD-SHARP interface (L386 = 39 

Å2, L397 = 3 Å2, and L466 = 44 Å2). Because SHARP binds the BTD of RBPJ in a 

structurally similar manner as the RAM domain of NICD and the corepressors FHL1 and 

RITA1, we used a set of alanine mutants (F261A, V263A, A284V, and Q333A) that we 

previously characterized for RAM, FHL1, L3MBTL3, and RITA1 binding to RBPJ (Figures 

1D and S1; Table 1; Xu et al., 2017; Tabaja et al., 2017; Collins et al., 2014; Yuan et al., 

2012). The BTD mutants F261A and A284V, which are more centrally located in the 

SHARP-BTD interface, have a stronger effect, significantly reducing binding by ~45-fold 

and ~50-fold, respectively (Figures 1D and S1; Table 1). V263A and Q333A, which 

significantly reduced RAM binding to RBPJ (Yuan et al., 2012) but target more peripheral 

interactions in the BTD-SHARP complex, only modestly affect binding (Figures 1D and S1; 

Table 1). Interestingly, similar binding trends were observed when these BTD mutants were 

previously tested for interactions with FHL1 and RITA1 (Tabaja et al., 2017; Collins et al., 

2014). We also tested our SHARP mutants and a subset of our RBPJ mutants in cells using 

coIP of exogenously expressed RBPJ and SHARP RBPID proteins and a mammalian two-

hybrid assay (Figure S3). Overall, we observed excellent correspondence between our ITC 

binding studies and our cellular assays, supporting our structural studies.

RBPJ-SHARP Interaction Is Required to Repress Notch Target Genes

To investigate the contribution of RBPJ-SHARP interactions in the regulation of 

transcription in cells, we analyzed the Notch target genes Hes1 and Hey1 in a mature T cell 
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line (MT) that lacks Notch activity (Xu et al., 2017). To interfere with RBPJ-SHARP-

mediated repression in MT cells, we expressed the RBPID of SHARP as a GFP fusion 

protein either as the WT (GFP-SHARP/RBPIDWT) or the RBPJ-interacting defective mutant 

L2791A/I2811A (GFP-SHARP/RBPIDLI/AA) (Figure 3A). Expression of GFP-SHARP/

RBPIDWT leads to the upregulation of Hes1 and Hey1; i.e., derepression (Figure 3A). 

Moreover, this upregulation is associated with a concomitant increase in the active histone 

marks acetylation on histone H3 lysine 9 (H3K9ac) and H3K27ac without influencing 

nucleosome occupancy (Figures 3B–3D). Similar histone marks at Hes1 and Hey1 are 

observed when Notch signaling is induced in MT cells (Figure S4). Expression of GFP-

SHARP/RBPIDLI/AA has little to no effect on Hes1 and Hey1 expression or active histone 

marks (Figures 3A–3D). This suggests that GFP-SHARP/RBPIDWT, but not GFP-SHARP/

RBPIDLI/AA, effectively outcompetes endogenous SHARP for binding to RBPJ, leading to 

derepression. Next we used CRISPR/Cas9 technology to deplete RBPJ (Figure 3E). 

Consistent with RBPJ repressor function, we observed robust upregulation of Hes1 and 

Hey1 in the absence of RBPJ (Figure 3E). Correspondingly, short hairpin RNA (shRNA)-

mediated knockdown of RBPJ also resulted in upregulation of Hes1 and Hey1 (Figure 3F). 

Importantly, reintroduction of RBPJWT in the CRISPR/Cas9-mediated RBPJ-depleted 

background rescues the repression of Hes1 and Hey1 Notch target gene expression whereas 

the SHARP-interacting defective RBPJ mutant F261A/L388A (RBPJFL/AA) does not (Figure 

3G). Altogether, our data demonstrate that the RBPJ-SHARP interaction is strongly required 

to repress transcription of Notch target genes in cells.

DISCUSSION

RBPJ forms an activation complex with NICD and MAM that is required to activate 

transcription from all Notch target genes. RBPJ can also function as a transcriptional 

repressor by interacting with corepressors; however, its role as a repressor, particularly in 

mammals, is not well understood. To address this gap, here we determine the X-ray structure 

of the RBPJ-SHARP corepressor complex bound to DNA and use a multitude of in vitro and 

cellular assays to characterize structure-based mutants to better understand RBPJ 

corepressor function.

Together with previous studies, the complex structure provides a detailed mechanism for 

how SHARP interacts with RBPJ to repress transcription. Prior to interacting with RBPJ, the 

RBPID of SHARP is intrinsically disordered (VanderWielen et al., 2011) and, upon binding, 

becomes structured, forming a bipartite interaction with RBPJ. As shown in Figures 1C–1E, 

the N-terminal portion of the RBPID assumes a β-hairpin motif that interacts with the CTD 

of RBPJ, resulting in a modest conformational change in the CTD; SHARP-CTD 

interactions are followed by a poorly structured linker and then an extended region that 

binds across a nonpolar surface on the BTD. Thus, SHARP forms a high-affinity complex 

with RBPJ by interacting with two distant binding surfaces, which, individually, have been 

shown previously to be of low affinity but, when tethered together, result in an avidity effect 

(VanderWielen et al., 2011). Importantly, it has also been shown previously that the affinity 

of RBPJ for SHARP is unaffected by whether it is bound to DNA (VanderWielen et al., 

2011).

Yuan et al. Page 7

Cell Rep. Author manuscript; available in PMC 2019 January 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Our cellular studies clearly demonstrate that depletion of RBPJ in MT cells results in 

derepression of the well-established Notch target genes Hes1 and Hey1 (Figures 3E–3G). 

Moreover, rescue of repression by WT RBPJ, but not a SHARP-binding mutant, strongly 

suggests that SHARP is the primary core-pressor that mediates repression at Notch target 

genes in lymphocytes and, likely, other cells and tissues, which is consistent with previous in 
vivo studies of SHARP in mice (Surendran et al., 2010; Tsuji et al., 2007; Kuroda et al., 

2003). These data are also consistent with research in other experimental systems showing 

that loss of RBPJ results in transcriptional derepression at some, but not all, Notch target 

genes (Chan et al., 2017; Castel et al., 2013). Why RBPJ-SHARP corepressor complexes are 

recruited to some Notch targets but not others remains an open question. Clearly, the RBPJ 

mutants described here, which affect SHARP interactions but leave NICD interactions 

largely intact, will be instrumental in addressing this and other questions regarding the 

repressor function of RBPJ.

In contrast to the RBPJ-NICD-MAM activator complex, RBPJ-corepressor interactions 

appear to be less conserved across disparate organisms. For example, although SHARP, also 

known as SPEN in Drosophila and DIN-1 in C. elegans, is conserved from nematodes to 

flies to mammals (Ariyoshi and Schwabe, 2003), the RBPID of SHARP is only conserved in 

vertebrates (VanderWielen et al., 2011). Similarly, the corepressor Hairless, which is the 

major antagonist of Notch signaling in Drosophila, is not conserved outside of insects and 

crustaceans (Zehender et al., 2017). However, although the corepressors that bind RBPJ are 

not strictly conserved across disparate organisms, interestingly, the corepressor binding sites 

on RBPJ are conserved. For example, SHARP, as well as the corepressors RITA1, FHL1, 

and, likely, L3MBTL3 binds to the BTD of RBPJ in a structurally similar manner (Figure 

2B), and, strikingly, despite no sequence conservation between SHARP and Hairless, both 

proteins bind to the same cleft on the CTD of RBPJ (Figures 2C and 2D). Thus, it seems 

likely that other species-specific transcriptional corepressors that bind RBPJ will be 

identified, and they will likely utilize the aforementioned conserved binding surfaces on the 

BTD and CTD to interact with RBPJ.

In a broader context, RBPJ provides an interesting example for how ligand binding sites 

develop on proteins. As shown in Figure 2E, the canonical RHR-C fold, which is found in 

the transcription factors NF-κB and NFAT, contains a β strand, βa’, that lies between β 
strands βa and βg; however, the CTD of RBPJ is missing βa’ typically found in RHR-C 

domains. The ligand, in this case the corepressor SHARP, serves as a structural surrogate 

binding precisely in the region where the missing βa’ strand would lie. Remarkably, this is 

the second instance in RBPJ where this has occurred. The first example, as shown in Figure 

2F, was uncovered following the structure determination of the C. elegans RBPJ-NICD-

MAM activation complex (Wilson and Kovall, 2006), where it was shown that the BTD of 

RBPJ is atypical because it deviates from the canonical β-trefoil fold so that it is missing 

two of the 12 strands of the consensus fold (Kovall and Hendrickson, 2004). In this case, the 

ligand, the RAM domain of NICD, again serves as a structural surrogate, binding across the 

BTD exactly where the two missing β strands would normally lie.

Finally, because of its association with human disease, there have been wide-ranging efforts 

to pharmacologically target the Notch pathway, but the majority of this work has focused on 
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re-agents that blunt overactive Notch signaling; e.g., in T cell acute lymphoblastic leukemia 

(Braune and Lendahl, 2016; Ntziachristos et al., 2014). However, there are numerous human 

diseases, including certain types of cancer, cardiovascular defects, and congenital 

syndromes, that are associated with insufficient Notch signaling (Siebel and Lendahl, 2017). 

Our structure-function studies provide a site on the CTD of RBPJ that could be druggable to 

block SHARP binding, leading to derepression of Notch target genes. This strategy has the 

potential to become a treatment option for diseases connected to deficiencies in Notch 

signaling.

STAR★METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Rhett A. Kovall (kovallra@ucmail.uc.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

E. coli strain Tuner(DE3) (Novagen) were grown at 37°C in LB media, induced with 0.1mM 

IPTG, and grown overnight at 20°C.

METHOD DETAILS

Overview of RBPJ-SHARP-DNA complex structure determination—In order to 

determine the X-ray structure of the RBPJ/SHARP corepressor complex bound to DNA, we 

purified recombinant RBPJ and SHARP proteins from bacteria, corresponding to the 

structural core of RBPJ (residues 53–474) and the RBPJ-interacting domain (RBPID) of 

SHARP (residues 2776–2820), formed complexes with a 13-mer oligomeric DNA duplex 

with single-stranded overhangs, containing a single RBPJ binding site, and screened the 

RBPJ/SHARP/DNA complex for crystallization conditions. While we were able to isolate 

crystallization conditions for the complex, despite extensive optimization efforts, we were 

unable to produce diffraction quality crystals amenable for structural analysis. Therefore, we 

produced an MBP (maltose binding protein) fusion protein with the RBPID of SHARP 

(MBP-SHARP), i.e., fixed-arm carrier approach (Moon et al., 2010), in which the MBP 

moiety also has surface entropy reduction mutations engineered into it, in order to identify 

crystallization conditions for the RBPJ/MBP-SHARP/DNA complex. This strategy 

successfully led to crystals that nominally diffract to 2.8Å resolution and belong to the space 

group P21 (a = 54.5Å, b = 231.6Å, c = 90.3Å, and β = 99.88°) (Table S1). We demonstrated 

that our MBP-SHARP construct binds RBPJ similarly as the native SHARP construct, albeit 

with somewhat weaker affinity (Figure S5B). This is likely due to the close crystal contacts 

between MBP and RBPJ required for crystallization of the complex. The RBPJ/MBP-

SHARP/DNA complex structure was solved by molecular replacement and refined to a final 

R factor and free R factor of 19.4% and 22.8%, respectively (Table S1).

There are two RBPJ-MBP-SHARP/DNA complexes in the asymmetric unit (AU) of the 

crystals (Figure S5A) that overall are very structurally similar (RMSD 2.28 for 819 cα 
atoms), with even higher structural correspondence when either MBP (RMSD 0.07 for 297 

cα atoms) or RBPJ (RMSD 0.66 for 388 cα atoms) are aligned individually (Figures S5C–
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S5E). The largest structural difference between the two complexes in the AU is a poorly 

ordered linker region in SHARP (Figure S5F), whereby the different conformations are 

likely influenced by different environments within the crystals. For clarity in subsequent 

figures, we do not show the MBP moiety and all structural comparisons are performed with 

chains G & H of RBPJ and SHARP, respectively, as these proteins chains have overall lower 

temperature factors.

Protein expression and purification—The cloning, expression, and purification of 

Mus musculus core RBPJ, residues 53–474, and SMT3-SHARP, residues 2776–2833, which 

corresponds to the RBPJ-interacting region, were described previously (VanderWielen et al., 

2011). Tuner E. coli (Novagen) were transformed with a GST-RBPJ (53–474) construct. 

Bacteria were grown at 37°C in LB medium, cooled to 20°C, induced with 0.1 mM IPTG, 

and grown overnight at 20°C. The bacteria were harvested by centrifugation and 

resuspended in PBS. The cell pellet was lysed by sonication, cleared by centrifugation and 

filtration, and subsequently loaded onto a glutathione-Sepharose column (GE Healthcare). 

The column was washed with PBS and the GST fusion proteins was eluted using reduced 

glutathione. The elutant was dialyzed and the GST tag cleaved with Precision Protease (GE 

Healthcare) per the manufacturer’s protocol. A subsequent GST affinity column removed the 

GST moiety and RBPJ was further purified to homogeneity using ion exchange and size 

exclusion chromatography. An MBP-SHARP fusion protein was used to crystallize the 

RBPJ/SHARP/DNA complex. SHARP, corresponding to residues 2776–2820, was cloned 

into pMALX-E, which encodes maltose binding protein with the following surface entropy 

reduction mutations D82A, K83A, E172A, N173A, and K239A to aide in crystallization. 

The MBP-SHARP fusion construct was overexpressed in Tuner E. coli and cells were lysed 

by sonication. The lysate was incubated with amylose resin and eluted with 10 mM maltose. 

The MBP-SHARP fusion protein was further purified by size exclusion chromatography.

Crystallization and Data Collection—RBPJ/MBP-SHARP/DNA complexes were setup 

in a 1:1.1:1.1 molar ratio and screened for crystallization conditions using an Art Robbins 

Phoenix Crystallization Robot at 4°C. The RBPJ/MBP-SHARP/DNA complex crystallized 

in 100mM Bis-Tris pH 6.6, 100mM NaCl, 40% PEG 400, and 200mM NDSB-256. Crystals 

were harvested, flash frozen in liquid nitrogen, diffraction data were collected at the 

Advanced Photon Source, beamline 21-ID-F (LS-CAT). The RBPJ/MBP-SHARP/DNA 

crystals nominally diffract to 2.8Å and belong to the spacegroup P21 with unit cell 

dimensions a = 54.5Å, b = 231.6Å, c = 90.3Å, and β = 99.88°

Structure Determination, Model Building, and Refinement—Molecular 

replacement with Phaser (McCoy et al., 2007) was used to determine the RBPJ/MBP-

SHARP/DNA complex structure using the following search models DNA (3BRG), RBPJ 

(3IAG), and MBP (3OB4). Two RBPJ/MBP-SHARP/DNA complexes were identified in the 

asymmetric unit. Phenix was used for the initial stages of refinement (Adams et al., 2010). 

Manual model building was performed with COOT (Emsley and Cowtan, 2004). TLS 

parameters were generated and the model was subsequently refined using BUSTER (Smart 

et al., 2012) and validated with MolProbity (Davis et al., 2007). The final RBPJ/MBP-

SHARP/DNA model was refined to an Rwork = 18% and Rfree = 23% with good overall 
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geometry (see Table 1). PyMOL (The PyMOL Molecular Graphics System, Version 2.0 

Schrödinger, LLC) was used to generate figures and perform structural overlays. The PISA 

server was used to analyze protein interfaces (Krissinel and Henrick, 2007).

Coordinates and structure factors have been deposited into the Protein Data Bank (6DKS)

Isothermal titration calorimetry (ITC)—ITC experiments were performed using a 

Microcal VP-ITC micocalorimeter. For all binding reactions, SMT3-SHARP (2776–2883) at 

~100 μM was placed in the syringe and RBPJ (53–474) at ~10 μM was placed in the cell. 

Titrations consisted of an initial 1μl injection followed by 39 7μl injections. ITC binding 

experiments were performed in 50 mM sodium phosphate pH 6.5, 150 mM NaCl at 25°C. 

Samples were buffer matched using size-exclusion chromatography or dialysis. The raw data 

were analyzed using ORIGIN and fit to a one site binding model.

Cell culture and preparation of cell extracts—Mouse hybridoma mature T (MT) cell 

line was grown in Iscove’s Modified Dulbecco Medium (IMDM, GIBCO) supplemented 

with 2% FCS, 0.3 mg/l peptone, 5 mg/l insulin, nonessential aminoacids and penicillin/

streptomycin. Cells were grown at 37°C with 5% CO2. HeLa (ATCC: CCL2), HEK293 

(ATCC: CRL1573), 293T and Phoenix™ packaging cells (Orbigen, Inc., San Diego, CA, 

USA) were cultivated in Dulbecco’s Modified Eagle Medium (DMEM, GIBCO) 

supplemented with 10% fetal calf serum (FCS) and penicillin/streptomycin. The MT Notch-

ER system was previously described (Xu et al., 2017).

DNA transfection—HEK293 and HeLa cells were transfected using the Profectin and 

Lipofectamine 2000 transfection reagent, respectively, according to the manufacturer’s 

instructions.

Coimmunoprecipitation experiments—HEK293 cells were transfected with the 

indicated constructs for expression of GFP- and Flag-tagged WT and mutant proteins. 24 

hours after transfection cells were lysed with 600 μl CHAPS lysis buffer [10 mM 3-[(3-

Cholamidopropyl)dimethylammonio]-1-propanesulfonate hydrate (CHAPS, Roth), 50 mM 

Tris-HCl (pH 7.8), 150 mM NaCl, 5 mM NaF, 1 mM Dithiothreitol (DTT, Merck), 0.5 mM 

Phenylmethanesulfonyl fluoride (PMSF, Merck) and 40 μl/ml “Complete Mix” protease 

inhibitor cocktail (Roche)]. The extracts were incubated with 40 μl agarose-conjugated anti-

Flag antibody (M2, Sigma) at 4°C overnight. Precipitates were washed 6 to 8 times with 

CHAPS lysis buffer and finally resuspended in SDS-polyacrylamide gel loading buffer. For 

western blotting the proteins were resolved in SDS-polyacrylamide gels and transferred 

electrophoretically at room temperature to PVDF membranes (Merck) for 1 h at 50 mA 

using a Tris-glycine buffer system. The membranes were pre-blocked for 1 h in a solution of 

3% milk powder in PBS-T (0.1% Tween 20 in PBS) before adding antibodies. The following 

antibodies were used: anti-GFP (7.1/13.1, mouse monoclonal IgG, secondary antibody 

peroxidase conjugated sheep anti-mouse IgG, NA931V, GE healthcare) or anti-Flag (M5, 

Sigma; secondary antibody, NA931V, GE healthcare).

In vitro protein translation—The in vitro protein translations were performed using the 

TNT-assay (L4610) from Promega according to manufacturer’s instructions. Prior to 
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EMSAs the in vitro translations of RBPJ (WT) and mutant proteins were monitored by 

western blotting using an anti-Flag antibody (M5, Merck).

Electro Mobility Shift Assay (EMSA)—Reticulocyte lysates from in vitro translations 

were used for electromobility shift assays (EMSAs) in a binding buffer consisting of 10 mM 

Tris-HCl (pH 7.5), 100 mM NaCl, 0.1 mM EDTA, 0.5 mM DTT, and 4% glycerol. For 

binding reaction, 2 μg poly(dI-dC) (GE healthcare) and approximately 0.5 ng of 32P-labeled 

oligonucleotides were added. The sequence of the double-stranded oligonucleotide FO-233 

(Key Resources Table) corresponds to the two RBPJ-binding sites within the EBV TP-1 

promoter. Super shifting of complexes was achieved by adding 1 μg of anti-Flag (M5, 

Sigma) antibody. The reaction products were separated using 5% polyacrylamide gels with 

1x Tris-glycine-EDTA at room temperature. Gels were dried and exposed to X-ray films 

(GE Healthcare).

Fluorescence microscopy—HeLa cells were cultured on glass coverslips at a density of 

105 cells per cm2. After 16 h cells were transfected with 400 ng of expression plasmids 

using the Lipofectamine 2000 transfection reagent (see above). 24 h after transfection cells 

were rinsed with PBS, fixed with 4% paraformaldehyde (PFA, Merck) in PBS (pH = 7.5). 

Specimens were embedded in “ProLong© Gold antifade” reagent (Thermofisher) 

supplemented with 2-(4-carbamimidoylphenyl)-1H-indol-6-carboximidamide (DAPI) and 

stored at 4°C overnight. Pictures were taken using a fluorescence microscope (IX71, 

Olympus) equipped with a digital camera (C4742, Hamamatsu), and a 100-W mercury lamp 

(HBO 103W/2, Osram). The following filter sets were used: Green, (EGFP) ex: HQ470/40, 

em: HQ525/50, blue (DAPI) D360/50, em: D460/50.

Luciferase assay—HeLa cells were seeded in 48-well plates at a density of 20 × 104 

cells. Transfection was performed with Lipofectamine 2000 reagent (see above) using 1 μg 

of reporter plasmid alone or together with various amounts of expression plasmid (given in 

the corresponding figure legends). After 24 h luciferase activity was determined from at least 

four independent experiments with 20 μl of cleared lysate in an LB 9501 luminometer 

(Berthold) by using the luciferase assay system from Promega.

Infection of hybridoma mature T cell line—5 × 106 Phoenix™ cells were seeded and 

24 h later they were transfected with the plasmid DNA of choice. Briefly, 20 μg of DNA 

were mixed with 860 μL of H2O and 120 μL of 2 M CaCl2 and mixed by vortexing. The 

DNA solution was transferred dropwise to 1 mL of 2 × HBS buffer (50 mM HEPES pH 

7.05, 10 mM KCl, 12 mM Glucose, 280 mM NaCl, 1.5 mM NaHPO4) while vortexing and 

the solution was incubated 20 min at room temperature. In the meantime, 25 μM 

Chloroquine solution (Sigma-Aldrich) was added to the Phoenix™ cells (1 μl/ml) and the 

cells were incubated for 10 min. The DNA solution was added to the cells and 12 h later the 

medium was replaced. After 24 h of incubation, the medium containing the retroviral 

suspension was filtered and Polybrene (Sigma-Aldrich) solution was added. Fresh medium 

was added to the Phoenix™ cells that were maintained in culture for further infections. The 

retroviral solution was used for spin infection of MT cells by centrifuging 45 min at 1800 

rpm at 37°C. In total, four spin infections were performed over two days. Positively infected 
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cells were selected with puromycin (Serva) or blasticidin (GIBCO) and, eventually, GFP 

positivity was analyzed using a BD FACS Calibur

Generation of CRISPR/Cas9 depleted MT cells—CRISPR/Cas9 Rbpj depleted MT 

cells were generated as follows: 3 × 106 293T cells were seeded and, after 24 h, transfected 

with 2.5 μg psPAX, 1 μg pMD2G and 3.33 μg of the desired lentiCRISPR v2 vector using 

Lipofectamine 2000 Transfection Reagent (Invitrogen) accordingly to manifacturer’s 

instructions. After at least 6 h of incubation at 37°C the medium was replaced with fresh one 

and 48 h post-transfection the supernatant was filtered, supplemented with polybrene and 

used for infection of MT cells. Positively infected cells were selected with puromycin and 

dilutions were performed to establish single cell clones. Individual clones were screened by 

western blotting versus RBPJ.

shRNA knockdown—For the knockdown in MT cells, the pLKO.1 TRC1 shRNA library 

(SIGMA-ALDRICH) was used. Transfection of 293T cells and infection and selection of 

MT cells was performed as previously described (Oswald et al., 2016). Sequence of the 

hairpins used in this study is indicated in Key Resources Table.

Constructs—The expression plasmid pcDNA3-Flag-mNotch-1-IC (Flag-NICD) and the 

luciferase reporter construct pGa981/6 (12 x CSL-RE-LUC) were previously 

described(Wacker et al., 2011). The Gal4-reporter plasmid pFR-Luc (5 x Gal4-RE-LUC) 

was previously described(Oswald et al., 2002). The pMSCV-FLAG-hRBPJ IRES Blasticidin 

was kindly provided by Dr. R. Liefke. All oligonucleotides used in this study are listed in 

Key Resources Table. PCR products were cloned in the pSC-A-amp/kan (Agilent 

Technologies 240205–5), digested with the selected restriction enzymes (New England 

Biolabs) and cloned into the destination vectors accordingly to Key Resources Table. All 

plasmids were analyzed by sequencing. The pcDNA 3.1 Flag2 (Invitrogen) was 

commercially acquired while the pMY BioTip60 IRES-GFP was previously described.

An engineered CRISPR/Cas9 resistant mouse RBPJ cDNA was synthetized at GENEART/

Life Technologies and inserted into the pcDNA3.1 Flag2 via NotI digestion. The RBPJ 

mutants R218H, F261A, L388A and the F261A/L388A double mutant was generated by site 

directed mutagenesis using the QuikChange II XL Site-Directed Mutagenesis Kit (Agilent 

Technologies 200521–5) accordingly to manufacturer’s instructions with primers listed in 

Key Resources Table and using the pcDNA3.1 Flag-mRBPJ wt CRISPR/Cas9 resistant 

plasmid as template. The mRBPJ wt and RBPJ F261A/L388A CRISPR/Cas9 resistant 

cDNAs were subcloned into the pMY-Bio-IRES Blasticidin. The mouse RBPJ-VP16 

expression plasmids (pcDNA3.1-Flag-2-mRBPJ-VP16 wt, F261A, L388A and F261A/

L388A) were constructed as follows: The stop codon was deleted by a mRBPJ specific PCR 

fragment (mRBP_VP16_UP, mRBPTAA_DO) resulting in the pcDNA3.1-Flag-2-

mRBPJDstop constructs. A VP16 specific PCR-fragment (VP16_XhoI_UP, 

VP16_XbaI_DO) was inserted into the corresponding sites of pcDNA3.1Flag-2-

mRBPJΔstop constructs resulting in the pcDNA3.1-Flag2-mRBPJ-VP16 plasmids. The 

Gal-4-Mint (2776–2833) and the EGFP-Mint (2776–2833) constructs were generated by 

PCR assisted cloning (Gal-Mint_F, Gal-Mint_R) into the BamHI/XbaI sites of pFa-CMV 

(Stratagene) and pEGFP-C1 (Clontech), respectively. The mutated constructs (V2785A, 
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Y2793A, K2807A, I2811A, L2791A and I2811A/L2791A) were obtained by site directed 

mutagenesis.

The lentiCRISPR v2 was a gift from Dr. F. Zhang (Addgene plasmid # 52961). The 

CRISPR/Cas9 guides were designed using the online tool available at http://zlab.bio/guide-

design-resources. The desired 5′ overhangs were added and oligos were phosphorylated, 

annealed and ligated into the lentiCRISPRv2 predigested with BsmBI.

RNA extraction, RT-PCR and qPCR—Total RNA was purified using Trizol reagent 

(Ambion, 15596018) accordingly to manufacturer’s instructions. 1 mg of RNA was reverse 

transcribed in cDNA using random hexamers and M-MuLV reverse transcriptase (NEB). 

qPCRs were assembled with Absolute QPCR ROX Mix (Thermo Scientific, AB-1139), 

gene-specific oligonucleotides and double-dye probes (see Key Resources Table) and 

analyzed using the StepOne Plus Real Time PCR system (Applied Biosystem). Data were 

normalized to the housekeeping gene glucuronidase β (GusB).

Chromatin ImmunoPrecipitation (ChIP)—ChIP experiments were performed as 

previously described (Oswald et al., 2016). The following antibodies were used: anti-

H3K9ac (abcam, ab4441), anti-H3K27ac (Diagenode, pAb-174–050), anti-H3 (abcam, 

ab1791), anti-RNAPII (Santa Cruz, sc-899) or IgG (Diagenode, C15410206) as mock 

control. Experiments were analyzed by qPCR on a StepOnePlus Real-Time PCR System 

(Applied Biosystem), making use of Absolute QPCR ROX Mix (Thermo Scientific 

AB-1139), gene-specific oligonucleotides and double-dye probes (see Key Resources 

Table). Gene desert was used as negative control as previously described (Oswald et al., 

2016).

Preparation of protein extracts and Western Blotting from MT cells—Whole Cell 

Extract (WCE) was prepared as follows. Briefly, cells were washed twice in PBS, lysed in 

WCE buffer (20 mM Tris-HCl pH 8.0, 150 mM NaCl, 1% NP-40, 10% glycerol, 0.5 mM 

Na3VO4, 10 mM NaF, 1 mM PMSF, 1 x Protease inhibitor cocktail mix) and incubated 20 

min on ice. After centrifuging 15 min at 13200 rpm at 4°C, the supernatant was recovered.

The Nuclear Extract (NE) from MT cells overexpressing the SHARP constructs was 

prepared as follows. Briefly, cells were washed with PBS and resuspended in Buffer A (20 

mM HEPES pH 7.9 / 20 mM NaCl / 5 mM MgCl2 / 10% glycerol / 0.2 mM PMSF) at the 

concentration of 1 × 106 cells/ml. The cell suspension was incubated 20 min on ice and 

mixed by vortexing. After 5 min centrifugation at 4000 rpm at 4°C, the pellet was washed 

twice in PBS and resuspended in Buffer C (20 mM HEPES pH 7.9 / 300 mM NaCl / 0.2% 

NP-40 / 25% glycerol / 1 mM MgCl2/0.2 mM PMSF / 1 x Protease inhibitor mix / 0.3 mM 

DTT) at the concentration of 1 × 106 nuclei/100 μl. After 20 min of incubation on ice, the 

nuclei suspension was centrifuged 5 min at 13200 rpm at 4°C and the supernatant was 

collected.

The NE from MT cells overexpressing the RBPJ constructs was prepared as follows. Briefly, 

10 × 106 cells were washed with PBS and resuspended in 200 μL of Buffer 1 (10 mM 

HEPES pH 7.9 / 10 mM KCl / 0.1 mM EDTA / 0.1 mM EGTA / 1 mM ßME, supplemented 
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with PMSF). The cell suspension was incubated 10 min on ice, 5 μL of 10% NP-40 were 

added and mixed by vortexing. After 10 s of centrifugation at 13000 rpm at 4°C, the nuclei 

pellet was washed twice in 500 mL of Buffer 1 and resuspended in 100 μL of Buffer 2 (20 

mM HEPES pH 7.9 / 400 mM NaCl / 1 mM EDTA / 1 mM EGTA / 1 mM ßME, 

supplemented with PMSF). After 20 min of incubation on ice, the nuclei suspension was 

centrifuged 10 min at 13000 rpm at 4°C and the supernatant was collected for further 

analysis.

Protein concentration was measured by Bradford assay (Biorad) and samples were boiled 

after adding SDS-polyacrylamide gel loading buffer. Samples were resolved by SDS-Page 

and analyzed by western blotting using antibodies against GAPDH (abcam, ab8245), GFP 

(Roche, 11814460001) or TBP (Santa Cruz, sc-273). Briefly, membranes were blocked in 

5% milk, 1x TBS, 0.1% Tween-20 (TBS-T) and primary antibodies were diluted in 5% milk, 

TBS-T. After incubation over night at 4°C, membranes were washed in TBS-T, secondary 

antibodies against mouse (Cell Signaling, #7076S) or rabbit (Cell Signaling, #7074S) were 

diluted in 5% milk TBS-T and finally membranes were washed in TBS-T.

In the case of the RBPJ western blotting the procedure was as follows. Briefly, membranes 

were blocked in 5% milk, 1x TBS and the RBPJ antibody (Cosmo Bio Co. LTD, 2ZRBP2) 

was diluted 1:1000 in 5% BSA, 1x TBS, 0.3% NP40. After incubation over night at 4°C, 

membranes were washed three times 15 min each in 1x TBS / 0.5 M NaCl / 0.5% Triton 

X-100 and the secondary antibody against rat (Jackson ImmunoResearch, 112-035-072) was 

diluted 1:5000 in 5% BSA, 1x TBS, 0.3% NP-40. Membranes were washed three times 15 

min each in 1x TBS / 0.5 M NaCl / 0.5% Triton X-100. All membranes were finally 

incubated with ECL solution and chemiluminescence was detected with a light sensitive 

film.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification of ITC data—ITC binding data are presented as means ± SD from at least 

three independent experiments.

Number of experiments, statistical test and p values are given in the respective figure 

legends.

DATA AND SOFTWARE AVAILABILITY

The coordinates and structure factors for the RBPJ-SHARP-DNA X-ray structure have been 

deposited in the PDB under ID code PDB: 6DKS.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• The corepressor SHARP binds the transcription factor RBPJ in a bipartite 

manner

• SHARP binds the BTD and CTD of RBPJ, using motifs analogous to other 

corepressors

• Structure-based mutants affect RBPJ-SHARP complex formation in vitro and 

in cells

• RBPJ mutants are defective in repression from Notch target genes in cells
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Figure 1. X-Ray Structure of the RBPJ-SHARP Corepressor Complex Bound to DNA
(A) Structure of the C. elegans RBPJ-NICD-MAM ternary complex bound to DNA (PDB: 

2FO1). RBPJ is composed of three domains: the NTD (N-terminal domain), BTD (β-trefoil 

domain), and CTD (C-terminal domain), which are colored cyan, green, and orange, 

respectively. A β strand that makes hydrogen-bonding interactions with all three domains is 

colored magenta. The RAM and ANK domains of NICD are colored yellow and blue, 

respectively. MAM and DNA are colored red and light pink-blue, respectively.

(B) Domain schematics of RBPJ, NICD, and MAM, colored similarly to the structure. 

SHARP is a multidomain transcriptional coregulator that contains N-terminal RRM (RNA 

recognition motif) domains, multiple NLSs (nuclear localization sequences), an RID 
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(receptor interaction domain), an RBPID (RBPJ-interacting domain), and a C-terminal 

SPOC (Spen paralog and ortholog C-terminal) domain.

(C) Ribbon diagram of the RBPJ-SHARP-DNA complex, with RBPJ and the DNA colored, 

as in (A), and SHARP is colored purple. Also shown are magnified views of the interaction 

of SHARP with the CTD (top) and BTD (bottom) of RBPJ. RBPJ is represented as a 

molecular surface, with CTD and BTD residues that contact SHARP colored orange and 

green, respectively. SHARP is shown in a stick representation, with carbon, oxygen, and 

nitrogen atoms colored purple, red, and blue, respectively. Electron density (composite omit 

map contoured at 1σ) corresponding to SHARP is colored gray. SHARP residues that were 

mutated and tested for activity are labeled. See also Figure S5.

(D) Open book representation of RBPJ-SHARP interfaces. Left: CTD-SHARP interface. 

Right: BTD-SHARP interface. Side chains that contribute to the interface are shown. Key 

residues at the interface that were mutated and tested for activity are labeled and color-coded 

according to ΔΔG°. See also Figure S1.

(E) Conformational changes in the CTD of RBPJ as a result of SHARP binding. Left: the 

CTD-SHARP complex with labeled secondary structural elements of the CTD. The R438-

E2786 salt bridge is also shown. Center: structural overlay of RBPJ (bound) from the RBPJ-

SHARP complex with an unbound structure of RBPJ (PDB: 3IAG). The RBPJ bound and 

unbound structures are colored orange and yellow, respectively. RBPJ residue W441, which 

undergoes a large conformational change in the bound structure, is shown. Right: ribbon 

diagram of the unbound RBPJ structure (PDB: 3IAG).
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Figure 2. Comparison of Coregulator Binding Sites on RBPJ
(A) Both SHARP and NICD bind the BTD and CTD of RBPJ. Left: RBPJ-SHARP-DNA 

complex structure, with RBPJ represented as a gray molecular surface, SHARP as a ribbon 

diagram colored purple, and the DNA as CPK colored light blue and pink. The RBPJ 

residues that contact SHARP in the BTD and CTD are colored green and orange, 

respectively. Right: C. elegans RBPJ-NICD-MAM-DNA complex structure (PDB: 2FO1), 

with RBPJ represented as a gray molecular surface. NICD is represented as a ribbon 

diagram, with its RAM and ANK domains colored yellow and blue, respectively. MAM is 

depicted as a ribbon diagram and colored red. The DNA is colored light blue and pink.

(B) Structural alignment of SHARP and other coregulators that bind the BTD of RBPJ. Top: 

the BTD of RBPJ is represented as a green molecular surface. SHARP, the RAM domain 

from LIN-12, RITA1, and FHL1 are colored purple, yellow, light pink, and gray, 

respectively. The hydrophobic tetrapeptide (ϕWϕP) is labeled. Bottom: sequence alignment 

of coregulators that bind the BTD of RBPJ, including the RAM domains of Notch from 
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mammals, D. melanogaster, and C. elegans, and the corepressors RITA1, FHL1, and 

SHARP. The conserved ϕWϕP is boxed in green. Other conserved regions in RAM that 

contribute to binding are highlighted, including the basic region (blue), the -HG- motif 

(orange), and the -GF- motif (magenta). Structurally similar residues in SHARP that align 

with other BTD binders are boxed and highlighted in gray.

(C) Structural similarity of RBPJ-SHARP and Su(H)-Hairless corepressor complexes. Su(H) 

is represented as a gray molecular surface, with the SHARP and Hairless binding sites 

colored orange. SHARP and Hairless are shown as ribbon diagrams and colored purple and 

yellow, respectively.

(D) Overview of corepressor binding to RBPJ, illustrating the bipartite binding of SHARP. 

RBPJ is represented as a gray molecular surface, with its BTD and CTD binding clefts 

colored green and orange, respectively. The corepressors SHARP, Hairless, RITA1, and 

FHL1 are shown as ribbon diagrams and colored purple, yellow, pink, and gray, respectively. 

The DNA is colored light blue and light pink.

(E) Structural comparison of the CTD of RBPJ with the RHR-C domain of NFAT. RBPJ-

SHARP is colored as in Figure 1, and NFAT is colored green. The NFAT β strand βa’, which 

is absent in the CTD of RBPJ but occupied by SHARP in the complex structure, is labeled.

(F) Structural alignment of the BTD from RBPJ with a canonical β-trefoil fold from the 

ryanodine receptor (RYR). A canonical BTD is composed of 12 β strands, in which four β 
strands are arranged in a pseudo-threefold symmetrical arrangement. The atypical BTD of 

RBPJ is missing two of the 12 β strands that compose a canonical BTD. The BTDs of RBPJ 

and RYR are colored green and light pink, respectively. The two β strands that are missing 

in the RBPJ BTD fold are colored light blue and highlighted with red arrowheads. The RAM 

domain of NICD is colored yellow.
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Figure 3. The RBPJ-SHARP Interaction Is Required for Repression of Notch Target Genes in 
Cells
(A) The wild-type SHARP RBPID (RBPIDWT), but not the RBPJ-interacting defective 

SHARP RBPID (RBPIDLI/AA) mutant, causes upregulation of Notch target genes in mouse 

mature T (MT) cells by outcompeting endogenous SHARP for RBPJ binding. MT cells were 

infected with plasmids encoding GFP-tagged SHARP (2,776–2,833), either wild-type (GFP-

SHARP/RBPIDWT, black bars) or the RBPJ-interacting defective mutant L2791A/I2811A 

(GFP-SHARP/RBPIDLI/AA, gray bars) or an empty vector control (Control, white bars). 

Left: total RNA from MT cells was analyzed by qPCR using primers specific for Tbp, Hes1, 

or Hey1. Data shown represent the mean ± SD of triplicate experiments (**p < 0.01, ***p < 

0.001, unpaired Student’s t test). Right: nuclear extracts (NEs) were prepared from MT cells 

and analyzed by western blotting, with TBP used as a loading control.
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(B–D) GFP-SHARP/RBPIDWT derepresses Notch target genes via histone deacetylation. 

MT cells were infected with plasmids encoding GFP-SHARP/RBPIDWT, GFP-SHARP/

RBPIDLI/AA, or an empty vector control and analyzed by chromatin immunoprecipitation 

(ChIP) using antibodies against H3K9ac (B), H3K27ac (C), or H3 (D). The enrichment was 

analyzed by qPCR on the enhancers of Hes1 and Hey1, located at approximately +0.6 kb 

and −0.8 kb relative to the transcription start site, respectively. Gene desert was used as a 

negative control. Data were normalized to the positive control (Gapdh 0kb), and, in the case 

of the H3K9ac and H3K27ac ChIP, data were further normalized to histone occupancy (H3). 

Shown is the mean ± SD of two experiments measured twice each (NS, not significant; *p < 

0.05; ***p < 0.001; unpaired Student’s t test). See also Figure S4.

(E) RBPJ is required to repress the Notch target genes Hes1 and Hey1 in MT cells, as 

revealed by CRISPR/Cas9 depletion of RBPJ. Left: total RNA from wild-type (control) or 

RBPJ-depleted (clones sgRbpj 2–12 and sgRbpj 2–14) MT cells was analyzed by qPCR. 

Shown is the mean ± SD of triplicate experiments (*p < 0.05, **p < 0.01, ***p < 0.001, 

unpaired Student’s t test). Right: whole-cell extracts (WCEs) were prepared from MT cells 

and analyzed by western blotting using an anti-RBPJ antibody. GAPDH was used as loading 

control.

(F) Hes1 and Hey1 Notch target genes are upregulated upon shRNA-mediated Rbpj 
knockdown but not with the SCR control shRNA. Left: total RNA from MT cells infected 

with shRNAs targeting Rbpj (Rbpj sh1 or Rbpj sh4) or scrambled shRNA control (SCR) was 

analyzed by qPCR using primers specific for Tbp, Hes1, or Hey1. Shown is the mean ± SD 

of quadruplicate experiments (**p < 0.01, ***p < 0.001, unpaired Student’s t test). Right: 

WCE was prepared from MT cells and analyzed by western blotting using an RBPJ 

antibody. GAPDH was used as a loading control.

(G) Expression of RBPJWT but not RBPJFL/AA in the RBPJ-depleted background rescues the 

repression of Notch target genes. Left: total RNA from sgRbpj 2–12 MT cells infected with 

empty vector (control), RBPJWT, or RBPJFL/AA was analyzed by qPCR using primers 

specific for Tbp, Hes1, or Hey1. Shown is the mean± SD of three independent experiments 

measured twice each (*p < 0.05, **p < 0.01, ***p < 0.001, unpaired Student’s t test). Right: 

NEs were prepared from sgRbpj 2–12 MT cells infected with empty vector (control), 

RBPJWT, or RBPJFL/AA and analyzed by western blotting using anti-RBPJ antibodies. 

Histone H3 was used as a loading control.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti-Flag-M2-agarose Merck A2220

anti-GFP Merck 11814460001

anti-mouse-POD GE healthcare NA931V

anti-Flag-M5 Merck F4042

H3K9ac abcam ab4441

H3K27ac Diagenode pAb-174-050

H3 abcam ab1791

RNAPII Santa Cruz sc-899

IgG Diagenode C15410206

GAPDH abcam ab8245

GFP Roche 11814460001

TBP Santa Cruz sc-273

RBPJ Cosmo Bio Co. LTD 2ZRBP2

Bacterial and Virus Strains

E. coli STBL3 Thermo Fisher C7373-03

Chemicals, Peptides, and Recombinant Proteins

RBPJ aa53-474 and mutants (Friedmann et al., 2008) N/A

mbp-SHARP aa2776-2833 This paper N/A

SMT3-SHARP aa2776-2833 and mutants
This paper and (VanderWielen 
et al., 2011) N/A

CHAPS Roth 1479.2

DTT Merck D9163

Bradford-Assay Biorad 500-0006

Sybrgreen PCR Mastermix Thermo Fisher 4312704

poly(dI-dC) GE healthcare 27-7880-03

X-ray films GE healthcare 28906837

Paraformaldehyde Merck 1.04005.1000

PMSF Merck P7626

cOmplete Mix Merck 11697498001

PVDV Immobilon-P membrane Merck IPVH00010

(Z)-4-hydroxytamoxifen (4-OHT) Sigma-Aldrich H7904-5MG

puromycin Serva 33835

Critical Commercial Assays

Lipofectamine 2000 Thermo Fisher 11668-019

Profectin© Mammalian Transfection System Promega E1200

TNT-Assay (T7) Promega L4610

ProLong Gold antifade reagent with DAPI Thermo Fisher P36931

Luciferase Assay System Promega E1501

QuikChange II XL Site-Directed Mutagenesis Kit Agilent 200521-5
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

RBPJ/MBP-SHARP/DNA X-ray structure This paper PDB: 6DKS

Experimental Models: Cell Lines

HeLa ATCC CCL2

HEK293 ATCC CRL1573

Phoenix™ Orbigen N/A

Hybridoma mature T cells (Giaimo et al., 2017) N/A

Oligonucleotides

See Table S2 N/A N/A

Recombinant DNA

pGEX-6p-1-RBPJ aa53-474 and mutants
This paper and (Friedmann et 
al., 2008) N/A

pMAL-SHARP aa2776-2833 This paper N/A

pSMT-SHARP aa2776-2833 and mutants
This paper and (VanderWielen 
et al., 2011) N/A

pMIGR1 pSV40-Puro
this paper and (Giaimo et al., 
2018) N/A

pcDNA3.1.Flag-2-mRBPJ this paper N/A

pcDNA3.1.Flag-2-mRBPJDstop this paper N/A

pFA-CMV Stratagene 219036

pcDNA3.1-Flag-2-mRBPJ-VP16 this paper N/A

pMY-Bio-IRES-Blasticidin this paper N/A

pFA-CMV-SHARP-2776-2833(wt) this paper N/A

Software and Algorithms

Pymol
The PyMOL Molecular 
Graphics System, Version 2.0 
Schrödinger, LLC.

https://pymol.org/2/

Phenix Adams et al., 2010 https://www.phenix-online.org/

Coot Emsley and Cowtan, 2004 https://www2.mrc-lmb.cam.ac.uk/personal/pemsley/coot/

Buster Global Phasing Ltd https://www.globalphasing.com/buster/
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