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/e main purpose of image enhancement technology is to improve the quality of the image to better assist those activities of daily
life that are widely dependent on it like healthcare, industries, education, and surveillance. Due to the influence of complex
environments, there are risks of insufficient detail and low contrast in some images. Existing enhancement algorithms are prone to
overexposure and improper detail processing. /is paper attempts to improve the treatment effect of Phase Stretch Transform
(PST) on the information of low and medium frequencies. For this purpose, an image enhancement algorithm on the basis of
fractional-order PSTand relative total variation (FOPSTRTV) is developed to address the task. In this algorithm, the noise in the
original image is removed by low-pass filtering, the edges of images are extracted by fractional-order PST, and then the images are
fused with extracted edges through RTV. Finally, extensive experiments were used to verify the effect of the proposed algorithm
with different datasets.

1. Introduction

Image sharpening means enhancing, that is, highlighting
edges and texture features, while suppressing those unim-
portant planner areas, planner areas, and parts with constant
grey levels. In addition, the original image is fused with
enhanced edge and texture images (the simplest fusion is a
pixel-by-pixel weighted average) to ensure a smooth tran-
sition between its grey levels. /erefore, in the enhanced
image, the edges and key textures are highlighted, and other
areas are also sharpened.

In the process of image enhancement, the causes of
image degradation have not been analyzed, and the pro-
cessed image is not necessarily close to the original image.
In the literature [1], the K-means clustering algorithm was
used to divide the image into several grey-scale intervals
and then equate them separately. /is algorithm has a
better-enhanced effect on the images for grayscale distri-
bution at both ends and more pixels in the grey-scale re-
gions. Literature [2] proposed an algorithm to enhance the
adaptive image based on a double histogram equation,

which has to keep the average brightness of the output
image close to the original image and avoid the tendency to
magnify. Literature [3] proposed an image enhancement
algorithm based on wavelet analysis and Retinex algorithm.
Wavelet transform decomposes the image into multiscale
images, removes noise from images with different fre-
quencies, and uses a Retinex algorithm to enhance image
details. /erefore, the combination of the two methods can
improve the overall visual effect of the image and better
highlight the details of the image. In the literature [4, 5], a
better enhancement effect was achieved by enhancing the
image contrast and the singular matrix of the image defined
in the wavelet domain. In [6], an improved algorithm is
proposed, which combines the adaptive total variation
model and the impact filter model. Literature [7] used the
minimum error method to automatically calculate the
segmentation point of the piecewise linear grey-scale
transformation, which improved the visual effect of the
image. In [8], the improved histogram equalization method
and the contrast enhancement algorithm were combined to
improve the local information contrast enhancement of low
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illumination images. An adaptive smoothing and en-
hancement method for images was proposed in [9]; when
filtering, the filter weights of the processed pixels are dy-
namically determined; after smoothing the inside of the
image region, the edge of the region in the image is also
sharpened and enhanced, which effectively solves the
contradiction between image smoothing and enhancement.

/e above literature all involves the image enhancement
algorithms based on time domain and frequency domain
variation. But it has been rarely found in domestic and
foreign literature about the image enhancement for phase
information changes. In 2015, M.H. Asghari and B. Jalali
proposed a digital image transformation inspired by physical
phenomena, called Phase Stretch Transform (PST). /is
paper attempts to improve the treatment effect of the PSTon
the information of low and medium frequency.

2. Relate Work

2.1. Basic PST. In 2015, M.H. Asghari and B. Jalali proposed
a digital image transformation inspired by physical phe-
nomena, called Phase Stretch Transform, which can simulate
the propagation process of electromagnetic waves in the
diffraction medium with the warping dispersive dielectric
function. /is method using phase-detection edges can
simulate the diffraction process with an all-pass phase filter
having a specific frequency and divergence dependency. /e
output phase prototype of the filter shows the change in
image intensity value in the spatial domain, and the edge
detection can be achieved after the thresholding and mor-
phological processing of the phase prototype.

Figure 1 shows the process of digital image edge de-
tection based on PST. A local filter kernel function first
smoothed the original image, and then the phase operation
of the nonlinear frequency function was performed in the
frequency domain, called PST. Finally, edge detection was
achieved through postprocessing such as thresholding and
morphological filtering.

/emathematical model of PST in the frequency domain
is

A(m, n) � ∠IFFT2 􏽥K(u, v) · 􏽥L(u, v) · FFT2􏼈

· B(m, n)][ },
(1)

where A(m, n) is the angle image, “∠” is an angle operation,
B(m, n) is an original input image, FFT2 and IFFT2 are a
two-dimensional fast Fourier transform and an inverse
transform, respectively, and (u, v) is the frequency variable.
􏽥L(u, v) is the frequency response of the local smoothing low-
pass filter, 􏽥K(u, v) � ejϕ(u,v) is a frequency-dependent
nonlinear phase warping kernel function, and ϕ(u, v) is a
nonlinear function of the frequency variable.

Although any phase kernel function can be considered in
the PST, the derivative of the kernel phase function ϕ(u, v) is a
linear or sublinear function of the frequency variable
according to the results of the literature [10]. For the phase
kernel function prototype, a simple example is the inverse-
tangent function of the “S” type. For the sake of simplicity, if it
is further required that the phase warping operation is

isotropic in the plain of the frequency domain, the degree of
warping is only related to the polar radius r in the planar polar
coordinate system of the o-uv frequency, but independent of
the polar angle θ, that is, assuming that the nuclear phase
prototype of the PST is circularly symmetric about the fre-
quency variable, the PST core phase shall be obtained:

φ(u, v) � φpolar(r, θ) � φpolar(r), (2)

where r is the polar radius in the planar polar o-uv polar
coordinate system of frequency domain; θ is the polar angle,
and its relationship with the uv frequency variable is
r �

������
u2 + v2

√
, θ � tan− 1( v/u ). If it is required that the

derivative of φ polar(r) with respect to r is an inverse tangent
of the S-type, then

dφpolar

dr
� tan− 1

(r). (3)

φ polar(r): note that the uv frequency plane after the
Fourier transform of the image is a finite region, then
φpolar(r) can be solved according to

φpolar(r) � 􏽚
r

0
tan− 1

(x)dx � x · tan− 1
(x)|

r

0 − 􏽚
r

0

x

1 + x
2 dx

� r tan− 1
r −

1
2
ln 1 + r

2
􏼐 􏼑.

(4)

/e phase function in equation (4) was normalized to
obtain ϕN:

φN(r) �
r tan− 1

r − (1/2.)ln 1 + r
2

􏼐 􏼑

r tan− 1
r(1/2)ln 2max max max( 􏼁

. (5)

For the phase function in equation (5), the phase tensile
strength parameter S and the warping parameter W in the
nonlinear distortion stretching transformation were added
to obtain the final kernel phase function ϕN(r, W, S) with
strength parameter S and warping parameter in the PST
transformation:

φN( r ) � S ·
Wr tan− 1

( Wr ) − (1/2). ln( 1 +(Wr)
2

)

r tan− 1
(1/2)ln( 2max max max )

, (6)

where tan-1(•) represents the inverse-tangent function, ln(•)
is the natural logarithm, and rmax represents the maximum
frequency polar radium of the uv frequency plane.

A PST having a kernel phase shaped as shown in
equation (6) is applied to the spectrum of the digital image,
forming a phase image A(m, n). For the application of the
edge detection, subsequence operations can be implemented
such as translation, thresholding, and morphological
processing.

2.2. Fractional Order

2.2.1. Basic *eory of Fractional Order. /e Fractional
Fourier Transform (FrFT) has more new unique features
based on retaining the original properties of the traditional
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Fourier transform, so it can be considered to be a generalized
Fourier transform [11].

In general, the p-order FRFTof the function x(t) can be
expressed as Xp(u) or Fp x(t) as needed. Fpx(t) can be seen
as an operator Fp acting on the signal x(t).

/e basic definition of the FRFT was given below from
the perspective of linear integral transformation. /e
p-order FRFT of the function x(t) in the time domain is
defined as a linear integral operation:

Xp(u) � 􏽚
+∞

− ∞
􏽥Kp(u, t)x(t)dt. (7)

Among them, 􏽥Kp(u, t) � Aα exp[jπ(u2 cot α −

2ut csc α + t2 cot α)] and 􏽥Kp(u, t) is called as the kernel
function of the FRFT, where Aα �

���������
1 − j cot α

􏽰
, α � pπ/2,

p≠ 2n, and n is an integer.
By variable substitution u � u/

���
2π

√
and t � t/

���
2π

√
,

equation (7) can be further expressed as

Xp( u ) � F
p
[ x( t ) ]􏼈 􏼉( u ) � 􏽚

+∞

− ∞
Kp( u, t )x( t )dt, 0 < |p|< 2, 0 < |α|< π

�

Bα 􏽚
+∞

− ∞
exp j

t
2

+ u
2

2
cot α −

jtu

sin α
􏼠 􏼡x(t)dt, α≠ nπ,

x(t), α � 2nπ,

x(− t), α � (2n + 1)π.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

In equations (1)–(8), Bα �
�������������
(1 − j cot α)/2π

􏽰
; the line-

arity of FRFT given cannot indicate that this equation is
unchanged, except for (p � 4n), because the kernel function
is not only the function of (u, t), but also that of order p. At
p � 1, α � π/2, Aα � 1, and

X1(u) � 􏽚
∞

− ∞
x(t)e

− j2πutdt. (9)

/us, X1(u) is the common Fourier transform of x(t).
Similarly, X− 1(u) is the inverse transform of x(t) in the
traditional Fourier transform. Because α � pπ/2 can only
appear in the parameter position of the trigonometric
function, the parameter p is defined by a period of 4, and it
only needs to examine the interval p ∈ ( − 2, 2 ]. At p � 0,
f0(u) � f(u); at p � ± 2, f±2(u) � f(− u).

All the above can be expressed as operators:

F
0

� I,

F
1

� F,

F
2

� P,

F
3

� FP � PF,

F
4

� F
0

� I,

F
4n±p

� F
4n′ ± p

� F
±p

,

(10)

where n, n′ are the arbitrary integers.

/e additivity of fractional order is a very important
property of the FRFT, which can be expressed as

F
p1F

p2 � F
p1+p2 � F

p2F
p1 . (11)

By using Gauss integrals to give direct integral repre-
sentations, the operation shall be simpler, and then

􏽚 Kp2
u, u′( 􏼁Kp1

u, u′( 􏼁du′ � Kp1+p2
(u, t). (12)

In summary, the FRFT can be explained as follows: only
considering the interval 0≤p≤ 1, the FRFT is the original
function at p � 0, and it is the ordinary Fourier transform at
p � 1; when p gradually changes from 0 to 1, its FRFT
smoothly changes from the original function to the common
Fourier transform.

/e FRFT can also be interpreted in another way. /at
is, the FRFT is defined as a rotation transform of a
time-frequency plane, and the FRFT of p-order is a linear
canonical transformation defined by a transformation
matrix. Transform matrix is given as

M �
A B

C D
􏼢 􏼣 �

cos α sin α

− sin α cos α
􏼢 􏼣. (13)

Among them, α � pπ/2. According to the definition of
Radon transform, in a plane along different lines (the dis-
tance between the line and the origin is d, and the direction

Nonlinear phase
dispersion

Image

Detected
edges

Morphological
operations

Output phase image

Thresholding

Figure 1: Schematic diagram of image edge detection process based on PST.
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angle is α), the line integral is made for f(x, y), and the
obtained F(d, α) is the Radon transform of the function f.
/en, the matrix can be regarded as the two-dimensional
rotation matrix on the time-frequency plane.

As shown in Figure 2, the Fourier transform can be
considered as the representation of the function x(t) ro-
tating the angle of π/2 from the t axis to the ω axis on the
time-frequency plane; that is, the original function is
mapped from the time domain to the frequency domain of
the angle π/2 by Fourier transform; based on this, the FRFT
is performed for the p1 and p2-order on the function, that is,
with the fractional-order operator Fp1 and Fp2 , the function
is rotated by the α1 angle (α1 � p1π/2) and the α2 angle
(α2 � p2π/2), respectively, and then mapped to p1and p2
orders.

2.2.2. Discretization Method of Fractional Fourier Transform.
/e fast Fourier transform greatly promotes the develop-
ment of the Fourier transform. Similarly, the fast FRFT
algorithm will also rapidly develop the FRFT in the field of
signal processing. /erefore, it is particularly important to
study the discrete FRFT fast algorithm [12].

Ozaktas adopted the FRFT calculation method. /is
method performs N-point sampling on the time domain of
the original function and also maps it to N sample points in
the fractional Fourier domain. /e computational com-
plexity of the algorithm is O(N log N). Before using this
method to calculate the FRFT, the original signal must be
dimensionally normalized. Afterwards, in both the time and
frequency domains, the representation of the signals is di-
mensionless and the length of support is equal to Δx. /is
also indicates that the Wigner distribution of the signal is
limited to the unit circle with Δx/2 as the radius and the
origin of the time-frequency plane as the centre. In order to
obtain an efficient calculation method, the calculation of the
FRFT is decomposed into a convolutional form. According
to the definition of FRFT, the a-order FRFTof the signal x(t)

can be written as

Xα(u) � Aα e
− j1/2u2 tan(α/2)

􏽚
∞

− ∞
x(t)e

− j1/2t2 tan(α/2)
􏼔 􏼕

· e
j1/2(u− t)2csc αdt.

(14)

It can be seen from equations (1)–(13) that the calcu-
lation of the FRFT can be decomposed into three steps.

Step 1: the signal x(t) was multiplied by a chirp
function, to obtain the intermediate result, which is
recorded as g(t). /en, the frequency domain band-
width of g(t) becomes 2 times more than that of the
signal x(t), so the sampling interval of g(t) should be
1/2Δx. /e sampling interval of the original signal x(t)
is 1/Δx. At this time, if the sampling interval of x(t) is to
be changed into 1/2Δx, the signal x(t) needs to be
interpolated twice to obtain the signal x(t) at the
sampling interval 1/2Δx and then multiply by the in-
termediate signal g(t) at the sampling interval 1/2Δx.

Step 2: the signal g(t) is convolved with a chirp signal,
because the bandwidth of g(t) is 2Δx, so according to
the convolution theorem, the chirp signal can be
represented by its band-limited form 2Δx, denoted as
h(t):

h(t) � 􏽚
Δx

− Δx
H(Ω)e

jΩtdΩ, (15)

where H(Ω) is the Fourier transform of the convolved
chirp signal.
/e convolution is written in discrete forms:

g′
m

2Δx
􏼒 􏼓 � 􏽘

N

n�− N

h
m − n

2Δx
􏼒 􏼓g

n

2Δx
􏼒 􏼓. (16)

/is convolution formula can be calculated using the
Fast Fourier Transform algorithm (FFT).
Step 3: multiply another chirp signal, to obtain the 2N
sample points of Xα(u) at the sampling interval of
1/2Δx. Because it is a mapping of N sampling points in
the time domain to N sampling points in the fractional
Fourier domain, the Xα(u)sampling at the sampling
interval 1/Δx can be obtained by performing a double
extraction.

Let Xα and x be the column vectors consisting of N
sample points of Xα(u)and x(t), respectively; then, the above
calculation process can be written in matrix form:

Xα � F
a
Ix,

F
a
I � DΛHΛJ,

(17)

where D and J represent the extraction and interpolation
operations and Λ and H are the corresponding chirp
multiplication and chirp convolution operations.

/e method above expresses the FRFT as a convolution
operation [13]. It is also possible to represent the FRFT in
another form:

Xα(u) � Aα e
j1/2u2(cot α− csc α)

􏽚
∞

− ∞
x(t)e

j1/2t2(cot α− csc α)
􏼔 􏼕

· e
j1/2(u− t)2csc αdt.

(18)

Sampling equations (2)–(13), it is calculated as

v
u

ω

0 t

α
α

Figure 2: (t, w) plane rotating to (u, v) plane by α angle.
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Xα
m

2Δx
􏼒 􏼓 � Aαe

j1/2(m/2Δx)2(cot α− csc α)

· 􏽘
N

n�− N

x
n

2Δx
􏼒 􏼓e

j1/2(n/2Δx)2(cot α− csc α)
􏼔 􏼕

· e
j1/2(m− n/2Δx)2csc α

.

(19)

/e summation of equation (18) can be expressed as a
convolutional form of the signal, which was calculated using
FFT. Finally, a 2x extraction was performed to obtain the
Xα(u) sampling at a sampling interval of 1/Δx. Similarly, the
above sampling process can be expressed in matrix form as

Xα � F
a
∐x,

F
a
∐ � DKaJ,

Ka(m, n) � Aαe
j1/2(m/2Δx)2(cot α− csc α)− j1/2(n/2Δx)2(cot α− csc α)+j1/2(m− n/2Δx)2csc α

.

(20)

3. Theoretical Analysis

3.1. Fractional-Order-Based PST

3.1.1. PST Improvement Based on Fractional Order. It has
been proven that the PST phase helps in detecting edges in
the image as well as dramatic changes in intensity values
[14]. However, edge detection for low image variations is less
than ideal.

In image enhancement, the fractional differential can
enhance the high-frequency component while enhancing the
mid-low frequency component. To a certain extent, it can
also nonlinearly preserve the DC component of the image,
making the image texture details clearer and overcoming the
defect that the integer-order differential can weaken the low-
frequency information. With the efforts of scholars, the
fractional differential enhancement has achieved certain
results. Yang Zhuzhong et al. [15] used the G-L fractional
differential to construct the Tiansi differential operator for
image enhancement and stated that the differential order
between 0.4 and 0.6 has a better enhancement effect; when
the order is too large, the noise is also enhanced. In order to
pass more low-frequency information, Wu Ruifang et al.
[16] improved the Tiansi operator template. Wang Weixing
et al. [17] modified the template to 8 different directions for
greatly enhancing the edge information. Zhang Yu et al. [18]
proposed an adaptive fractional-order enhancement algo-
rithm, which applies an exponential function to determine
the fractional order. Chen Qingli et al. [19] put forward the
fractional-order enhancement algorithm based on Caputo’s
definition, which lays a good foundation for our study.

To this end, the paper combines PSTand fractional order
to improve the stretching operator of PST. /e improved
mathematical model is given as

A(m, n) � ∠FRFT − 􏽥K(u, v) · 􏽥L(u, v) · FRFT[B(m, n)]􏼈 􏼉,

(21)

where A(m, n) is the angle image, “∠” is the angle operation,
B(m, n) is the original input image, FRFT(∗) and FRFT(-∗),
respectively, represent the fractional Fourier transform and
Inverse transform, (u, v) is the frequency variable, 􏽥L(u, v) is

the frequency response of the local smoothing filter,
􏽥K(u, v) � ejϕ(u,v) is a frequency-dependent nonlinear phase
warping kernel function, and ϕ(u, v) is a nonlinear function
of the frequency variable.

3.2. Comparison andAnalysis. It is assumed that the angle of
the FRFT is α � X/Y, where X is the vector in the X-axis
direction and Y is the vector in the Y-axis direction; the
tensile strength parameter of PST is S and the warping
parameter is W.

/en, the edge detection test results under different
values of X, y, s, andW are compared, as shown in Figure 3.

3.3. Relative Total Variation (RTV) Analysis. To achieve the
image enhancement effect, the extracted image from the
edge and the original image need to be superimposed. /e
superimposed image highlights the edge features and ach-
ieves the enhanced result, but it may have noise, edge burrs,
and so on. For this reason, a relative total variation (RTV)
should be processed on the image to fuse its main and
background images. /e main principles of RTV are as
follows.

To further enhance the contrast between texture and
structure, especially for areas that are visually prominent,L
and H were combined together to form a more efficient
structural texture decomposition.

/e objective function is assumed as

argmin
s

􏽘
p

Sp − Ip􏼐 􏼑
2

+ λ ·
Hx(p)

Lx(p) + ε
+

Hy(p)

Ly(p) + ε
􏼠 􏼡.

(22)

Among them, (Sp − Ip)2 ensures that there is no sig-
nificant deviation between the input and the result. /e
introduction of the new regularization term
(Hx(p)/Lx(p) + ε + Hy(p)/Ly(p) + ε ) can achieve the
effect of removing image texture, which is called relative
total variation (RTV). λ in formula (22) is a weight; ε is a
small positive number, avoiding being divided by zero.
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/e objective function in equation (22) is nonconvex.
/erefore, its solution cannot be obtained in a common
manner. Based on the quadratic measure penalty, the
objective function was proposed, which is an effective
solution method to make linear optimization (Szeliski,

2006; Lischinski et al., 2006; and Krishnan and Szeliski,
2011).

Our approach is to decompose RTV metrics into non-
linear terms and quadratic terms. Interestingly, the problem
of the nonlinear part can be transformed into a series of
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Figure 3: Comparison of edge detection test results under different values of (X) Y, S, and (W). (a) X� 0.5, Y� 0.5, S� 0.8, W� 1.0.
(b) X� 0.8, Y� 0.5, S� 1, W� 15. (c) X� 0.8, Y� 0.8, S� 15, W� 1. (d) X� 1, Y� 1, S� 1.2, W� 15.
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linear equations by means of an iterative reweighted least
squares method.

/e metric in the x direction was firstly discussed and
then that in y direction. /e penalty term is expanded as

􏽘
p

Hx(p)

Lx(p) + ε
� 􏽘

p

􏽐q∈R(p)gp,q · zxS( 􏼁q

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏽐q∈R(p)gp,q · zxS( 􏼁q

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + ε
. (23)

By regrouping the factor and the set element |(zxS)q|, it is
derived as

􏽘
p

Hx(p)

Lx(p) + ε
� 􏽘

q

􏽘
p∈R(q)

gp,q

􏽐q∈R(p)gp,q · zxS( 􏼁q

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + ε
zxS( 􏼁q

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≈ 􏽘
q

􏽘
p∈R(q)

gp,q

Lx(p) + ε
1

zxS( 􏼁q

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + εs

� 􏽘
q

uxqwxq zxS( 􏼁
2
q.

(24)

/e second line is an approximation because εs for
numerical stability was introduced. /rough factor rear-
rangement, the metric was decomposed into a quadratic
term (zxS)2q and a nonlinear part uxqwxq, which are
expressed as

uxq � 􏽘
pεR(q)

gp,q

Lx(p) + ε
� Gσ ∗

1
Gσ ∗ zxS

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + ε

􏼠 􏼡
q

,

wxq �
1

zxS( 􏼁q

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + εs

.

(25)

Equation (25) indicates that ux of each pixel actually
merges adjacent gradient information in an isotropic spatial
filtering manner; Gσ is a Gaussian filter with a standard
deviation of σ./e division operation in (25) is performed by
elements; ∗ is the convolution operator; and wx is only
related to the pixel gradient.

Similarly, the ydirection penalty term can be expressed
as

􏽘
p

Hy(p)

Ly(p) + ε
� 􏽘

q

uyqwyq zyS􏼐 􏼑
2
q
. (26)

Among them, the secondary y component partial de-
rivatives (zyS)2

q
and uyqwyq are similar to the nonlinear part.

/ey are respectively expressed as

uyq � 􏽘
pεR(q)

gp,q

Ly(p) + ε
� Gσ ∗

1
Gσ ∗ zyS

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + ε
⎛⎝ ⎞⎠

q

,

wyq �
1

zyS􏼐 􏼑
q

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌 + εs

.

(27)

/rough these operations, equation (22) can be written
in matrix form:

vs − v1( 􏼁
T

vs − v1( 􏼁 + λ v
T
s C

T
xUxWxCxvs + v

T
s C

T
yUyWyCyvs􏼐 􏼑,

(28)

where vs and vI are vector representations of S and I, re-
spectively; Cx and Cy are Toeplitz matrices of the forward
differential discrete gradient operators; and Ux, Uy, Wx, and
Wy are diagonal matrices. /eir diagonal values are

Ux[i, i] � uxi, Uy[i, i] � uyi, Wx[i, i] � wxi, Wy[i, i] � wyi.

(29)

/is makes it possible to achieve a special iterative
optimization process. Due to the decomposition of the
nonlinear part and the quadratic part, a numerically stable
approximation is naturally obtained, which was found to be
very effective in estimating fast structural and texture images
in experiments.

4. Comparison of Test Results

In this article, the test is divided into two parts. In the first
part, the test data is based on tensile strength parameter S
and the warping parameter W of the fractional PST takes
different values. Let the angle of the FRFT be α � X/Y, where
X is the vector in the X-axis direction, and the vector in
which Y is in the Y-axis direction takes different values; the
smoothness parameter Lam and the texture element pa-
rameter Sig of the RTV take different values. Taking multiple
sets of images as test objects, the specific test results obtained
are shown in Figures 4–7 and Table 1.

For the above test results, it is found that the tensile
strength parameter S and the warping parameter W of the
fractional PST are close to 0.5 and 10, respectively, and the
angle of the FRFT is α � X/Y; when the values of X and Y are
closer to 1, more edge information can be obtained, but
more noise is added; when the smoothness parameter Lam
and the texture size parameter Sig of the RTV are larger, the
smoothing effect will be better, but the important edge
information of the image will be blurred.

In the second part of the test, a comparative analysis was
performed on image enhancement based on the fractional-
order PST, phase consistency, region growing, histogram
equalization, Canny operator, and so forth, respectively. /e
specific test results are shown in Figures 8 and 9.

/e results of the above test show that some image
enhancement algorithms such as the region growing-based
image enhancement algorithm do not highlight the edge
information while enhancing the high-frequency informa-
tion of the image, and the resulting image will mask some
important information; the image enhancement algorithms
based on the canny operator and so forth may blur small
edge information while presenting the edge portions of the
image; the phase consistency-based edge enhancement

Computational Intelligence and Neuroscience 7



(a) (b) (c) (d)

Figure 4: /e flow chart of the experimental effect while S� 0.48, W� 12.24, X� 1, and Y� 1. (a) Original image. (b) Fractional PST edge
extraction. (c) Superimposed image. (d) RTV processed image.

(a) (b) (c) (d)

Figure 5:/e flow chart of the experimental effect while S� 12.12,W� 0.50, X� 0.9, and Y� 1.1. (a) Original image. (b) Fractional PSTedge
extraction. (c) Superimposed image. (d) RTV processed image.

(a) (b) (c) (d)

Figure 6: /e flow chart of the experimental effect while S� 13.12,W� 13.14, X� 1, and Y� 1. (a) Original image. (b) Fractional PST edge
extraction. (c) Superimposed image. (d) RTV processed image.

(a) (b) (c) (d)

Figure 7: /e flow chart of the experimental effect while S� 13.12,W� 13.12, X� 1.05, and Y� 0.95. (a) Original image. (b) Fractional PST
edge extraction. (c) Superimposed image. (d) RTV processed image.
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Table 1: Comparison of the test data of different images.

Image S W X Y Lam Sig
Image 1 0.48 12.24 1 1 0.01 3
Image 2 12.12 0.50 0.9 1.1 0.008 2
Image 3 13.12 13.14 1 1 0.005 1
Image 4 13.12 13.12 1.05 0.95 0.001 1

Figure 8: Original image 8. For the original image 8, the enhancement effects of the various algorithms are as follows.

(a) (b)

(c) (d)

Figure 9: Enhancement effects of various algorithms. (a) Region growing-based image enhancement. (b) Operator-based image en-
hancement. (c) PST-based image enhancement. (d) Fractional-order PST-based image enhancement.

Computational Intelligence and Neuroscience 9



algorithm can add edge burr or noise while highlighting edge
information.

5. Conclusions

/is article proposed a novel image enhancement algorithm,
called FOPSTRTV to improve the quality of the image.
Using the proposed algorithm to process the image, the
noise in the original image is first eliminated by low-pass
filtering./en, the edge of the image is extracted through the
differential order PST because the differential order PST
processing can help to get the phase information and extract
the image edge information well; in contrast, the edge ex-
traction of the ordinary image is based on the time domain
and frequency domain information. Finally, RTV can be
used to fuse the image, giving a good visual effect. Extensive
experiments with several representative algorithms dem-
onstrated that FOPSTRTV is competitive and promising.

Data Availability

/e data are available online at https://github.com/
sunwww168/PSTRTV.
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