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A B S T R A C T   

It is precarious to scrutinize the impacts of operational parameters on corrosion when choosing 
materials for the green diesel and automotive industries. This was the original study to showcase 
an optimization stratagem for abating corrosion rates (CRs) of automotive parts (APs) explicitly 
copper and brass in a biodiesel environment, adopting novel Response Surface Methodology 
(RSM) and Adaptive Neuro-Fuzzy Inference System (ANFIS).To model CRs, the RSM and ANFIS 
were utilized. The mechanical properties of APs were inspected, explicitly their hardness number 
and tensile strength, as well as their outward morphologies. The optimal CRs for copper and brass 
were 0.01656 mpy and 0.008189 mpy at a B 3.91 biodiesel/diesel blend and 240.9-h exposure. 
The ANFIS model had a higher coefficient of determination and lower values of root mean 
squared errors (RMSE), mean average error (MAE), and average absolute deviation (AAD) when 
compared to the RSM model; this authenticates the ANFIS model’s superiority for predicting CRs 
of copper and brass. The tensile strength of brass was greater than that of copper, while the latter 
had a higher hardness number. The information, model, and correlations can assist APS in 
mitigating and slaving over for the corrosiveness of APs while utilizing green diesel.   

1. Introduction 

Given the imminent depletion of fossil resources and the impending threat of an energy crisis, it is vital to advance emerging 
solutions to address both existing and future energy hardships [1]. Biodiesel is an excellent diesel fuel alternative because of its 
minimal environmental impact, biodegradability, and convenience to combat global warming [2]. Transesterification is used for the 
production of biodiesel, a more environmentally friendly substitute to diesel fuel [3]. The dose and kind of catalyst used, the molar 
ratio, the temperature, and the time essential to produce the ester are all factors that affect (m)ethyl yield [4]. Owing to its enhanced 
cetane number, superior lubricity, lesser sulfur content, and advanced flash point, biodiesel has outperformed fossil fuels in admiration 
[5]. It has unwanted poor cold flow features, advanced viscosity, and volatility, and is more predisposed to corrosion or degradation of 
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APs [2]. The corrosive nature of automotive parts is triggered of by a lack of compatibility with other APs [5]. The incompatibility is 
ascribed to copious features such as hygroscopic flora of biodiesel and biodiesel oxidation temperature, moisture content, and mi-
crobial stage [2]. The incompatibility is attributed to a variety of factors, including biodiesel hygroscopic flora and biodiesel oxidation 
temperature, water content, and microbial advancement [6].When an engine component is in promixty with fuel, it is prone to 
corrosion, initiating the fuel to deteriorate and depart even further from its stipulations [7]. In biodiesel vehicles, for instance, the 
utilization of copper-based gaskets, washers, and bushings, as well as brass radiator tubes, cores, and tanks, has been constrained [8]. 
Contemporary discoveries on the corrosion of automotive parts uncovered to green diesel developed from palm oil, Pongamia pinnata 
oil, Jatropha oil, and Schinzochytrium sp. microalgae have been published [9–12]. However, other researchers [13–15] adopted 
various tools viz. Taguchi, intelligent technique, RSM for optimizing alga-based bi-hdrogen, valorisation of food waste, water hyacinth 
operated IC engine, respectively. 

It is germane for precise forecasting and monitoring of engine-part durability to have a consistent prediction of the corrosive 
characteristics of automotive parts exposed to the biodiesel field. Emembolu et al. [16] investigated the prognostic competencies of the 
RSM and ANFIS models of Al and mild steel corrosion inhibition by Aspilia Africana. Their results indicated the superiority of the 
ANFIS over RSM technique. 

Despite the reality that the fundamental mathematical principles of the process are obscure. Samuel and Okwu [17] indicated that 
these computational tools provide a way to correlate non-linear information by establishing a link between the system’s inputs and 
outputs. Among the hybrid tools, RSM combined with ANFIS is one that is substantially considered. 

The ANFIS model’s ability to capture nonlinear structure, adaptability, and rapid learning capacity, combined with usefulness in 
correlating input vs. response, establishing predictive equations, and inherent optimal conditions in RSM, have made the hybrid model 
applicable in a wide range of engineering and scientific application fields. 

1.1. Motivations, aim and novelty of the study 

Table 1 recapitulates the concise review of the numerous model tools espoused to predict metal corrosion rates. Even though many 
attempts have been made to model and forecast CRs of different metals in various media using different model tools, only Shehzad et al. 
[18] employed RSM to predict CRs of metals in fat chicken. There hasn’t been any earlier study on the RSM and ANFIS-based modelling 
of CRs of waste-based biodiesel, as far as the authors are aware. To diminish the corrosiveness of APs in biodiesel and fill the knowledge 
void in the literature, the subsequent actions were implemented: (i) using the Design of Experiments to examine the simultaneous 
effects of fuel types (0%, 10%, and 10%) and exposure times (240, 480, and 720 hours) on the (CRs) of copper and brass; (ii) 
investigating into the synergistic effects of corrosion variables; (iii) conducting a study on the interactions between corrosion variables; 
and (iv) evaluating the efficacy of the RSM and ANFIS of corrosiveness of automotivate parts in green diesel. 

The peculiarity of this research lies in the fact that no previous study has evaluated the corrosion rates of Cu and Br exposed to green 
diesel using RSM-ANFIS methods. Despite such, a variety of research using the RSM and ANFIS techniques to evaluate the corrosion of 
APs exposed to a biodiesel environment have been published in literary works. The suggested work is undoubtedly novel since there 
hasn’t been much research on the application of the unified RSM-ANFIS approach, tensile strength, and hardness of degraded auto-
motive components, as well as the surface morphology of coupons before and after exposure to a green diesel environment. 

The assessments of the hybrid vehicles will demonstrate the efficiency of these fuels, their corrosivity, and their stability in a fuel- 
metal system, approving the definition of the operating requirements necessary for the practical use of copper and brass in the 
automotive industry. 

Table 1 
Review of model tools for corrosion of metals in various media.  

Metals Corrosion media Model tools Remarks References 

mild steel and 
aluminium metal 

A. Africana in acid solutions RSM and ANFIS 
techniques 

ANFIS outperformed RSM technique Emembolu et al. 
[16] 

Mild steel specimens micro-/nano-hydroxyapatite 
(HA) powders 

MLs: ANN, RF, 
SVM, and KNNs 

Superiority of RF techniques over other MLs Aghaaminiha et al. 
[19] 

Ni–Cr–Mo–V Simulated deep sea 
environments 

DoE and ANN DoE model exhibited good validity and 
precision. 

Hu et al. [20] 

AA6061-T4 alloy coated  ANFIS Industrial applications of biomedical implant 
showcased by ANFIS 

Tuntas and Dikici 
[21] 

Copper acid extract of Gnetum Africana 
(GA) 

Factorial DoE 
(FDoE) 

Established suitability of FDoE for optimum GA 
for reducing corrosion 

Nkuzinna et al. [22] 

Cu high-content 
polyphosphate inhibition 

RSM Efficacy of the RSM established in corrosion 
minimization of Cu 

Goh et al. [23] 

MLs = Machine learnhngs, ANN= Artificial neural networks, RF = random forest, SVM = support. 
vector machine (SVM), and KNNs = nearest neighbors. 

O.D. Samuel et al.                                                                                                                                                                                                     



Heliyon 10 (2024) e26395

3

2. Experimental methodology 

2.1. Experimental procedure 

The splash method was utilized to prepare 10% (B10), 20% (B20), and pure diesel WFOB-diesel blends. The mixtures were 
thoroughly mixed for 7 min using a magnetic stirrer; no heating was administered. Fig. 1 shows the schematic diagram of the types of 
fuels. Appendix 1 (Figure A1) depicts the dimension of the vessel employed for keeping fuel types. The fuel kinds were subjected to an 
ASTM standard regulatory appraisal (see Fig. 2). 

Brass and copper bars were used to make experiment coupons. Fig, 2 (a–b) shows the copper and brass coupons’ sizes, and Fig, 2(c) 
shows their respective coupons’ chemical compositions. Appendix 2 (Fig. A2) depicts the dimension of apparatus adopted in corrosion 
testing. The coupons were degreased, polished, immersed in acetone for 30 min, weighed, and then kept in desiccators to avoid air 
deterioration. The produced coupons were then statically immersed, as reported by Aquino et al. [24] (See Fig. 3a and b). Aquino et al. 
(2012) investigated the CRs of brass and copper at a temperature of 55 ◦C. The approach used is compliant with ASTM G1 and ASTM 
G31 regulations [25]. Computation of the CRs of copper and brass in response to various fuel sources were made using Eqs. (1) and (2). 
Pre-exposure and post-exposure measurements of thermophysical fuel types were analyzed. Details of the accuracy of equipment 
utilized are discussed elsewhere [2]. 

CRCu =
WCu x 534
DCuACuTCu

(1)  

CRBr =
WBr x 534
DBrABrTBr

(2)  

where CRCu,CRBr are the CRs of the copper and brass, WCu , WBr are the weight losses in copper and copper (mg): the difference 
between weight prior immersion and weight afterward immersion, DCu, DBr are the densities of copper and brass (g/cm3), and TCu,TBr 
is the exposure duration of copper and brass to WFOB (hours), respectively. 

2.2. Uncertainty analysis of corrosiveness of automotive parts 

There are a variety of operational and static immersion tests on gasoline, as well as corrosion studies on automobile elements, 
which creates some uncertainty. For the time being, guaranteeing the correctness of the experimental setup necessitates an uncertainty 
evaluation of the precision of the experimentation in conjunction with repeatability. 

Table 2 summarizes the uncertainty of all measurements. As discovered, the valuation of critical parameters is presented. The 
measuring equipment’s uncertainty analysis was carried out using the standard technique described elsewhere [26]. The experiment’s 
overall uncertainty analysis was determined using Eq (3). Table 2 summarizes the uncertainty of all measurements. 

Total uncertainity= Square root of
{
(uncertainity of exposure duration of Cu/Br)2

+(uncertainity of weight loss by Cu)2

+(uncerainity of weight loss by Br)2
} (3)  

Aggregate uncertainity=Square root of
{
(0.707107)2

+(0.003514)2
+(1.93431)2}

=Overall uncertainty=1.63 %; i.e.within the range  

Fig. 1. Fuel types prepared for corrosion analysis:(a) B0, (b) B10, and (c) B20.  
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2.3. Measurement of BHN and TES of degraded Cu and Br 

The Brinell hardness number (BRHN) of degraded Cu and Br exposed to various fuel types under optimal conditions was checked 
using ASTM standard E10-17. The % BRHN was calculated by averaging the results of three successive rounds of tests using Eq. (4). 

%ΔBRHN= 100 ×

⃒
⃒
⃒
⃒
BRHNAE2 − BRHNBE1

BRHNBE1

⃒
⃒
⃒
⃒ (4) 

Corroded coupons were tested for tensile strength (TES, MPa) and percent variation using Eqs. (5) and (6), respectively. 

TES=
3, 4
10

BRHN (5)  

%ΔTES= 100 ×

⃒
⃒
⃒
⃒
TESAE2 − TESBE1

TESBE1

⃒
⃒
⃒
⃒ (6) 

Fig. 2. Specification and dimensions for (a) Br, (b) Cu coupons, and (c) chemical composition.  
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The morphology of the coupons (brass and copper) immersed in the fuel types was inspected using a JCM 100 small scanning 
electron microscope (Joel, USA). 

2.4. Model techniques 

2.4.1. Corrosion study via RSM 
This experiment used the Central Composite Design (CCD) component of the Response Surface Methodology (RSM). The CRs of 

copper and brass exposed to different fuel types can be analyzed by examining the linear, quadratic, and interaction impacts of 
corrosion factors. Fig. 4 depicts the steps involved in corrosion modeling using the RSM technique. Two sets of data are used to 
generate an output: fuel type (B0–B20)/(WFOB0-WFO20) and exposure time (240–720 h). This section involves the choice of optimum 
corrosion conditions for minimizing the corrosivity of fuel types susceptible to Br and Cu. The RSM was used to perform independent 
variable optimization. The development of the RSM model takes into account not only the responses (CRCu and CRBr), but also a 
number of independent variables (fuel kinds and exposure length. The CCD approach was used to evaluate the impact of fuel types and 
exposure duration on the CRs of Cu and Br in this investigation. 

2.4.2. Development ANFIS model 
The corrosion rates of Cu and Br in the WSOB/diesel blend environment were predicted in this work using ANFIS.With training 

data, a Sugeno fuzzy system was created using the program Matlab R2014a and the fuzzy logic toolbox for each trial. Table 3 highlights 
the development of Mamdani based fuzzy model for the prediction of corrosion rate of Cu and Br with respect to the variation of blends 
and exposure duration. The input parameters were assigned with three membership functions (MFs) such as Low, Medium and High 
and subsequently the responses discretised in to nine MFs like VVL, VL, ML, L, M, H, MH, VH, VVH [27]. Table 4 summarizes the fuzzy 
rules developed based on the experimental data. The MFs have nine set of rules with and gate for predicting the corrosion rate of Cu 
and Br which is illustrated in Table A1 (See Appendix 3). 

The approach for fuzzy modelling is shown in Fig. 5. As seen, database/fuzzification meticulously evaluates each input value before 
converting it into linguistic terms. For this linguistic terms assignment, we obtain fuzzy MF values between 0 and 1 [28]. There are 
numerous different mf kinds; for this study, a triangular mf is chosen. The rule base has carried out the interference operation on the 

Fig. 3. Schematic for immersion of corrosion testing of coupons: (a) Cu and (b) Br.  

Table 2 
Uncertainty assessment of corrosion test of automotive parts.  

S/N Computing instruments Uncertainty 

1. uncertainity of exposure duration of Cu/Br 0.7071 
2. uncertainity of weight loss by Cu 0.003514 
3. uncerainity of weight loss by Br 1.93431  
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Fig. 4. Graphic flow for the empirical based modelling.  

Table 3 
Fuzzy linguistic variables and range of corrosion parameters.  

Input 

Linguistic variables Range of Blends (v/v%) Linguistic variables Range of Exposure duration (hours) 

Low 0 Low 240 
Medium 10 Medium 480 
High 20 High 720 

Response 
Linguistic variables Range of Corrosion rates of Cu (mpy) Linguistic variables Range of Corrosion rates of Br (mpy) 

VVL 0.017–0.042 VVL 0.010–0.030 
ML 0.042–0.067 ML 0.030–0.049 
M 0.067–0.092 M 0.049–0.068 
VVL 0.092–0.117 VVL 0.068–0.087 
L 0.117–0.143 L 0.087–0.107 
H 0.143–0.168 H 0.107–0.126 
VVL 0.168–0.193 VVL 0.126–0.145 
M 0.193–0.218 VVL 0.145–0.165 
VVH 0.218–0.243 VVH 0.165–0.184 

L = Low, M = medium, H = high, VVL = very very low, VVH = very very high. 

Table 4 
Fuzzy rules.  

Blends (v/v%) Exposure duration (hours) Corrosion rates of Cu (mpy) Corrosion rates of Br (mpy) 

Low Low VVL VVL 
Low Medium ML ML 
Low High M M 
Medium Low VVL VVL 
Medium Medium L L 
Medium High H H 
High Low VVL VVL 
High Medium M VVL 
High High VVH VVH  
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rules. Fuzzy interference is made up of logical operation, IF-THEN rules, and MF. It considered the relationship between the 
input-output data in accordance with their linguistic forms [29]. The Mamdani model is recommended in this study among other 
rule-based systems. The final stage in the fuzzy development process is defuzzification. It involves a method for transforming mf into a 
choice. 

2.4.3. Determination of Statistical indices for the RSM and ANFIS models 
Statistical features viz. The correlation coefficient (R), the regression coefficient (R2), the root mean square error (RMSE), the mean 

average error (MAE), the standard error of prediction (SEP), and the absolute standard deviation (ASD) were adopted to judge the 
effectiveness of the hybrid models and their ability to predict outcomes. Statistics for both the RSM and ANN models were estimated 
using Eqs. (7)–(12). 

R=

⎛

⎜
⎜
⎝

∑n

m=1

(
Tpre,m − Tpred

)(
Texp.m − Texp

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

m=1

(
Tpre.m − Tpred

)2
√

∑n

m=1

(
Texp.m − Texp

)2

⎞

⎟
⎟
⎠ (7)  

R2 = 1 −

∑n

i=1

(
Ti,p − T1,e

)2

∑n

i=1

(
Ti,p − Te,ave

)2
(8)  

MSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
Ti,e − Ti,p

)2

n

√
√
√
√
√

(9)  

MAE=
∑n

i=1

⌊(
Ti,e − Ti,p

)⌋

n
(10)  

Fig. 5. Schematic diagram for fuzzy theory process.  

Fig. 6. Fatty acid content of WFOB.  
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SEP=
RMSE
Te,ave

(11)  

AD=
100
n

∑n

i=1

⌊(
Ti,e − Ti,p

)⌋

(
Ti,e

) (12)  

3. Results and discussion 

3.1. WFOB’s fatty acid contents and fuel physicochemical features 

Fig. 6 displays the fatty acid composition.The weight of WFOB is composed of 84.6% saturated and 15.4% unsaturated fatty acid 
compositions. Samuel et al. [30] stated that saturated fatty acid in WFOB can both raise cetane number and increase NOx. To be 
regarded as commercially sustainable, the developed biodiesel must satisfy the certification requirements of the EN 14214 specifi-
cation. The characteristics of the various fuels are listed in Table 5. The key parts were discovered to comply with European re-
quirements.The diesel engine does not require modification because the fuel types have not changed appreciably [31]. 

Table 5 
Properties of fuel for corrosion study.   

Types of fuel 

Fuel properties B0 B10 B20 B100 EN 41214 

Density (kg/m2) 861.3 862.6 865.3 883.6 850–900 
Viscosity (mm2/s) @ 40 ◦C 4.7162 4.7614 4.8910 5.1282 3.5–5.0 
Flash point (oC) 72 74 78 142 120 min 
Acid value (mg KOH/g) 0.12 0.14 0.17 0.298 0.50 max  

Table 6 
Design matrix for the corrosion of copper and brass.  

Coded process variables Experimental data Predicted data by RSM 

Blends (v/v 
%) 

Exposure duration 
(hours) 

Corrosion rates of Cu 
(mpy) 

Corrosion rates of Br 
(mpy) 

Corrosion rates of Cu 
(mpy) 

Corrosion rates of Br 
(mpy) 

− 1 − 1 0.0173 0.011 0.0204 0.006 
+1 − 1 0.0254 0.0215 0.0238 0.017 
0 +1 0.1196 0.106 0.1113 0.124 
+1 +1 0.2429 0.184 0.2299 0.136 
− 1 0 0.0753 0.0639 0.0659 0.065 
+1 0 0.1268 0.0102 0.1268 0.077 
0 − 1 0.017 0.0109 0.0221 0.012 
0 +1 0.1427 0.109 0.1706 0.13 
0 0 0.0971 0.0807 0.0963 0.071 
0 0 0.0971 0.0807 0.0963 0.071 
0 0 0.0971 0.0807 0.0963 0.071 
0 0 0.0971 0.0807 0.0963 0.071 
0 0 0.0971 0.0807 0.0963 0.071  

Table 7a 
ANOVA for the CR of Cu in WFOB.  

Source Sum of Squares Df Mean Square F-value p-value  

Model 0.1257 5 0.0251 264.28 <0.0001 *SIGN 
A-Blend 0.011 1 0.011 115.35 <0.0001 SIG 
B-Exposure duration 0.1054 1 0.1054 1108.16 <0.0001 SIG 
AB 0.0036 1 0.0036 37.34 0.0005 SIG 
A2 0.0007 1 0.0007 7.03 0.0329 **NSIG 
B2 0.0057 1 0.0057 60.45 0.0001 SIG 
Residual 0.0007 7 0.0001    
Lack of Fit 0.0007 3 0.0002    
Pure Error 0 4 0    
Cor Total 0.1263 12     

*Significant; **Non-significant. 
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3.2. Modelling and extrapolative fitness of RSM and ANOVA CRs 

Table 6 highlights the design layout for the corrosion examination of copper and brass in WFOB. As detected, the highest CRs of 
copper (0.2429 mpy) and brass (0.1840 mpy) were attained at a blend ratio of 20% and exposure duration of 720 h while the minimum 
CRs of copper (0.0173 mpy) and brass (0.0110 mpy) were reached at a blend ratio of unblended diesel (B0) and exposure duration of 
240 h. 

Tables (7a) and (7b) are the groupings of Table 7: The ANOVA for the CRs of Cu and Br exposed to WFOB is summarized in 
Tables (7a) and (7b), respectively.. As seen in Table 7a, the model F-value of 264.28 implies that the model is substantial. Due to an 
extremely low probability of only 0.01%, this high F-value cannot be explained by chance alone. When the probability of a term in the 

Table 7b 
ANOVA for the CR of Br in WFOB.  

Source Sum of Squares Df Mean Square F-value p-value  

Model 0.0213 2 0.0106 13.23 0.0016 SIG 
A-Blend 0.0002 1 0.0002 0.2510 0.6272 NSIG* 
B-Exposure duration 0.9211 1 0.0211 26.21 0.00025 SIG** 
Residual 0.0080 10 0.0008    
Lack of Fit 0.0080 6 0.0013    
Pure Error 0.0000 4 0.0000    
Cor Total 0.0293 12     

*Significant; **Non-significant. 

Fig. 7. Three-dimensional surface plots by RSM (a) Copper corrosion rates (CRs) in relation to fuel types and exposure durations (b) Brass CRs in 
relation to fuel types and exposure durations; and ANFIS curves: (c) Copper CRs in relation to fuel types and exposure duration, and (d) Brass CRs in 
relation to fuel types and exposure duration. 
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model is smaller than 0.0500, we say that it is noteworthy. In this case, the quadratic terms of fuel type (A2) and exposure duration (B2) 
are as important as the linear terms of fuel type (A). However, other factors are not momentous. For instance, if the number is higher 
than 0.1000, it means that the model terms are not important. Model reduction can be useful if your model has a large number of 
irrelevant terms (excluding those necessary to maintain hierarchy). The model F-value of 13.23, as shown in Table 7b, also indicates 
the model’s significance. It’s not as close as one may assume between the “Pred R-Squared” value of 0.4266 and the “Adj R-Squared” 
value of 0.6709. This could indicate possible problems with your model and/or data, such as model simplification, data translation, 

Fig. 8. Fuzzy rule viewer.  

Fig. 9. Established fuzzy interference system.  
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outlier detection, etc. The “Adeq Precision” metric assesses the quality of the signal over the background noise. Ratios greater than 4 
are preferred. A signal strength of 9.554 shows sufficient ratio. Using this model, you may further explore potential layout options. 

The response surface model obtained to check the corrosion rate of Cu in WFOB including all experimental variables is signified by 
Eq. (13a) in terms of coded experimental variables and Eq. (13b) in terms of actual experimental variables. Eq. (14a) epitomizes the 
response surface model obtained to check the corrosion rate of brass in WFOB in terms of coded experimental variables, while Eq. (14b) 
signifies the model in terms of real experimental data. 

CRCu = 0.096 + 0.030A + 0.074B + 0.029AB (13a)  

CRCu = − 0.025037 − 0.002712Blend + 0.0001894Exposure duration + 0.012 + 0.029Fuel blend ∗ Exposure duration (13b)  

CRBr = 0.071 + 0.0058A + 0.0B + 0.059AB (14a)  

CRBr = − 0.053564 + 0.00058Blend + 0.000247Exposure duration (14b)  

3.3. RSM model, fuzzy model forecast and its defuzzification 

The three-dimensional surface plots by RSM for copper corrosion rates (CRs) versus fuel types and exposure durations, as well as 
brass CRs versus fuel types and exposure durations, are shown in Fig. 7(a and b). Fig. 7(c and d) shows the three-dimensional surface 
plots produced by ANFIS curves for copper and brass CRs in relation to fuel types and exposure times, respectively. The discrepancies in 
the phenomenon associated with the CRs’ parameters vs. CRs of Cu and Br discussed elsewhere [18]. The CRs became exceedingly 
aggravated at a higher WFOB and exposure duration [32]. 

Using the fuzzy model, the last layer of the fuzzy system generates the predicted rates of Cu and Br corrosion.The defuzzifier model 
is shown in Fig. 8. As demonstrated, the control variables of 10% WSOB blends and 480 h of exposure led to the comparable fuzzy 
model projected values of CRs for Cu (0.102 mpy) and Br (0.0753 mpy).The uniformly distributed data sets for corrosion rates indicate 
that the fuzzed forecasted CRs of Cu and Br are close to those of the experimental values [33–35] (see Fig. 9). 

3.3.1. ANFIS based modelling of corrosion 
Fig. 8 shows the architecture of the developed ANFIS model, which includes two inputs (fuel kinds and exposure duration) and two 

outputs (responses) (corrosion rates of Cu and Br). As oberved, fuzzy systems with 9 inference rules and three Gaussian membership 
functions for each entering input were sufficient to represent process performance. 

3.4. Comparing of RSM and ANFIS models 

Fig. 10 depicts the experimental CRs for Cu and Br, as well as those of the RSM-ANFIS models. When compared to the models 
derived from the RSM on various runs, the CRs model from the ANFIS is extremely near to the experimental CRs, as shown. Other 
researchers have reported similar findings [36,37]. 

Fig. 11(a and b) compares experimental and RSM predicted CRs for Cu and Br, whereas Fig. 11(c and d) contrasts experimental and 
ANFIS predicted CRs for Cu and Br. The linear equations (0.9734x+0.0026) and (0.7244x+0.0197) are discovered to be adequate for 

Fig. 10. Runs vs. Experimental, RSM, and ANFIS predicted corrosion rates.  
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Fig. 11. Contrast of the various corrosion rates: (a) RSM predicted and experimental CRs for Cu, (b) RSM predicted and experimental CRs for Br, (c) 
ANFIS predicted and experimental CRs for Cu, and (d) ANFIS predicted and experimental CRs for Br. f. Catalogues of RSM and ANFIS models. 
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the variations of experimental and RSM-based CRs, respectively, whereas the rectilinear equations (0.981x+0.00583) and 
(0.9592x+0.000489 ) are also found to be appropriate for these same variations for copper and brass, respectively. The RSM had an R2 

of 0.7254 and 0.9734 for the CRs of brass and copper, while the ANFIS had an R2 of 0.98618 and 0.99103, indicating that the ANFIS 
model captured a greater proportion of the data than the RSM model. As a result, the ANFIS model could predict CRs for brass and 
copper in a biodiesel environment. Analogous reports were stated by researchers elsewhere [16,38,39]. To get precise predictions of 

Fig. 12. Optimal condition for corrosion minimization for Cu and Br in biodiesel environment.  

Table 8 
Mechanical properties of corroded Cu and Br.  

APa  Hardness number (N/mm2) Tensile strength (MPa) 

Cu  211.12 717.80 
Br  68.63 1476.52  

a Automotive parts. 

Fig. 13. SEM Morphologies of Cu and Br: (a) Cu before exposure, (b) Cu after exposure, (c) Br before exposure, (d) Br after exposure.  
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the Cu and Br CRs in a biodiesel environment, it is vital to contrast the superiority of RSM and ANFIS. In this study’s comparison of 
prediction power between the RSM and ANFIS models, a few statistical norms were used (See Fig. 11(f)). 

3.5. Corrosions’ optimal condition for minimization and its mechanical properties 

Fig. 12 shows the optimal conditions for lessening Cu and Br CRs in a biodiesel environment. The CRs of Cu (0.01656 mpy) and Br 
(0.008189) were detected to be optimal at B 3.91 of biodiesel/diesel blend and exposure duration of 240.9 h. In a validation test, 
optimized experimental variables resulted in experimental CRs of 0.01655 mpy and 0.0081895 mpy for Cu and Br, respectively. 
Comparing projected and measured of CRs for Cu and Br, the average error was 0.06% and 0.03054%, respectively. Good agreement 
between the percentages of error in prediction was found during validation, proving that the RSM model developed was reliable. 
Table 8 highlights the mechanical properties of Cu and Br exposed to biodiesel at optimal conditions, namely HAN and TES. As can be 
realized, the TES of Br was higher than copper while the hardness of the latter exceeded that of the former. The increased oxygen 
dissociation and stronger conductivity of the optimal corroded biodiesel of Br to Cu are the reason of the higher hardness number and 
tensile strength [32]. 

3.6. Surface morphology of the automotive parts 

Under optimal conditions, Fig. 13(a and b) shows the SEM morphologies of Cu before and after exposure, while Fig. 13(c and d) 
shows the SEM morphologies of Br before and after exposure. The microstructure of copper darkens in comparison to brass. Brass is 
more computably more than copper, which explains this phenomena. 

4. Conclusion 

The study demonstrated the prediction and modelling of copper and brass CRs in biodiesel synthesized using RSM and ANFIS 
models. The best conditions and correlations for predicting and modelling the CRs of these automotive parts were recognized. The 
mechanical properties of automotive parts, specifically HAN and TES, as well as surface morphologies prior to exposure and under 
optimal conditions, were examined. To attain a vigorous study in the nearby imminent, (i) additional operating corrosion variables can 
be studied, (ii) the inclusion and efficacy of cost-effective inhibitors can be studied, and (iii) kinetic and thermodynamic features can be 
studied further. The following conclusions can be deduced from this study:  

• The optimum CRs for copper and brass were 0.01656 mpy and 0.008189 mpy at a B 3.91 biodiesel/diesel blend and 240.9-h 
exposure.  

• The developed ANFIS model outperformed the RSM model in terms of application and superiority.  
• When compared to the RSM model, the ANFIS model had a higher coefficient of determination and lower values of root mean 

squared errors (RMSE), mean average error (MAE), and average absolute deviation (AAD); this validates the ANFIS model’s su-
periority for predicting copper and brass CRs.  

• Brass had a higher tensile strength than copper, although the latter had a higher hardness number. 
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Appendix 1. The vessel employed for keeping fuel types 

Fig. 1A. The dimension of the vessel employed for keeping fuel types.  
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Appendix 2. The apparatus adopted in corrosion testing 

Fig. 2A. The dimension of apparatus adopted in corrosion testing.  

Appendix 3. Expanded View of Fuzzy Rules  

Table A1 
Fuzzy rules  

S/N Set of rules 

i. For low blend and low exposure duration then CR of Cu is VVL and CR of Br is VVL 
ii For low blend and medium exposure duration then CR of Cu is ML and CR of Br is ML 
iii. For low blend and high exposure duration then CR of Cu is M and CR of Br is M 
iv. For medium blend and low exposure duration then CR of Cu is VVL and CR of Br is VVL 
v. For medium blend and medium exposure duration then CR of Cu is L and CR of Br is L 
vi For medium blend and high exposure duration then CR of Cu is H and CR of Br is H. 
vii For high blend and low exposure duration then CR of Cu is VVL and CR of Br is VVL 
viii For high blend and medium exposure duration then CR of Cu is M and CR of Br is VVL 
ix For high blend and high exposure duration then CR of Cu is VVH and CR of Br is VVH 

L = Low; M = medium; H = high; VVL = very very low; VVH = very very high; ML = medium low; CR =
corrosion rate. 
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