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INTRODUCTION

Pancreatic cancer (PCC) is a highly immunosuppressive and 
malignant tumor of the digestive system, with insidious onset, 
rapid disease progression, and no breakthroughs in long-term 
efficacy or prognosis. In a recent report, PCC ranked 10th among 
cancers in the United States for its incidence but 4th for its mor-
tality [1]. Furthermore, it is estimated to reach the second largest 
cause of cancer-related death by 2030 [2]. In China, PCC does 
not rank among the top 5 in mortality. However, the proportion 
of death caused by PCC has increased by 9% over the past 10 

years, primarily accounted for by changes in lifestyle and diet and 
the acceleration of population aging [3]. The specific pathogen-
esis of PCC remains unclear, but a large number of clinical and 
epidemiological findings have revealed that smoking and obesity 
prolong pancreatitis, and diabetes has been identified as a signif-
icant independent risk factor for the development of PCC  [4]. 
PCC progresses rapidly, and early detection and diagnosis are 
crucial for the prognosis of PCC patients [4]. Nonetheless, imag-
ing examination, serological markers, and other diagnostic meth-
ods have limitations, especially for early PCC diagnosis, which 
compromises clinical care and prognosis [4,5]. The major strate-
gies of PCC management include surgery, chemotherapy, radio-
therapy, molecular guided therapy, and immunotherapy  [4]. 
However, due to PCC’s pathological and clinical characteristics, 
chemotherapy and radiotherapy have little benefit for patients 
with PCC, and currently, the most successful therapeutic choice 
for PCC is surgical resection [6]. Through the rapid growth and 
comprehensive implementation of gene detection technology, 
molecularly targeted drugs have been increasingly used in clin-
ical practice. Nevertheless, molecular targeted therapy has not 
been successfully applied to PCC due to the poor understanding 
of its molecular pathological mechanism [7].

For a thorough and rigorous understanding of PCC, a 
clinical risk assessment needs to be combined with clinical 
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ABSTRACT

Pancreatic cancer (PCC) is a common malignant tumor of the digestive system that is resistant to traditional treatments and has an overall 5-year 
survival rate of <7%. Transcriptomics research provides reliable biomarkers for diagnosis, prognosis, and clinical precision treatment, as well 
as the identification of molecular targets for the development of drugs to improve patient survival. We sought to identify new biomarkers for 
PCC by combining transcriptomics and clinical data with current knowledge regarding molecular mechanisms. Consequently, we employed 
weighted gene co-expression network analysis and differentially expressed gene analysis to evaluate genes co-expressed in tumor versus normal 
tissues using pancreatic adenocarcinoma data from The Cancer Genome Atlas and dataset GSE16515 from the Gene Expression Omnibus. 
Twenty-one overlapping genes were identified, with enrichment of key Gene Ontology and Kyoto Encyclopedia of Genes and Genomes path-
ways, including epidermal growth factor receptor signaling, cadherin, cell adhesion, ubiquinone, and glycosphingolipid biosynthesis pathways, 
and retinol metabolism. Protein-protein interaction analysis highlighted 10 hub genes, according to Maximal Clique Centrality. Univariate and 
multivariate COX analyses indicated that TSPAN1 serves as an independent prognostic factor for PCC patients. Survival analysis distinguished 
TSPAN1 as an independent prognostic factor among hub genes in PCC. Finally, immunohistochemical staining results suggested that the 
TSPAN1 protein levels in the Human Protein Atlas were significantly higher in tumor tissue than in normal tissue. Therefore, TSPAN1 may be 
involved in PCC development and act as a critical biomarker for diagnosing and predicting PCC patient survival.
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Data collection and preprocessing

The GSE16515 dataset was accessed from the GEO data-
base (http://www.ncbi.nlm.nih.gov/geo/). We selected this 
dataset because it included stringent screening criteria and 
has gene expression profiles of 52 PCC samples that were 
obtained using the GPL570-55999 ([HG-U133_Plus_2] 
Affymetrix Human Genome U133 plus 2.0 Array), which is 
a well-established platform [16]. According to the manufac-
turer’s Annotation document, the probes were first assigned 
corresponding genetic symbols, and then the median of all 
associated findings was calculated to exclude detection over-
lap for the same gene. Consequently, 21654 genes were evalu-
ated. An additional set of RNA-sequencing data of 182 PCC 
samples was downloaded from the TCGA database (https://
genome-cancer.ucsc.edu/) from the pancreatic adenocarci-
noma (PAAD) cohort, along with full expression profiles and 
data on clinically relevant characteristics. The TCGA data 
were annotated using a Human hg38 gene track reference 
transcript array. As indicated by the edgeR package tuto-
rial [17], genes with low read counts were not useful for further 
study. Therefore, in this study, the genes with CPM (count per 
million) at or above 1 were analyzed. In subsequent analysis, 
a total of 15035 genes with RPKM values were analyzed, and 
the RPKM function was filtered by the edgeR software pack-
age, which distinguishes the number of genes according to the 
gene length.

DEG analysis

The limma R package [18] provides an efficient approach 
for differential expression analysis of microarray and RNA-
sequencing data. Therefore, it was utilized in this study to 
screen DEGs between non-malignant pancreatic samples and 
PCC tissues. DEGs were defined as genes with the cutoff cri-
teria of |logFC| ≥ 1.0 and adj. p < 0.05. In the ggplot2 package 
in  R, the DEGs of the TCGA-PAAD and GSE16515 datasets 
were presented through volcano plots [19].

Construction and identification of a gene 
co-expression network by WGCNA

Quality assessment of the data was performed, and a gene 
co-expression network was established using the WGCNA 
package in R for DEGs [20]. WGCNA reveals heavily clus-
tered gene modules between specimens and connects the 
modules to outer template characteristics. Before building 
the network, the number of genes with different thresholds of 
expression was estimated, and the pickSoftThreshold function 
was used to construct a scale-free network. Next, the formula 
aij = |Sij|β (aij: matrix of adjacency between gene i and gene 
j, Sij: Matrix of similarity made by Pearson correlation of all 
gene pairs) was used to construct an adjacency matrix [21]. 

characteristics. For example, the cancer stage, diagnostic grade, 
and cancer laterality in PCC are correlated with the patient’s 
diagnostic age, overall survival (OS), and secondary malignan-
cies [8]. The rapid development of microarray and sequenc-
ing technology provides a useful method and forum for the 
research of cancer and other diseases [9]. New biomarkers for 
diagnosis, treatment, and prognosis can be obtained by com-
bining clinical data with molecular mechanisms [10]. Weighted 
gene co-expression network analysis (WGCNA) provides an 
approach for performing weighted network analysis in the R 
package. It can be used in research to characterize multiple 
sample and cluster-specific gene expression patterns and to 
detect highly related gene expression modules correlated with 
clinical characteristics [11]. WGCNA is also useful for identi-
fying core genes as well as the function of co-expressed genes 
of tumors and other diseases [12,13]. For instance, Liu et al. 
successfully identified five lncRNAs associated with survival 
in hepatocellular carcinoma by co-expression analysis [14]. 
Differential gene expression analysis based on transcriptom-
ics offers substantial insight into the molecular mechanisms 
of genome-regulated diseases, the transcriptional behavior of 
biological systems, and potential biomarkers for specific dis-
eases [15].

We used WGCNA to explore and evaluate the etiology 
and molecular characteristics of PCC in a systematic manner, 
to measure transcriptional expression levels, and identified dif-
ferentially expressed genes (DEGs) in PCC from The Cancer 
Genome Atlas (TCGA) and Gene Expression Omnibus 
(GEO) databases. Moreover, we combined the DEG results 
with functional enhancement and protein-protein interac-
tion (PPI) analysis, survival analysis, and Cox regression, and 
identified DEGs closely related to the prognosis of PCC. These 
studies constitute a basis for drug development and a potential 
reference for the clinical diagnosis and treatment of PCC.

MATERIALS AND METHODS

Study design

A detailed workflow of our study design is shown in 
Figure 1. We analyzed microarray data from GEO (GSE16515) 
and RNA-seq and clinical data from TCGA. The sets of DEGs 
identified by the limma R package, and the most highly co-ex-
pressed modules, which were identified by WGCNA, were 
evaluated for overlap. The 21 overlapping genes were sub-
jected to functional analysis and PPI analysis. The correlation 
of the overlapping genes and clinical parameters, including 
OS, disease-free survival (DFS), and other prognostic factors, 
was evaluated, and immunohistochemistry (IHC) data were 
assessed to validate the expression of survival-related genes in 
the Human Protein Atlas (HPA).
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Gene ontology (GO) and pathway enrichment 
analysis for genes of interest

To gain deeper insight into the role of the overlapping 
genes identified as described above, GO enrichment analy-
sis was performed with classification according to biological 
process, cellular component, and molecular function des-
ignations; and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analysis was carried out using an R package 
cluster profile [23]. Functional categories and pathways were 
enriched using a cutoff of p < 0.05, and the top 10 GO catego-
ries were selected.

Construction of a PPI network and screening of 
hub genes

The online tool STRING (Search Tool for the Retrieval of 
Interacting Genes), designed to predict functional interactions 
between proteins, has been used to create PPI networks for 
selected genes [24]. Genes with a score of ≥0.4 were selected 
using the STRING database to create a Cytoscape (v3.7.2) 
for visualization of the network model [25]. Maximal Clique 
Centrality (MCC) has been identified as a powerful index 
for detecting center nodes inside a network of co-expres-
sion [26]. Therefore, CytoHubba, a plugin at Cytoscape [26], 
was employed to measure each node’s MCC. The 10 genes 
with the highest MCC values in this analysis were identified 
as core genes.

The adjacency was represented in a topological overlap matrix 
(TOM), and dissimilarity was represented in a corresponding 
dissimilarity matrix (1 − TOM). The topological overlap pro-
vides a measure of biological gene similarity based on the 
association between pairwise gene co-expression. To classify 
genes with similar expression characteristics in gene co-ex-
pression modules, a hierarchical clustering dendrogram of the 
1 − TOM matrix was built.

Identification of clinically significant modules

The difference between the module-specific eigengenes 
(MEs) was calculated. A cutoff was selected for module den-
drograms, and some modules were merged for further analy-
sis [10]. Furthermore, the correlation between MEs and clinical 
trait information was evaluated to identify key modules that 
are significantly associated with PCC [21]. Next, the correla-
tions of individual genes with clinical results were quantified 
by calculating the gene significance (GS) value [21]. Module 
significance (MS) was defined as the average GS for all genes 
in a module. In general, modules with the MS ranking of first 
or second were considered to be candidates for association 
with clinical characteristics. Overlapping genes between the 
DEGs and module genes were extracted from the co-expres-
sion network, and the genes closely related to the clinical phe-
notype of PCC were used to classify possible prognostic genes 
in a Venn diagram by the R-package [22].

FIGURE 1. Overview of the study design. DEGs and co-expression modules in PCC were identified from microarray data from GEO 
(GSE16515); and RNA-seq and clinical data from TCGA-PAAD. Twenty-one overlapping genes were further evaluated by functional 
enrichment and protein-protein intersection analysis, and 10 Hub genes were identified. The correlations of these Hub genes with 
OS, DFS, and prognostic factors were assessed. IHC data from HPA were evaluated for further validation.
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Survival analysis and prognostic values of hub 
genes

We calculated OS as an endpoint using the R packages sur-
vival and survminer. Survival curves were developed using the 
Kaplan-Meier method in R. In addition, the online platform 
GEPIA2 was used to calculate the correlation of DFS and hub 
genes expressed in patients with PCC [27]. Our survival anal-
ysis only included patients who had completed all follow-up 
examinations. The median expression values of hub genes 
were compared, and the samples were grouped into high-ex-
pression and low-expression groups. Survival-related hub 
genes with log-rank p-value significantly <0.05 were identified. 
Next, key survival genes and other prognostic  predictors (age, 
gender, stage, and grade) were analyzed by univariate and mul-
tivariate COX analysis to assess the robustness of these genes 
compared with other prognostic indicators and to determine 
whether the key hub genes could be used as independent 
prognostic factors for PCC.

Validation of the HPA database for protein 
expressions in survival-related hub genes

The HPA database (https:/www.proteinatlas.org/) is a 
comprehensive resource that enables researchers to access a 
wide range of transcriptional and proteomic data from differ-
ent tissues and cells [28]. Moreover, protein expression pat-
terns based on immunohistochemistry (IHC) have become a 
universal immunostaining application for the determination 
of the relative protein position and abundance [29]. Therefore, 
HPA was used to determine the abundance of proteins 
encoded by survival genes in PCC and control tissues.

Ethics statement

This study protocol was reviewed and approved by the 
Hebei General Hospital Ethics Committee (No:202041). All 
patient data included in this study were de-identified.

RESULTS

Construction of PCC co-expression modules

To identify sets of genes that are co-expressed in PCC, 
we used WGCNA to sort genes from TCGA and GEO into 
modules. When the soft threshold values of β = 2 and 9 were 
selected, the connectivity between genes conformed to the 
distribution of the scale-free network (Figure  2A-D). We 
employed hierarchical clustering and dynamic branch cut-
ting to recognize different co-expression modules of PCC 
and represented them by different colors. Ten modules of 
data from TCGA-PAAD (Figure  3A) and 12 modules from 
GSE16515 (Figure 3B) were detected after the fusion of related 

modules. Table S1 lists the number of genes present in the 
co-expression modules. To evaluate the correlation between 
each module and two clinical characteristics (cancer and nor-
mality), we plotted a heat map of module-trait relationships. 
The TCGA-PAAD magenta module and the GSE16515 yellow 
module represented the greatest association with the normal 
tissue (magenta module: r = −0.21, p = 0.005; yellow mod-
ule: r = −0.78, p = 1e−11) (Figure 3C-D).

Identification of genes between the DEG lists and 
co-expression modules

To further evaluate the differential expression pattern in 
PCC, we identified sets of DEGs. After data preprocessing 
and quality assessment through the limma package, 106 DEGs 
in TCGA-PAAD (Figure  4A) and 1253 DEGs in GSE16515 
(Figure 4B) were identified to be dysregulated in tumor tissues. 
We further analyzed these DEGs according to their distribu-
tion in the co-expression modules. As shown in Figure  4C, 
the TCGA-PAAD magenta module had 5809 DEGs, and the 
GSE16515 yellow module had 540 DEGs. A total of 21 over-
lapping genes were identified as candidates for validation 
(Figure 4C).

Functional enrichment analyses for 21 overlapping 
genes

To provide additional insight into the functional roles of 
the 21 dysregulated genes that overlapped in the DEG lists 
and co-expression modules, we performed KEGG and GO 
enrichment analyses using the clusterProfiler package. Several 
GO-enriched gene sets were observed (Figure 5A). Genes in 
the biological process category were primarily concentrated 
in O−glycan processing, regulation of the epidermal growth 
factor receptor signaling pathway, digestive system process, 
regulation of the ERBB signaling pathway, and protein local-
ization to the cell periphery. In the cellular component cate-
gory, enriched components included desmosomes, cell cortex 
part, cornified envelope, cortical cytoskeleton, and microvil-
lus membrane. Moreover, in the molecular function category, 
cadherin binding, cell adhesion molecule binding, and epider-
mal growth factor receptor binding were the top functions of 
the 21 genes. In KEGG enrichment analysis, the genes were 
enriched in the biosynthesis of ubiquinone and other ter-
penoid-quinone, glycosphingolipid biosynthesis – lacto and 
neolacto series, and retinol metabolism (Figure 5B).

PPI network construction and hub gene 
identification

For a more comprehensive understanding of the functions 
of the 21 overlapping genes, we constructed a PPI network. 
The network contained 19 nodes and 46 edges (Figure  6A). 
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Further analysis identified core genes within the PPI  network 
(Figure  6B). The 10 genes with the highest MCC scores, 
including Tetraspanin-1 (TSPAN1), E3 ubiquitin-protein ligase 
CBL-C (CBLC), transmembrane protein 45B (TMEM45B), 
mitotic interactor and substrate of PLK1 (MISP), FXYD 
domain-containing ion transport regulator 3 (FXYD3), 
beta-1,3-N-acetylglucosaminyltransferase-3 (B3GNT3), ante-
rior gradient protein 2 (AGR2), Plakophilin-3 (PKP3), S100P, 
and mucin-13 (MUC13), were identified as Hub genes.

Survival analysis and prognostic values of hub 
genes

To evaluate the clinical value of Hub gene expression, we 
determined whether they may be associated with survival or 
prognosis of PCC patients (Figure 7). Notably, high expression 
levels of TSPAN1 were significantly linked to the poor OS in 
PCC (p < 0.05) (Figure 7J). Although no substantial difference 
was found in the TSPAN1 expression level for DFS in PCC 
patients (p > 0.05) (Figure S1J), univariate and multivariate 
COX analysis outcomes indicated that TSPAN1 could serve as 
an independent prognostic factor for PCC patients (Table S2, 

Figure S2 and 8). These results suggest that TSPAN1 may rep-
resent a novel biomarker for PCC.

Validation of the HPA database for core survival 
genes

To verify the enhanced expression of TSPAN1 in PCC, we 
accessed IHC data from the HPA database. The TSPAN1 pro-
tein levels were considerably higher in tumor tissues relative 
to healthy tissues (Figure 9). Therefore, these findings confirm 
that elevated TSPAN1 expression, as determined at both the 
mRNA and protein levels, is aligned with worse prognosis and 
lower OS in PCC patients.

DISCUSSION

PCC, a common digestive tumor with a high degree of 
malignancy, tends to be aggressive and easily exacerbated by 
local nervous and vascular invasion. PCC tumors can form dis-
tal metastases in the early stages of cancer and often become 
resistant to traditional treatments such as chemotherapy and 
radiotherapy, making PCC prognosis extremely poor (5-year 

FIGURE 2. Identification of soft threshold weights by WGCNA. (A-D) Scale-free fitting index and average connectivity analysis of 
different soft-threshold weights of data from TCGA-PAAD (panels A and B) and GSE16515 (panels C and D).
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OS rate of <7%) [30]. Although many breakthroughs have 
been made for diverse cancers, the development of a PCC 
drug remains challenging [31]. With the advent and advance-
ment of targeted therapies and precise medication, traditional 
histopathological evaluation and diagnosis are becoming 
increasingly outdated. The most common type of mutation in 
PCC patients is the KRAS mutation. The KRAS gene muta-
tion plays a major role in the occurrence and development of 
PCC, with a rate as high as 90% [7]. KRAS pathway-targeted 
therapies for PCC have been explored, but current limitations 
involving drug resistance and safety considerations hinder 
their applicability. Therefore, to promote the development of 
precision medicine, including individualization and standard-
ization of targeted drugs, we need to continue to explore new 
clinical survival targets for diagnosis, prediction, and treat-
ment of PCC patients. Research involving genomics and tran-
scriptomics has the potential to provide reliable and detailed 

information for clinical precision therapy, to extend patient 
survival, and to act as a guide for new drug development, 
including target selection for therapeutic trials and population 
screening. Matching different molecular subtypes to clinical 
drugs and treatment regimens have the potential to advance 
PCC therapy. Therefore, we used advanced bioinformatics 
methods and transcriptional and clinical data from curated 
databases to identify new potential molecular targets.

In this study, we identified 21 genes with consistent 
expression patterns using integrated WGCNA and DEG 
analysis. As indicated by GO functional enrichment results, 
the function of these 21 genes includes regulation of epi-
dermal growth factor receptor (EGFR) signaling, cadherin 
binding, and cell adhesion molecule binding. Notably, EGFR 
(also known as ERBB1 and HER1) is overexpressed in 90% of 
PCC cells [32]. EGFR is a transmembrane receptor tyrosine 
kinase [33] that belongs to the ERBB family of cell surface 

FIGURE 3. Relationships between PCC co-expression modules from TCGA-PAAD and GEO-PCC datasets. (A) Hierarchical gene 
clustering of TCGA co-expression modules according to the 1 − TOM matrix. Each module is color-coded. (B) Module-trait diagram 
for TCGA co-expression modules. Columns are colors and rows represent clinical features. (C) Hierarchical gene clustering of GEO 
co-expression modules according to the 1 − TOM matrix. Each module is color-coded. (D) Module-trait diagram for GEO co-expres-
sion modules. Columns are colors and rows represent clinical features.
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FIGURE 4. Detection of differentially expressed genes (DEGs) in PCC from the GSE16515 and TCGA datasets. (A-B) Volcano plots 
representing DEGs from the TCGA dataset (panel A) and the GSE16515 dataset (panel B). (C) The Venn diagram showing the 
intersection of genes between co-expression modules and DEG lists.

C
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FIGURE 5. Functional annotation of pathways that are differentially activated in pancreatic cancer (PCC). (A) GO analysis of path-
ways modulated in PCC. (B) KEGG pathways enriched in PCC. The color represents the modified p-values. The scale of the spots 
indicates the number of genes involved.
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receptor tyrosine kinases  [34]. Binding of EGF to EGFR 
induces binding to other ERBB homologous or heterolo-
gous dimers. EGFR then induces receptor phosphorylation 
and activation of downstream effect molecules, including, 
for example, the RAS−RAF−MEK−ERK MAPK and PI3K−
AKT mTOR pathways, and finally leading to cell prolifera-
tion. Furthermore, classical cadherin, which is a cell surface 
glycoprotein, mediates calcium-dependent cell adhesion in 
a homotypic manner [35,36]. The adhesion regulation func-
tion of cadherins requires interaction between beta-catenin 

and the actin cytoskeleton. During invasion and metastasis 
of tumor cells, the conversion of the cadherin isoform from 
E-type cadherin to N-type cadherin is related to epitheli-
al-to-mesenchymal transition [37,38]. In particular, changes 
in the expression of E-cadherin in the pancreas contribute 
to the development of human intraepithelial pancreatic 
neoplasia [39].

Our KEGG enrichment data further suggest that the 21 
overlapping genes perform biological roles in ubiquinone and 
another terpenoid-quinone biosynthesis, glycosphingolipid 

FIGURE 6. Construction of a PPI network and selection of the candidate core genes. (A) PPI network of intersecting genes from 
the Venn diagram. The genes are represented by the blue nodes. Edges indicate associations of interactions among nodes. 
(B) PPI network hub gene recognition using MCC. Genes with the highest MCC scores are red nodes; genes with the lowest MCC 
scores are yellow nodes.

BA

FIGURE 7. Correlation between the expression of the top 10 core genes and OS in PCC patients based on the GEPIA2 database. 
(A-J) ARG2, B3GNT3, CBLC, FXYD3, MISP, MUC13, PKP3, S100P, TMEM45B, and TSPAN1 in PCC survival analysis. p < 0.05 was 
defined as a statistically significant difference.
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biosynthesis-lacto, and neolacto series, and retinol metab-
olism. Ubiquinone, also known as coenzyme Q, plays 
a central role in the mitochondrial electron transport 
chain, is involved in the production of mitochondrial 

oxidative phosphorylation and reactive oxygen species, and 
acts as a pivotal mediator of the pathogenesis of tumors 
[40]. Relevant studies have shown that ubiquinone can exert 
anti-tumor activity by promoting tumor cell proliferation 
and apoptosis  [41], migration and invasion [42], and aero-
bic glycolysis  [40]. Furthermore, work by Gehrmann et al. 
has demonstrated that the glycosphingolipid Gb3 facilitates 
tumor-specific Hsp70 plasma membrane localization [43]. 
Levels of HSP70 (a major stress-inducing member of the 
HSP70 family) on the plasma membrane have been con-
sidered as a prognostic indicator of OS in leukemia, lower 
rectal, and non-small cell lung carcinomas; however, it is 
unclear why tumors, but not healthy cells, present HSP70 on 
their cell surface, and the effect of the HSP70 membrane on 
cancer incidence remains to be clarified. Nevertheless, these 
results support a potential role for Gb3 in PCC prognosis.

FIGURE 8. Multivariate COX regression analysis of TSPAN1 
with other factors (age, gender, grade, and stage).

FIGURE 9. IHC of TSPAN1 in tumor tissues from the HPA database. (A) Protein levels of TSPAN1 in normal exocrine glandular cells 
tissues (antibody HPA011909; staining: Not detected; intensity: Negative; quantity: None). (B) Levels of TSPAN1 protein in PCC 
tissues (antibody HPA011909; staining: High; intensity: Strong; quantity: >75%).

B

A
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We further identified 10 core genes (AGR2, FXYD3, 
B3GNT3, MISP, TSPAN1, PKP3, CBLC, MUC13, S100P, 
and TMEM45B) that were up-regulated in PCC tissues rel-
ative to healthy controls based on MCC evaluation results. 
Among them, increased expression of TSPAN1 was signifi-
cantly associated with the poor OS rate of PCC. According 
to our COX analysis results, TSPAN1 also serves as an inde-
pendent prognostic factor. TSPAN1 is a membrane glyco-
protein and a member of a superfamily of transmembrane 
proteins (TM4SF) that have 4 members. While TM4SF has 
been studied only recently, its function in tumor invasion 
and metastasis has begun to be recognized. TSPAN1 has 
been shown to cause cancer cell proliferation and angio-
genesis by switching cell division signals and inducing dif-
ferentiation or dedifferentiation of cells [44]. According to 
prior research, TSPAN1 is widely expressed in gastric, lung, 
liver, and esophageal cancers [45-47]. As discussed above, 
beta-catenin is likely to have biological functions in the 
growth of PCC, and consistently, silencing of TSPAN1 has 
been shown to facilitate Smad2/3 phosphorylation and sta-
bilize beta-catenin [48]. In addition, Hou et al. demonstrated 
that positive immunostaining of TSPAN1 is substantially 
associated with metastasis of the lymph node, TNM stage, 
and poor prognosis in PCC [49]. Of note, retinol metabolism 
and dissemination also play significant roles in the formation 
and evolution of tumors [50]. Our findings raise the possibil-
ity that TSPAN1 can interfere with the pathogenesis of PCC 
through the retinol metabolism pathway. Tian et al. demon-
strated that the production of TSPAN1 in tumor tissues of 
PCC is dramatically higher than that of healthy tissues and 
that silencing of TSPAN1 reduces cell migration and inva-
sion [51]. Furthermore, Wang et al. validated the oncogenic 
role of TSPAN1 in PCC, showing that TSPAN1 contributes 
to cell proliferation, migration, invasion, and tumorigene-
sis [52]. Zhang et al. also demonstrated that TSPAN1 up-reg-
ulates MMP2 through PLCγ to promote PCC cell migration 
and invasion [53]. Therefore, our results demonstrating that 
TSPAN1 is overexpressed in tumor tissues but not healthy 
tissues reveal a clear link with survival in PCC patients that 
are compatible with previous findings.

CONCLUSIONS

In summary, we identified gene co-expression modules 
and Hub genes linked to the progression and poor prognosis 
of PCC to guide further research, with potential benefits in the 
development of novel therapeutics. The present study does, 
however, have some limitations that should be acknowledged. 
First, although we did perform a thorough bioinformatics 
review to classify potential genes for diagnosis of PCC, the 
data may not be reliable for patients of every PCC subtype. 

Second, our research was constrained by the availability of 
experimental data. Confirmation using large-scale studies 
with subtype analysis may help to bring further insight into 
the role of TSPAN1 and other genes in PCC.
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SUPPLEMENTARY

FIGURE S2. Univariate Cox regression analysis of TSPAN1 with 
other factors (age, gender, grade, and stage) in PCC patients.

FIGURE S1. Correlation between the expression of the 10 core genes and DFS in PCC patients based on the GEPIA2 database. 
(A-J) Survival analysis of ARG2, B3GNT3, CBLC, FXYD3, MISP, MUC13, PKP3, S100P, TMEM45B, and TSPAN1 in PCC. Log-rank 
p < 0.05 was defined as a statistically significant difference.
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SUPPLEMENTARY TABLE 1. The number of genes in the 
co-expression modules from various databases.

Module color Frequency Databases
Black 321 TCGA
Blue 5153 TCGA
Brown 1077 TCGA
Green 1368 TCGA
Red 367 TCGA
Magenta 5809 TCGA
Pink 224 TCGA
Purple 143 TCGA
Salmon 62 TCGA
Tan 82 TCGA
Black 334 GEO
Cyan 147 GEO
Green 2943 GEO
Green-yellow 555 GEO
Grey 269 GEO
Grey60 107 GEO
Light green 85 GEO
Magenta 1354 GEO
Midnight blue 144 GEO
Pink 440 GEO
Purple 223 GEO
Tan 178 GEO
Yellow 540 GEO

SUPPLEMENTARY TABLE 2. Univariate and multivariate COX 
analyses of TSPAN1 expression with other factors in PCC 
patients.

Parameter Univariate analysis Multivariate analysis
HR 95% CI p HR 95% CI p

Age 1.03 1.01-1.05 0.013* 1.02 1.00-1.04 0.033*
Gender 1.12 0.74-1.69 0.590 1.26 0.83-1.91 0.276
Grade 1.38 1.04-1.85 0.028 1.32 0.96-1.81 0.084
Stage 1.36 0.94-1.98 0.106 1.13 0.74-1.73 0.567
TSPAN1 1.23 1.05-1.43 0.010* 1.20 1.02-1.41 0.025*

HR: Hazard ratio; CI: Confidence interval; *p<0.05


