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Impact of Newtonian heating 
and Fourier and Fick’s laws 
on a magnetohydrodynamic dusty 
Casson nanofluid flow with variable 
heat source/sink over a stretching 
cylinder
Muhammad Ramzan1,2, Naila Shaheen1, Jae Dong Chung2, Seifedine Kadry3, 
Yu‑Ming Chu4,5* & Fares Howari6

The present investigation aims to deliberate the magnetohydrodynamic (MHD) dusty Casson 
nanofluid with variable heat source/sink and modified Fourier’s and Fick’s laws over a stretching 
cylinder. The novelty of the flow model is enhanced with additional effects of the Newtonian heating, 
activation energy, and an exothermic chemical reaction. In an exothermic chemical reaction, the 
energy of the reactants is higher than the end products. The solution to the formulated problem 
is attained numerically by employing the MATLAB software function bvp4c. The behavior of flow 
parameters versus involved profiles is discussed graphically at length. For large values of momentum 
dust particles, the velocity field for the fluid flow declines, whereas an opposite trend is perceived for 
the dust phase. An escalation is noticed for the Newtonian heating in the temperature profile for both 
the fluid and dust-particle phase. A comparison is also added with an already published work to check 
the validity of the envisioned problem.

Nomenclature
A = hs

√

vl
u0

	� Conjugate parameter for heat transfer
B0	� Magnetic field strength
C	� Fluid concentration
Cw	� Nanoparticle concentration
C∞	� Ambient concentration
cp	� Specific heat
cm	� Specific heat of dust particles
D	� Temperature-dependent source/sink parameter
Db	� Brownian diffusion coefficient
Dt	� Thermophoretic diffusion coefficient
Ea	� Activation energy
E = Ea

kT 	� Dimensionless activation energy
H	� Space-dependent source/sink parameter
Ha =

σB20 l
ρu0

	� Magnetic parameter
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hs	� Heat transfer coefficient
K = 6πµr	� Stokes’ drag constant
K1 =

εTu0
l 	� Thermal relaxation time

K2 =
εcu0
l 	� Concentration relaxation time

k	� Thermal conductivity
l 	� Characteristic length
m	� Dust-particle mass
N	� Number density of the particle phase
Nb =

τDb(Cw−C∞)
ν

	� Brownian motion parameter
Nt =

τDt
ν

	� Thermophoresis parameter
Pr =

µcp
k 	� Prandtl number

Qw	� Heat flux
Qm	� Mass flux
R	� Radius of the cylinder
Rex = x2u0

νl 	� Local Reynolds number
T	� Fluid temperature
Tp	� Dust particle temperature
T∞	� Fluid ambient temperature
u,w	� Components of velocity
up,wp	� Velocity of dust particles
ue	� Stretching velocity
x, r	� Cylindrical coordinates

Greek symbols
ζ	� Similarity variable
σ1	� Electrical conductivity
ν	� Kinematic viscosity
ρ	� Density of fluid
ρp = mN	� Dust-particle density

ω =

(

lν
u0R2

)1/2
	� Curvature parameter

µc	� Dynamic viscosity of Casson fluid
� = Nm

ρ
	� Mass concentration of dust particle

δv =
l

u0τv
	� Fluid particle interaction parameter

τv =
m
K 	� Dust-particle relaxation time

β =
uB(2π)

1/2

Sy
	� Casson fluid parameter

τ =
(ρcp)
(ρcp)f

	� Ratio of specific heat

�2	� Reaction rate
δ = �2l

u0
	� Reaction rate constant

Researchers have shown keen interest in the study of heat and mass transfer of fluid flow amalgamated with dust 
particles over a stretching surface due to its wide-ranging applications including wastewater treatment, cement 
production, environmental pollution, smoke emission from vehicle’s cooling effects of air conditioner, purifica-
tion of crude oil, emission of effluents from industries and formation of raindrops. In a laminar flow, the impact 
of heat transfer on fluid flow with suspended particles is conducted by Saffman1. The flow of dusty Casson fluid 
with melting heat and Cattaneo Christov (CC) heat flux model past an extended sheet is numerically examined by 
Gireesha et al.2. In this study, it is understood that increment in the magnetic parameter and mass concentration 
parameter results in a decline of the velocity field for both phases. The influence of conjugate heat transfer with 
variable heat source/sink on a dusty Casson and Carreau fluid past a deforming sheet is studied by Mahanthesh 
et al.3. Bilal and Ramzan4 emphasized the nonlinear thermal radiation on a dusty nanofluid rotating flow with 
Hall current in a Darcy Forchheimer spongy medium. The main outcome of this investigation is that the rate of 
heat transfer escalates by amplifying the Prandtl number. Souayeh et al.5 numerically illustrated the outcome of 
heat transfer and radiation effect on hybrid nanofluid with dust particles on a stretching sheet. It is concluded 
that by increasing the thermal radiation more heat is transmuted to the fluid which results in enhancement of the 
temperature field. The influence of the (CC) heat flux model on nanofluid with the deferment of dust particles 
on an elongated cylinder is examined by Upadhya et al.6. Lately, researchers have pondered on the dusty fluid 
flows mentioned in Refs.7–10.

Non-Newtonian fluid flows over a stretching surface has immensely been emphasized by the researchers due 
to its vast applications such as cooling of nuclear reactors, production of glass fiber, manufacturing of electronic 
chips, the drilling process, and groundwater pollution, etc. Casson fluid is known as a shear-thinning fluid as it 
has distinct characteristics. Jelly, concentrated fruit juice, human blood, soup, tomato sauce, and honey are a few 
examples of Casson fluid. Naqvi et al.11 addressed the influence of thermal radiation on a magnetohydrodynamic 
Casson nanofluid flow on a stretching cylinder with Joule heating. Here, it is concluded that by increasing the 
curvature parameter, the velocity, temperature, and concentration profile escalate. The Casson nanofluid flow 
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past a stretching cylinder with variable thermal conductivity and (CC) heat flux model in a porous medium is 
discussed by Tulu and Ibrahim12. It is concluded that for higher values of magnetic and permeability parameters, 
velocity field drops. Rehman et al.13 numerically illustrated the convective flow of an MHD Casson fluid with 
thermal stratification past a stretching cylindrical surface. It is noticed that the rate of heat transfer declines 
with an increase in Casson fluid parameter and exhibits an opposite behavior for curvature parameter. Ramesh 
et al.14 explored the outcome of the convective condition and thermal radiation on a dusty Casson fluid flow 
over a hollow stretching cylinder. Researchers have exhibited great interest in Casson fluid flow on an elongated 
surface which can be seen in Refs.15–26.

Newtonian heating plays a vital role in cooling and heating of buildings, heat exchanger designing, conjugate 
heat transfer around fins, petroleum industry and solar radiation, etc. Four discrete heat transfer types from 
the surface to the ambient liquid are defined by Merkin27. Casson fluid flow with dust particles past a vertical 
deforming sheet with a modified magnetic field and conjugate heat transfer is deliberated by Kasim et al.28. The 
outcome of mixed convection amalgamated with the inclined magnetic field is numerically explored by Mabood 
et al.29 on a second-grade fluid flow past a vertical cylinder with Newtonian heating. Murthy et al.30 examined the 
Casson fluid flow with slip condition and Newtonian heating on a linear stretched cylinder. It is perceived that the 
temperature of fluid and rate of heat transfer enhances for larger values of Newtonian heating. Suleman et al.31 
examined the behavior of heat generation/absorption on nanofluid flow over a nonlinear elongated cylinder 
incorporated with homogeneous and heterogeneous (h–h) reactions. The key outcome of this exploration reveals 
that the augmentation in the temperature field is noticed by increasing the radiation parameter. Nevertheless, 
by mounting the (h–h) reaction parameter the concentration field declines.

The variable heat source and sink effects have innumerable applications in the field of engineering and 
medicine like unpolished oil retrieval, radial diffusers, and cooling of metallic sheets. Rasekh et al.32 numerically 
demonstrated the impact of the variable heat source and sink on a nanofluid flow on a cylindrical surface. It is 
observed here that by up surging the Brownian and thermophoresis parameters, the surface drag force coefficient 
declines. Sravanthi33 analytically discussed the influence of nonlinear thermal radiation on nanofluid flow on 
a vertical stretching cylinder with an irregular heat source/sink. Hayat et al.34 discussed variable heat source/
sink and mixed convection on a Jeffery fluid on an inclined cylinder. By utilizing the analytical approach, it 
is concluded that the temperature of the fluid is in direct proportionate to the heat source. Lin and Ghaffari35 
numerically presented the influence of heat transfer on two stretchable disks with variable heat source/sink. 
Recent analysis involving non-uniform heat source and sink is mentioned in Refs.36–43.

The difference in temperature within a system results in the transport of heat from one region to the other. The 
phenomenon of heat and mass transfer has numerous applications such as heat conduction in tissues, cooling of 
electronic devices, heat exchangers, food processing, crop damage, power collector, and wire drawing technique. 
Fourier44 formulated a law to understand the transmission of heat in various situations with certain restrictions. 
The drawback of the Fourier model was that it governs the parabolic equation. Due to which it was insufficient 
to analyze the behavior of heat flow throughout the medium. Cattaneo45 modified Fourier law with the inclu-
sion of relaxation parameter with respect to time. Consequently, this modification results in a hyperbolic energy 
equation. Christov46 added the upper convected Oldroyd derivative to upgrade the Cattaneo model known as 
Cattaneo–Christov (CC) model. The impact of the CC model on an unsteady Maxwell fluid flow past a stretching 
cylinder is analyzed by Khan et al.47. Shankar and Naduvinamani48 numerically examined the characteristics of 
the CC model on an MHD Casson fluid flow with thermal radiation between two parallel plates. Waqas et al.49 
addressed the impact of the CC model on a stratified Oldroyd-B fluid flow past an elongated sheet. Khan et al.50 
focused on Carreau nanofluid flow with the CC model over a paraboloid surface of revolution. Researchers have 
shown great interest in CC model cited in Refs.51–53.

Activation energy is the least energy required by reactants to prompt a chemical reaction. A wide range of 
utilization of activation energy appears in the preparation of food, hydrodynamics, oil, and water emulsions. In 
recent years, huge interest is shown by researchers in chemical reactions coupled with heat and mass transfer due 
to its significance in many processes such as damage of crops due to freezing, drying, food processing, manu-
facturing of ceramics, and polymer production. An upshot of activation energy on an MHD Casson nanofluid 
flow over a nonlinear deformed surface is addressed by Shah et al.19. It is noticed here that the concentration of 
nanofluid enhances by escalating the activation energy and reaction rate. Abdelmalek et al.54 investigated vari-
able thermal conductivity on a Williamson nanofluid flow with activation energy and second-order slip over a 
stretching cylinder. It is noticed that the concentration of nanoparticles increases for larger values of activation 
energy and slip parameters. Activation energy with thermal radiation on an Eyring-Powell nanofluid flow is 
inspected by Reddy et al.55 past an inclined cylinder. It is observed here that drag force decreases for large values 
of magnetic and curvature parameters. Sarkar et al.56 examined the impact of activation energy on a hydromag-
netic Sisko nanofluid on a linear stretching cylinder. Lately, researchers have pondered on the fluid flows with 
activation energy57–60.

The above-mentioned literature illustrates that abundant researches are available discussing fluid flow past 
a linear stretching cylinder. The literature is also available if we talk about the Casson nanofluid flow over the 
stretched cylinders. But no study so far is attempted that discusses the MHD Casson nanofluid flow with dust 
particles over a deformable cylinder. The novelty of the envisaged flow model is enhanced with activation energy, 
binary chemical reaction, and Fourier and Fick’s laws. The flow is analyzed under the impact of variable source/
sink and Newtonian heating at the boundary of the cylinder surface. The solution of the formulated mathematical 
problem is computed by employing bvp4c a built-in function in MATLAB. The aftermath of pertinent parameters 
is inspected numerically and graphically.
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Mathematical formulation
An incompressible, two-dimensional MHD dusty Casson nanofluid over a stretching cylinder r = R is consid-
ered. Cylindrical coordinates are used. The axis of the cylinder is along the x-axis and r-axis is perpendicular 
to the surface of the cylinder. A schematic illustration for the flow is portrayed in Fig. 1. To observe heat and 
mass diffusion, generalized Fourier, and Fick law is used. The transfer of heat is enhanced by considering the 
characteristic features of variable heat source/sink and Newtonian heating. The rheological equation for Casson 
fluid model is demarcated as61:

where τij is the extra stress tensor, π̃ = γ̃ijγ̃ij is the product of the components of deformation rate, 
γ̃ij =

1
2

(

∂xj vi + ∂xi vj

)

 is the rate of the strain tensor, π̃c is the critical value of deformation rate tensor, Sy is the 
fluid yield stress.

The equations associated with the above-stated assumptions are6,14,30,54:
For the fluid flow

For the dusty flow

(1)τij =



















�

µc +
Sy

(2π̃)0.5

�

2γ̃ij , if π̃ > π̃c

�

µc +
Sy

(2π̃c)
0.5

�

2γ̃ij , if π̃ < π̃c

,

(2)∂xu+
w

r
+ ∂rw = 0,

(3)u∂xu+ w∂ru =
ν

r

(

1+
1

β

)

∂r(r∂ru)−
σ1B

2
0

ρ
u+

KN

ρ

(

up − u
)

,

(4)

(

u∂xT̃ + w∂r T̃
)

+ εT

(

u2∂xxT̃ + 2uw∂xr T̃ + w2∂rr T̃ + u∂xu∂xT̃

+w∂ru∂xT̃ + u∂xw∂r T̃ + w∂rw∂r T̃

)

=
k

r

1
(

ρcp
)

f

∂r

(

r∂r T̃
)

+ τ

(

Db

(

∂r T̃∂r C̃
)

+
Dt

T̃∞

(

∂r T̃
)2

)

+
ρpcp

(

ρcp
)

f
τT

(

T̃p − T̃
)

+
1

(

ρcp
)

f

kuw

xν

[

D
(

T̃∞

)

f ′ +H
(

T̃ − T̃∞

)]

,

(5)

u∂xC̃ + w∂r C̃ + εC

(

u2∂xxC̃ + 2uw∂xr C̃ + w2∂rr C̃ + u∂xu∂xC̃

+w∂ru∂xC̃ + u∂xw∂r C̃ + w∂rw∂r C̃

)

=
Db

r
∂r
(

r∂r C̃
)

+
Dt

T̃∞

1

r
∂r

(

r∂r T̃
)

−�2
(

C̃ − C̃∞

)

(

T̃

T̃∞

)n

exp

(

−Ea

kT̃

)

.

Figure 1.   Flow configuration of the model.
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with boundary conditions 3,30,55,62:

Using appropriate transformation21:

By utilizing the above transformation, the continuity Eqs. (2) and (6) are satisfied. However, Eqs. (3)–(5) and 
(7)–(8) are transmuted into dimensionless form:

For the fluid flow

For the dusty flow

and the modified boundary conditions are:

The drag force coefficient Cf  temperature gradient Nux and rate of mass transfer Shx on the wall are specified 
as:

(6)∂xup +
wp

r
+ ∂rwp = 0,

(7)up∂xup + wp∂rup =
K

m

(

u− up
)

,

(8)up∂xT̃p + wp∂r T̃p =
cp

cmτT

(

T̃ − T̃p

)

.

u|r=R = ue(x) =
u0x

l
, w|r=R = 0, ∂r T̃

∣

∣

∣

r=R
= −hsT̃ , C̃

∣

∣

r=R
= C̃w ,

(9)u|r→∞ → 0,up
∣

∣

r→∞
→ 0, wp

∣

∣

r→∞
→ w, T̃

∣

∣

∣

r→∞
→ T̃∞, T̃p

∣

∣

∣

r→∞
→ T̃∞ C̃

∣

∣

r→∞
→ C̃∞.

(10)

u =
u0x

l
f ′(ζ ), w = −

(u0v

l

)1/2
.
R

r
f (ζ ), ζ =

(u0

νl

)1/2
(

r2 − R2

2R

)

, up =
u0x

l
F ′(ζ ),

wp = −

(u0v

l

)1/2
.
R

r
F(ζ ), T̃ = T̃∞ θ(ζ )+ T̃∞, T̃p = T̃∞ θp(ζ )+ T̃∞, C̃ =

(

C̃w − C̃∞

)

φ(ζ )+ C̃∞.

(11)

(

1+ 1
/

β

)

[

(1+ 2ωζ)
d3f

dζ 3
+ 2ω

d2f

dζ 2

]

= −Ha

(

df

dζ

)

+ �δv

(

dF

dζ
−

df

dζ

)

−

(

df

dζ

)2

+ f
d2f

dζ 2
= 0,

(12)
(1+ 2ωζ)

d2θ

dζ 2
+ 2ω

dθ

dζ
+ D

df

dζ
+Hθ + Pr (1+ 2ωζ)

(

Nt

(

dθ

dζ

)2

+ Nb
dθ

dζ

dφ

dζ

)

+ Pr

(

f
dθ

dζ
− K1

(

f 2
d2θ

dζ 2
+ f

df

dζ

dθ

dζ

)

+ �δT
(

θp − θ
)

)

= 0,

(13)
(1+ 2ωζ)

d2φ

dζ 2
+ 2ω

dφ

dζ
− ScK2

(

f 2
d2φ

dζ 2
+ f

df

dζ

dφ

dζ

)

− δφSc(1+ θ)n exp

(

−E

1+ θ

)

+ Scf
dφ

dζ
+

Nt

Nb

(

2ω
dθ

dζ
+ (1+ 2ωζ)

d2θ

dζ 2

)

= 0.

(14)F
d2F

dζ 2
+ δv

(

df

dζ
−

dF

dζ

)

−

(

dF

dζ

)2

= 0,

(15)F
dθp

dζ
+ γ δT

(

θ − θp
)

= 0.

(16)
f (ζ ) = 0,

df

dζ
= 1,

dθ

dζ
(ζ ) = −A (1+ θ(ζ )), φ(ζ ) = 1 at ζ = 0

df

dζ
→ 0,

dF

dζ
→ 0, F(ζ )+ f (ζ ) = 0, θ(ζ ) → 0, θp(ζ ) → 0, φ(ζ ) → 0 as ζ → ∞.

(17)Cf =
2τw

ρu2w
τw = µ

(

1+
1

β

)

(∂ru)r=R,
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By utilizing Eqs. (10), (17)–(19) are transmuted as:

Numerical solution
The exact solution of the ODEs (11)–(15), with the boundary conditions (16) is not possible as these are highly 
nonlinear coupled equations. It is solved numerically using MATLAB software bvp4c technique.

Table 1 shows the comparison of NuxRe−0.5
x  with Upadhya6 and Murthy30 for varied estimates of Pr by fix-

ing K1 = Nt = Nb = D = H = Sc = K = E = n = 0 . An excellent agreement between the values is attained.

(18)Nux =
xQw

k
(

T̃ − T̃∞

) Qw = −k
(

∂r T̃
)

r=R
,

(19)Shx =
xQm

Db

(

C̃w − C̃∞

) Qm = −Db

(

∂r C̃
)

r=R
.

(20)
1

2
Cf Re

0.5
x =

(

1+
1

β

)

d2f

dζ 2

∣

∣

∣

∣

ζ=0

,

(21)
Nux

(Rex)
1/2

= A

(

1+
1

θ(0)

)

,

(22)
Shx

(Rex)
1/2

= −
dφ

dζ

∣

∣

∣

∣

ζ=0

.

(23)

f = Y1, f
′ = Y2, f

′′ = Y3, f
′′′ = Y ′

3 = YY1, F = Y4, F
′ = Y5, F

′′ = Y ′
5 = YY2,

YY1 =
1

(1+ 2ωζ)
�

1+ 1
�

β

�

�

Y2
2 − Y1.Y3 +Ha.Y2 − �δv .(Y5 − Y2)

�

−
2ω

(1+ 2ωζ)
.Y3,

YY2 =

�

Y2
5 − δv .(Y2 − Y5)

�

Y4
,

θ = Y6, θ
′ = Y7, θ

′′ = Y ′
7 = YY3, θp = Y8, θ

′
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8 = YY4,

YY3 =
1

(1+ 2ωζ)− Pr .K1.Y
2
1




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−2ω.Y7 − Pr

�
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Nb.Y7.Y10 + Nt .Y
2
7

�
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,

YY4 =
[−γ δT .(Y6 − Y8)]

Y4
,
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′ = Y10,φ

′′ = Y ′
10 = YY5,

YY5 =
1
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2
1












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



Y1.Y10 − K2.Y1.Y2.Y10

−δ.Y9(1+ α.Y6)
n exp

�

−E

(1+ α.Y6)

�




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((1+ 2ωζ).YY3 + 2ω.Y7)















and the boundary conditions (16) are enumerated as

Y1(0) = 0,Y2(0) = 1,Y7(0) = −A(1+ Y6(0)),Y9(0) = 1 at ζ = 0

Y2(∞) → 0,Y5(∞) → 0,Y4(∞)+ Y1(∞) → 0,Y6(∞) → 0,Y8(∞) → 0,Y9(∞) → 0 as ζ → ∞.

Table 1.   Comparison of NuxRe−0.5
x  for current analysis with Upadhya6 and Murthy30.

Pr

NuxRe
−0.5
x

Upadhya6 Murthy30 Present

0.72 1.08862 1.088642 1.088632

1 1.33333 1.333333 1.333333

10 4.79584 4.796929 4.796346
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Graphical results and discussion
For the graphical results of highly nonlinear mathematical problem in Eqs. (11)–(15) bvp4c and implemented 
function in MATLAB with the imposed boundary conditions (16) are utilized. Our foremost emphasis is to ana-
lyze the behavior of fluid-particle suspension for various parameters on the fluid flow and temperature field. The 
impact of chemical reaction with activation energy and Fick law on the concentration field is discussed. Numeric 
values of dimensionless parameters are taken as 0.3 ≤ β ≤ 0.7, 0.2 ≤ ω ≤ 0.6,0.1 ≤ Ha ≤ 0.7, 0.2 ≤ � ≤ 0.6,
0.2 ≤ δv ≤ 0.7, 2 ≤ Pr ≤ 10, 0.2 ≤ K1 ≤ 1, 0.1 ≤ Nb ≤ 0.8, 0.1 ≤ Nt ≤ 0.6, 0.1 ≤ D ≤ 0.5, 0.4 ≤ γ ≤ 0.8,
0.5 ≤ Sc ≤ 1.2, 0 ≤ H ≤ 0.5, 0.4 ≤ K2 ≤ 1, 0.6 ≤ E ≤ 1,0 ≤ A ≤ 0.4 and 0.2 ≤ δ ≤ 0.6. Figure 2a,b exhibits 
the behavior of Casson fluid parameter β on the velocity field f ′(ζ ) and suspended particle phase F ′(ζ ) . As β is 
in direct proportionate to the dynamic viscosity and inverse proportionate to the yield stress Sy of Casson fluid. 
By increasing β the yield stress Sy decreases. For growing values of β , viscosity generates frictional force. This 
opposes the fluid flow. It is observed that due to escalation in β , momentum boundary layer thickness degenerates 
and a deteriorating nature is observed by the velocity field of both phases. Figure 3a,b are sketched to analyze 

Figure 2.   (a) f ′(ζ ) for various β . (b) F ′(ζ ) for various β.

Figure 3.   (a) f ′(ζ ) for various ω. (b) F ′(ζ ) for various ω.



8

Vol:.(1234567890)

Scientific Reports |         (2021) 11:2357  | https://doi.org/10.1038/s41598-021-81747-x

www.nature.com/scientificreports/

the effect of curvature parameter ω on f ′(ζ ) and F ′(ζ ) . As the radius of the cylinder R is inverse proportionate to 
the curvature parameter ω . By upsurging ω , a diminution is noticed in the radius of the cylinder. The contact of 
the surface area of the cylinder with the fluid decreases. Hence, the velocity profile is enhanced as less resistance 
is offered to the flow of fluid. Figure 4a,b explains the influence of the magnetic parameter Ha on the velocity 
field f ′(ζ ) and F ′(ζ ). On enlarging Ha , Lorentz force is produced. As higher values of Ha strengthens the Lor-
entz force. This force opposes the motion of the fluid. This force tends to reduce fluid velocity. Consequently, a 
downfall is noticed in the velocity of both the dusty and fluid phases. Figure 5a,b illustrates the behavior of � on 
the velocity field f ′(ζ ) and F ′(ζ ) . It is perceived that by increasing � , the drag force increases which results in 
hindrance to the movement of the fluid. Thus, velocities f ′(ζ ) and F ′(ζ ) declines. Figure 6a,b show how the fluid-
particle interaction parameter affects the velocity profiles f ′(ζ ) and F ′(ζ ). It is perceived that on augmenting δv 
velocity field f ′(ζ ) diminishes, whereas, a reverse outcome is noticed for F ′(ζ ) . This is because interaction amid 
the suspended particles and fluid is high. Thus, suspended particles develop a force that opposes the fluid phase 
unless the velocity of the dusty particles is close to the fluid velocity. Therefore, on escalating the fluid-particle 
interaction parameter velocity of the suspended particles uprises, however, fluid velocity depreciates.

Figure 7a,b portrays the characteristics of the Prandtl number Pr on the temperature profile θ(ζ ) and θp(ζ ) for 
both phases. Since Pr = µcp

k  so by varying Pr thermal diffusion declines. This results in the thinning of the thermal 

Figure 4.   (a) f ′(ζ ) for various Ha. (b) F ′(ζ ) for various Ha.

Figure 5.   (a) f ′(ζ ) for various �. (b) F ′(ζ ) for various �.
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boundary layer and θ(ζ ) and θp(ζ ) decreases. In Fig. 8a,b, the outcome of the features of Nt on θ(ζ ) and θp(ζ ) 
is depicted. On amplifying Nt , the temperature of the fluid far away from the surface upsurges. Therefore, 
θ(ζ ) and θp(ζ ) augments. Figure 9a,b portrays the outcome of thermal relaxation time K1 on θ(ζ ) and θp(ζ ) . As 
the relaxation parameter is enhanced an additional time is required it for the transmission of energy from the 
heated surface to the fluid. Thus, the thermal relaxation parameter assesses the time for the transmission of heat. 
Therefore, escalating values of K1 deteriorates θ(ζ ) and θp(ζ ) . To visualize the impact of the conjugate heat param-
eter A on θ(ζ ) and θp(ζ ) Fig. 10a,b is plotted. Higher values of A boosts the rate of heat transfer. This is because 
more heat is transferred from the hot surface of the cylinder to the cold fluid. Subsequently, fluid temperature 
increases and this elevates θ(ζ ) and θp(ζ ) and thermal boundary layer thickness. The influence of the variable 
source parameter on θ(ζ ) and θp(ζ ) is discussed in Figs. 11a,b and 12a,b. For larger values of D > 0,H > 0 more 
heat is produced as they correspond to the internal heat source. This uplifts the thermal boundary layer as it 
generates energy for positive values of D > 0,H > 0 . Consequently, θ(ζ ) and θp(ζ ) increases. Figures 13a,b and 
14a,b portrays the influence of variable heat sink on the thermal field θ(ζ ) and θp(ζ ) . As D < 0,H < 0 behave as 
an internal heat absorber which controls the transfer of heat in the fluid flow. Thus, the thermal boundary layer 
declines. Hence a deteriorating nature is exhibited by θ(ζ ) and θp(ζ ).

Figure 15 examines the aftermath of the Schmidt number Sc on the concentration profile φ(ζ ) . Schmidt 
number is the ratio of viscosity to mass diffusivity. On boosting Sc , a reduction in mass diffusion is noticed. It is 

Figure 6.   (a) f ′(ζ ) for various δv . (b) F ′(ζ ) for various δv .

Figure 7.   (a) θ(ζ ) for various Pr . (b) θp(ζ ) for various Pr .



10

Vol:.(1234567890)

Scientific Reports |         (2021) 11:2357  | https://doi.org/10.1038/s41598-021-81747-x

www.nature.com/scientificreports/

perceived that fluids with amplified Sc corresponds to small mass diffusion. Thus, φ(ζ ) decays. Figure 16 depicts 
the aftermath of E on φ(ζ ) . The fluid concentration is enhanced for large estimates of the E. Large values of E 

results in a decrease in the value of the expression e

(

−E/1+ αθ

)

 . This leads to a minimum reaction rate and 
therefore slows down the chemical reaction. Thus, increasing φ(ζ ). To understand the influence of concentration 
relaxation time K2 on φ(ζ ) Fig. 17 is sketched. By increasing K2 , more time is entailed by fluid particles to diffuse 
through the material medium. Hence, φ(ζ ) decreases. Figures 18 and 19 are sketched to witness the impact of 
the Brownian motion Nb and thermophoresis parameter Nt on φ(ζ ) . An opposing trend is noticed for Nb and 
Nt versus φ(ζ ). Large values of Nt strengthens the movement of particles and it enhances the φ(ζ ) . By increas-
ing Nb , within the boundary fluid becomes warm and exacerbates the random motion of particles. Therefore, 
higher values of Nb abates the φ(ζ ) . Figure 20 portrays the impact of the chemical reaction parameter δ on φ(ζ ) . 
Growing values of δ result in a reduction in chemical molecular diffusivity. By increasing δ a slight decrement is 
noticed in the boundary layer thickness. Hence, φ(ζ ) represses.

An outstanding correlation of the present result is found for numeric values of temperature gradient in Table 1 
with Upadhya et al.6 and Murthy et al.30. Table 2 portrays the drag force coefficient numerically for distinct values 
of β , δv and Ha . Growing values of δv and Ha augments skin friction, whereas, an opposite impact is observed 

Figure 8.   (a) θ(ζ ) for various Nt . (b) θp(ζ ) for various Nt .

Figure 9.   (a) θ(ζ ) for various K1. (b) θp(ζ ) for various K1.
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for β . Table 3 displays the behavior of A, Pr,K1,Nb,Nt on temperature gradient at the surface. By mounting 
A, Pr and K1 , the rate of heat transfer escalates. However, NuRe−0.5

x  deteriorates for higher values of Nb and Nt . 
Table 4 depicts the outcome of numerous values of Nb,Nt ,K2 and Sc on ShRe−0.5

x  . It is noted that ShxRe−0.5
x  

amplifies for larger values of Nb,Nt ,K2 and Sc.

Concluding remarks
The influence of binary chemical reaction and activation energy on a Magnetohydrodynamic dusty Casson 
nanofluid with modified Fourier and Fick’s laws on a deformable cylinder has numerically been investigated. 
The flow is analyzed under the impact of variable heat source-sink and Newtonian heating. The formulated 
mathematical problem is computed by employing bvp4c a built-in function in MATLAB. The salient outcomes 
of the present exploration are:

Figure 10.   (a) θ(ζ ) for various A. (b) θp(ζ ) for various A.

Figure 11.   (a) θ(ζ ) for various D > 0. (b) θp(ζ ) for various D > 0.
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•	 For augmented values of curvature parameter, magnetic parameter and Casson fluid parameter the velocity 
field diminishes for both the fluid and the dust-particle phase.

•	 For larger values of momentum dust particle velocity field of the fluid flow declines, whereas, an opposite 
outcome is noticed for the dust phase.

•	 By increasing the Newtonian heating the temperature field amplifies for both phases.
•	 For different values of thermal relaxation time, the temperature field depicts a decreasing behavior for both 

phases.
•	 Concentration field deteriorates by increasing Sc , δ and K2.
•	 An opposite outcome is observed for Nb and Nt on the concentration field.
•	 By increasing Nb and Nt rate of heat transfer reduces.
•	 The rate of mass transfer amplifies for numerous values of K2 and Sc.

Figure 12.   (a) θ(ζ ) for various H > 0. (b) θp(ζ ) for various H > 0.

Figure 13.   (a) θ(ζ ) for various D < 0. (b) θp(ζ ) for various D < 0.
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Figure 14.   (a) θ(ζ ) for various H < 0. (b) θp(ζ ) for various H < 0.

Figure 15.   φ(ζ ) for variousSc .
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Figure 16.   φ(ζ ) for variousE.

Figure 17.   φ(ζ ) for variousK2.
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Figure 18.   φ(ζ ) for variousNt .

Figure 19.   φ(ζ ) for variousNb.
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Figure 20.   φ(ζ ) for variousδ.

Table 2.   Numeric values of 
(

1+ 1
β

)

d2f

dζ 2

∣

∣

∣

ζ=0
 for distinct values of β ,Ha, δv when 

ω = � = 0.5, Pr = 2,K1 = 0.6, δT = 0.3,Nt = Nb = 0.1 = D = H, γ = 0.7, Sc = 0.9,K2 = 1

K = E = 1, n = 0.1.

β Ha δv −Cf Re
0.5
x

1 0.5 0.3 1.3956622

1.2 1.3101892

1.4 1.2491321

0.8 1.4442980

1 1.4773467

1.2 1.5104225

0.3 1.3956622

0.5 1.6751228

0.7 2.0372521

Table 3.   Numeric values of NuRe−0.5
x  for distinct values of A, Pr,K1,Nb,Nt when 

β = ω = Ha = � = δv = 0.5,D = H = 0.1, δT = 0.3, γ = 0.7, Sc = 0.9,K2 = 1 = K = E, n = 0.1.

A Pr K1 Nb Nt NuRe−0.5
x

0.1 2 0.4 0.1 0.1 0.74188429

0.2 0.89769893

0.3 0.96063455

3 0.74188429

4 0.78609232

5 0.82759959

0.7 0.74696442

1 0.76313025

1.2 0.77455931

0.3 0.67591917

0.6 0.58303558

0.9 0.49790646

0.4 0.72946833

0.8 0.71232552

1.2 0.69442108
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