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Abstract: Implant constructs supporting angiogenesis are favorable for treating critically-sized
bone defects, as ingrowth of capillaries towards the center of large defects is often insufficient.
Consequently, the insufficient nutritional supply of these regions leads to impaired bone healing.
Implants with specially designed angiogenic supporting geometry and functionalized with
proangiogenic cytokines can enhance angiogenesis. In this study, Vascular Endothelial Growth
Factor (VEGF) and High Mobility Group Box 1 (HMGB1) were used for incorporation into
poly-ε-caprolactone (PCL)-coated porous titanium implants. Bioactivity of released factors and
influence on angiogenesis of functionalized implants were evaluated using a migration assay and
angiogenesis assays. Both implants released angiogenic factors, inducing migration of endothelial
cells. Also, VEGF-functionalized PCL-coated titanium implants enhanced angiogenesis in vitro.
Both factors were rapidly released in high doses from the implant coating during the first 72 h.

Keywords: titanium; angiogenesis; VEGF; HMGB1; functionalized implants; PCL

1. Introduction

Angiogenesis plays a major role in healing of critically-sized bone defects [1]. The importance of
blood vessel formation for bone repair and building of a skeleton structure was already described in
the 18th century as reviewed by Carano et al. [2]. Thereby, vasculature ensures a sufficient supply of
soluble nutrients, cytokines, cells, and oxygen to all tissues [3]. Consequently, insufficient blood supply
is one of the major reasons for impaired bone healing [4]. Such insufficient blood vessel ingrowth
is often seen in large oral and maxillofacial defects, resulting from accidents, bone inflammation, or
neoplasia, often leading to a non-union of the bone [5–7].

Accordingly, an efficient treatment of those critically sized bone defects requires specially designed
and functionalized implants. Currently, the gold-standard for treating these defects are autologous
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bone transplants which have unfortunately limited availability and are accompanied by donor side
morbidity as well as high costs [8–10].

Titanium is a well-established implant material characterized by high biocompatibility and
resistance to corrosion [11–13]. Furthermore it has good initial stability and is well tolerated by tissues
as it does not evoke foreign body reactions [14]. In general, a porous implant structure is favorable
for improving ingrowth of blood vessels and bone, as well as for overcoming the mismatch between
the Young’s modulus between bone (10–30 GPa) and titanium (about 110 GPa for Ti6Al4V), which
can lead to stress-shielding and, consequently, to loosening of the implant-bone interface [15,16].
Porous titanium implants are proven to be promising for treating large bone defects as they have an
osteoconductive effect [17]. SLM®-made (SLM Solutions GmbH, Luebeck, Germany) porous titanium
implants with a pore size of 600 µm and a poly-ε-caprolactone (PCL) coating were examined and
found to be promising for treating critically-sized bone defects [18].

In previous studies, a positive effect of proangiogenic factors loaded scaffolds on vascularization
was confirmed [19–21]. For functionalization of titanium implants with proangiogenic factors, a PCL
coating is promising, as it has proven to be biocompatible and to enable growth of osteoblasts on its
surface [18,22]. PCL, as a coating and drug delivery device, has come to our focus as PCL has favorable
degradation kinetics and its bio- and cytocompatibility have been confirmed by several studies [23–25].
Furthermore, its high permeability to many drugs and its ability to be fully excreted by the body make
it attractive for drug delivery [22].

Vascular Endothelial Growth Factor (VEGF) is a potent angiogenic regulator. VEGF has a
chemotactic effect on endothelial cells in vitro and has been proven to induce angiogenesis in vivo
in model systems, such as the rabbit cornea or the chorioallantoic membrane [26]. Furthermore, it
functions directly chemotactically on osteoblasts and osteoclasts [27]. High Mobility Group Box 1
(HMGB1) is a proangiogenic factor which mediates its effect as ligand of the receptor for advanced
glycation end products (RAGE) or toll-like receptors TLR2 and TLR4 [28,29].

V2a Kit™ (TCSCellworks, Buckingham, UK) has been proven to be a suitable method for
evaluating the influence of different implant materials and coatings on angiogenesis in vitro [18].

The aim of the present study was to prove the bioactivity of VEGF and HMGB1 after incorporation
into implants and their proangiogenic effect. Also, cytokines were tested directly using an angiogenesis
assay to rule out any negative effect of the implant or the coating itself. Additionally, the releasing
progress of these cytokines from PCL-coated titanium implants was examined.

2. Results

2.1. PCL Coating Thickness and Mass

As an even coating of the implant is favorable for controlled drug release, cross-section polishes
of the titanium scaffolds were prepared to determine the thickness of PCL coatings (Table 1). In order
to visualize the coating, environmental scanning electron microscopy (ESEM) was performed (Quanta
FEG 250, FEI, Eindhoven, The Netherlands) (Figure 1). Three different samples were examined, which
all were coated during different coating processes. The measured middle coating thickness was
between 11.4 and 15.5 µm. Thus, a high standard deviation for all samples was observed which was
at least approximately half of the determined PCL coating thickness. For the titanium scaffolds with
HMGB1 loading, a higher standard deviation of approximately 2/3 of the coating thickness could
be observed.

The PCL coating weight measurements amounted to 0.305 ˘ 0.065 mg. With a standard deviation
of around 20%, only a low standard deviation in mass measurements regarding the standard deviation
of coating thickness could be detected. That is why we assume that the complicated and porous
titanium scaffold structure causes the high thickness standard deviation.
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Figure 1. ESEM (environmental scanning electron microscopy) pictures (Quanta FEG 250, FEI, 
Eindhoven, The Netherlands) of PCL-coated titanium implant. The whole implant (A) was imaged 
as well as different parts of the implant (B–D). After fixing the implants, the scanning electron 
micrographs were performed at 50 Pa pressure, with moisturized atmosphere and an accelerating 
voltage of 5 kV (HV = high voltage; det = detector; LFD = large field detector; WD = working 
distance, HFE = horizontal field width, mag = magnification). 

Table 1. PCL coating thickness of the in vitro tested Titanium Scaffolds (n = 3). 

Sample Coating Thickness of PCL (µm) 
Titanium-PCL 11.6 ± 6.2 

Titanium-PCL + VEGF 11.4 ± 7.3 
Titanium-PCL + HMGB1 15.5 ± 10.1 

Titanium-PCL + VEGF + HMGB1 15.3 ± 7.4 

2.2. Migration Assay 

To prove bioactivity of growth factors being released from functionalized titanium implants, a 
migration assay with endothelial cells (GM7373) was performed. GM7373 cells showed significantly 
higher chemotaxis using supernatants from functionalized implants compared to the control DMEM 
(Dulbecco’s Modified Eagle Medium) (Biochrom AG, Berlin, Germany) with 20% FCS (fetal calf 
serum) (PAA, Coelbe, Germany) or 0.1% FCS (Figure 2). Chemotaxis was significantly higher for 
DMEM with 20% than for DMEM with 0.1% FCS. 

Figure 1. ESEM (environmental scanning electron microscopy) pictures (Quanta FEG 250, FEI,
Eindhoven, The Netherlands) of PCL-coated titanium implant. The whole implant (A) was imaged as
well as different parts of the implant (B–D). After fixing the implants, the scanning electron micrographs
were performed at 50 Pa pressure, with moisturized atmosphere and an accelerating voltage of 5 kV
(HV = high voltage; det = detector; LFD = large field detector; WD = working distance, HFE = horizontal
field width, mag = magnification).

Table 1. PCL coating thickness of the in vitro tested Titanium Scaffolds (n = 3).

Sample Coating Thickness of PCL (µm)

Titanium-PCL 11.6 ˘ 6.2
Titanium-PCL + VEGF 11.4 ˘ 7.3

Titanium-PCL + HMGB1 15.5 ˘ 10.1
Titanium-PCL + VEGF + HMGB1 15.3 ˘ 7.4

2.2. Migration Assay

To prove bioactivity of growth factors being released from functionalized titanium implants, a
migration assay with endothelial cells (GM7373) was performed. GM7373 cells showed significantly
higher chemotaxis using supernatants from functionalized implants compared to the control DMEM
(Dulbecco’s Modified Eagle Medium) (Biochrom AG, Berlin, Germany) with 20% FCS (fetal calf serum)
(PAA, Coelbe, Germany) or 0.1% FCS (Figure 2). Chemotaxis was significantly higher for DMEM with
20% than for DMEM with 0.1% FCS.
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Figure 2. Migration Assay with GM7373 and supernatants from functionalized implants. 
Comparison of chemotactic behavior of the endothelial cell line (GM7373) using supernatants from 
implants functionalized with VEGF (vascular endothelial growth factor), HMGB1 (high mobility 
group box 1) and a combination of HMGB1/VEGF. All of the functionalized implants showed 
significantly higher chemotaxis than DMEM with 20% FCS or 0.1% FCS. VEGF was significantly 
more chemotactic than the combination of VEGF + HMGB1. F-test from the analyses of variance 
followed by pairwise multiple means comparisons with the Least Significant Difference test were 
used (p ≤ 0.05). 

GM7373 showed the highest chemotaxis using supernatants of titanium implants 
functionalized with VEGF. Chemotaxis towards supernatants from VEGF-functionalized implants 
was significantly better than chemotaxis using supernatants of titanium implants functionalized 
with VEGF + HMGB1. There was no significant difference between HMGB1 and VEGF + HMGB1. 

2.3. Angiogenesis Assay with Functionalized Titanium Implants 

As migration assay only offers the opportunity of indirect testing of cell culture supernatants, 
an angiogenesis assay was performed. This offers the opportunity to prove functionalized implants 
directly in an in vitro cell culture model [18]. Tubuli sprouting was visible (Figure 3) and the 
characteristics Number of Junction (Figure 4), Number of Tubules (Figure 5), Total Tubule Length 
(µm) (Figure 6), and Number of Nets (Figure 7) were evaluated for the different functionalized 
implants. 

The most significant results for all of the mentioned characteristics were achieved by titanium 
implants functionalized with VEGF. Titanium implants functionalized with HMGB1 showed similar 
results as pure titanium implants and titanium implants coated with PCL. Significantly more 
junctions, tubules, and a higher tubule length could be detected for pure titanium implants 
compared to titanium implants coated with PCL. 

Figure 2. Migration Assay with GM7373 and supernatants from functionalized implants. Comparison
of chemotactic behavior of the endothelial cell line (GM7373) using supernatants from implants
functionalized with VEGF (vascular endothelial growth factor), HMGB1 (high mobility group box 1)
and a combination of HMGB1/VEGF. All of the functionalized implants showed significantly higher
chemotaxis than DMEM with 20% FCS or 0.1% FCS. VEGF was significantly more chemotactic than the
combination of VEGF + HMGB1. F-test from the analyses of variance followed by pairwise multiple
means comparisons with the Least Significant Difference test were used (p ď 0.05).

GM7373 showed the highest chemotaxis using supernatants of titanium implants functionalized
with VEGF. Chemotaxis towards supernatants from VEGF-functionalized implants was significantly
better than chemotaxis using supernatants of titanium implants functionalized with VEGF + HMGB1.
There was no significant difference between HMGB1 and VEGF + HMGB1.

2.3. Angiogenesis Assay with Functionalized Titanium Implants

As migration assay only offers the opportunity of indirect testing of cell culture supernatants, an
angiogenesis assay was performed. This offers the opportunity to prove functionalized implants
directly in an in vitro cell culture model [18]. Tubuli sprouting was visible (Figure 3) and the
characteristics Number of Junction (Figure 4), Number of Tubules (Figure 5), Total Tubule Length (µm)
(Figure 6), and Number of Nets (Figure 7) were evaluated for the different functionalized implants.

The most significant results for all of the mentioned characteristics were achieved by titanium
implants functionalized with VEGF. Titanium implants functionalized with HMGB1 showed similar
results as pure titanium implants and titanium implants coated with PCL. Significantly more junctions,
tubules, and a higher tubule length could be detected for pure titanium implants compared to titanium
implants coated with PCL.
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Figure 3. Tubuli and Nets visible after Angiogenesis Assay. After staining with BCIP/NBT-Substrate, 
tubuli and net-structures became visible. (A) Titanium implant functionalized with VEGF;  
(B) titanium implant functionalized with HMGB1; and (C) titanium implant functionalized with a 
combination of VEGF + HMGB1. 

 
Figure 4. Number of Junctions built due to the investigated implant. VEGF-functionalized 
titanium-PCL implants showed significantly more junctions than all of the other implants. VEGF + 
HMGB1-functionalized titanium-PCL implants built significantly more junctions than pure titanium 
implants, titanium implants coated with PCL and HMGB1-functionalized titanium-PCL implants. 
Significantly more junctions could be seen in wells with pure titanium implants than in wells with 
titanium-PCL implants. F-test from the analyses of variance followed by pairwise multiple means 
comparisons with the Least Significant Difference test were used (p ≤ 0.05). 

Figure 3. Tubuli and Nets visible after Angiogenesis Assay. After staining with BCIP/NBT-Substrate,
tubuli and net-structures became visible. (A) Titanium implant functionalized with VEGF; (B) titanium
implant functionalized with HMGB1; and (C) titanium implant functionalized with a combination of
VEGF + HMGB1.
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Figure 4. Number of Junctions built due to the investigated implant. VEGF-functionalized
titanium-PCL implants showed significantly more junctions than all of the other implants. VEGF
+ HMGB1-functionalized titanium-PCL implants built significantly more junctions than pure titanium
implants, titanium implants coated with PCL and HMGB1-functionalized titanium-PCL implants.
Significantly more junctions could be seen in wells with pure titanium implants than in wells with
titanium-PCL implants. F-test from the analyses of variance followed by pairwise multiple means
comparisons with the Least Significant Difference test were used (p ď 0.05).
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Figure 5. Number of Tubules built by investigated implants. VEGF-functionalized titanium-PCL 
implants built significantly more tubules than all of the other implants. VEGF + 
HMGB1-functionalized titanium-PCL implants showed significantly more tubules than 
titanium-PCL implants and HMGB1 functionalized titanium-PCL implants. Pure titanium implants 
showed better results than titanium-PCL implants. F-test from the analysis of variance followed by 
pairwise multiple means comparisons with the Least Significant Difference test were used (p ≤ 0.05). 

 

Figure 6. Total Tubule Length built by investigated implants. VEGF-functionalized titanium-PCL 
implants showed significantly the best results for the characteristic Total Tubule Length. VEGF + 
HMGB1-functionalized titanium-PCL implants showed a significantly higher Total Tubule Length 
than titanium-PCL implants and HMGB1-functionalized titanium-PCL implants, but comparable 
results to pure titanium implants. Pure titanium implants were significantly better than 
titanium-PCL implants and HMGB1-functionalized titanium-PCL implants. F-test from the analyses 
of variance followed by pairwise multiple means comparisons with the Least Significant Difference 
test were used (p ≤ 0.05). 

Figure 5. Number of Tubules built by investigated implants. VEGF-functionalized titanium-PCL
implants built significantly more tubules than all of the other implants. VEGF + HMGB1-functionalized
titanium-PCL implants showed significantly more tubules than titanium-PCL implants and HMGB1
functionalized titanium-PCL implants. Pure titanium implants showed better results than titanium-PCL
implants. F-test from the analysis of variance followed by pairwise multiple means comparisons with
the Least Significant Difference test were used (p ď 0.05).
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Figure 6. Total Tubule Length built by investigated implants. VEGF-functionalized
titanium-PCL implants showed significantly the best results for the characteristic Total Tubule
Length. VEGF + HMGB1-functionalized titanium-PCL implants showed a significantly higher Total
Tubule Length than titanium-PCL implants and HMGB1-functionalized titanium-PCL implants, but
comparable results to pure titanium implants. Pure titanium implants were significantly better than
titanium-PCL implants and HMGB1-functionalized titanium-PCL implants. F-test from the analyses of
variance followed by pairwise multiple means comparisons with the Least Significant Difference test
were used (p ď 0.05).
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Figure 7. Number of Nets built by investigated implants. VEGF-functionalized titanium-PCL 
implants lead to significantly more building of net-like structures than all of the other titanium 
implants with or without cytokines in the assay. VEGF + HMGB1-functionalized titanium-PCL 
implants built significantly more nets than pure titanium implants, titanium-PCL implants and 
HMGB1-functionalized titanium-PCL implants. F-test from the analysis of variance followed by 
pairwise multiple means comparisons with the Least Significant Difference test were used (p ≤ 0.05). 

2.4. Angiogenesis Assay with Cytokines HMGB1 and VEGF 

Angiogenesis assay was also performed with cytokines to rule out any effects of the implant 
and coating materials. The parameters Junctions, Number of Tubules, Total Tubule Length and 
Number of Nets were compared in order to determine the effect of the different cytokine 
concentrations (Figure 8). Controls were run with the assay as previously described and showed 
significant differences between each other, being proof of concept for this onset. VEGF being 
inserted into the assay at the different medium changes at a steady concentration of 10 ng/mL 
significantly showed the best angiogenesis stimulating results. VEGF being inserted into the assay at 
the different medium changes according to the concentrations in the table in Section 4.6 also showed 
a significant angiogenesis stimulating effect. In contrast, HMGB1 did not show any angiogenesis 
stimulating effect at all. Results were similar to those of the controls with medium only and with 
suramin. 

 
Figure 8. Cont. 

Figure 7. Number of Nets built by investigated implants. VEGF-functionalized titanium-PCL
implants lead to significantly more building of net-like structures than all of the other titanium
implants with or without cytokines in the assay. VEGF + HMGB1-functionalized titanium-PCL
implants built significantly more nets than pure titanium implants, titanium-PCL implants and
HMGB1-functionalized titanium-PCL implants. F-test from the analysis of variance followed by
pairwise multiple means comparisons with the Least Significant Difference test were used (p ď 0.05).

2.4. Angiogenesis Assay with Cytokines HMGB1 and VEGF

Angiogenesis assay was also performed with cytokines to rule out any effects of the implant and
coating materials. The parameters Junctions, Number of Tubules, Total Tubule Length and Number of
Nets were compared in order to determine the effect of the different cytokine concentrations (Figure 8).
Controls were run with the assay as previously described and showed significant differences between
each other, being proof of concept for this onset. VEGF being inserted into the assay at the different
medium changes at a steady concentration of 10 ng/mL significantly showed the best angiogenesis
stimulating results. VEGF being inserted into the assay at the different medium changes according to
the concentrations in the table in Section 4.6 also showed a significant angiogenesis stimulating effect.
In contrast, HMGB1 did not show any angiogenesis stimulating effect at all. Results were similar to
those of the controls with medium only and with suramin.
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Figure 8. Results of Angiogenesis Assay with proangiogenic cytokines VEGF and HMGB1. 
Angiogenesis Assay with VEGF at a steady concentration of 10 ng/mL (n = 4) and a declining 
concentration of 117 ng/mL on day 2, 16 ng/mL on day 5, 7 ng/mL on day 8 and 6 ng/mL on day 11  
(n = 4), respectively. HMGB1 was used at a steady concentration of 100 ng/mL (n = 4) and a declining 
concentration of 924 ng/mL at day 2, 130 ng/mL at day 5, 76 ng/mL at day 8 and 24 ng/mL at day 11, 
respectively. Results for Total Number of Junctions (A); Total Number of Tubules (B); Total Tubule 
Length (µm) (C); and Total Number of Nets (D) were analyzed using F-test from the analysis of 
variance followed by pairwise multiple means comparisons with the use of the Least Significant 
Difference (p ≤ 0.05). Both, VEGF using a concentration of 10 ng/mL and the declining concentrations, 
showed an angiogenesis stimulating effect. The steady concentration of 10 ng/mL showed 
significantly more tubules and junction formation than the declining concentrations. Neither the 
constant concentration of 100 ng/mL HMGB1 nor the declining concentrations of HMGB1 showed an 
angiogenesis stimulating effect. 

2.5. Factor Releasing Amounts of Functionalized Titanium Implants 

Releasing kinetics of funtionalized implants used in the angiogenesis assay were analyzed 
using commercial ELISA-kits (RayBio® Human VEGF-A ELISA Kit, RayBiotech, Norcross, GA, USA) 
and HMGB1 Elisa Kit II, Shino-Test Corporation, Kanagawa, Japan). The ELISA results displayed in 
Tables 2 and 3 as well as in Figures 9 and 10 show a burst release of cytokines from the PCL coating. 

Table 2. Releasing kinetics of HMGB1. Results of HMGB1 ELISA. Concentrations of HMGB1 
released by scaffolds functionalized with HMGB1 (HMGB1_1 to HMGB1_3), respectively with a 
combination of VEGF and HMGB1 (VEGF + HMGB1_1 to VEGF + HMGB1_3) were measured at 
different points in time using sandwich ELISA in (ng/mL). 

Concentration of HMGB1 (ng/mL) Day 5 Day 8 Day 11 Day 14 
HMGB1_1 858 89 27 19 
HMGB1_2 991 173 49 28 
HMGB1_3 >1678 316 152 107 

VEGF + HMGB1_1 1477 110 41 26 
VEGF + HMGB1_2 1655 228 37 27 
VEGF + HMGB1_3 1479 121 29 19 

  

Figure 8. Results of Angiogenesis Assay with proangiogenic cytokines VEGF and HMGB1.
Angiogenesis Assay with VEGF at a steady concentration of 10 ng/mL (n = 4) and a declining
concentration of 117 ng/mL on day 2, 16 ng/mL on day 5, 7 ng/mL on day 8 and 6 ng/mL on
day 11 (n = 4), respectively. HMGB1 was used at a steady concentration of 100 ng/mL (n = 4)
and a declining concentration of 924 ng/mL at day 2, 130 ng/mL at day 5, 76 ng/mL at day 8
and 24 ng/mL at day 11, respectively. Results for Total Number of Junctions (A); Total Number
of Tubules (B); Total Tubule Length (µm) (C); and Total Number of Nets (D) were analyzed using
F-test from the analysis of variance followed by pairwise multiple means comparisons with the use
of the Least Significant Difference (p ď 0.05). Both, VEGF using a concentration of 10 ng/mL and
the declining concentrations, showed an angiogenesis stimulating effect. The steady concentration of
10 ng/mL showed significantly more tubules and junction formation than the declining concentrations.
Neither the constant concentration of 100 ng/mL HMGB1 nor the declining concentrations of HMGB1
showed an angiogenesis stimulating effect.

2.5. Factor Releasing Amounts of Functionalized Titanium Implants

Releasing kinetics of funtionalized implants used in the angiogenesis assay were analyzed using
commercial ELISA-kits (RayBio® Human VEGF-A ELISA Kit, RayBiotech, Norcross, GA, USA) and
HMGB1 Elisa Kit II, Shino-Test Corporation, Kanagawa, Japan). The ELISA results displayed in
Tables 2 and 3 as well as in Figures 9 and 10 show a burst release of cytokines from the PCL coating.

Table 2. Releasing kinetics of HMGB1. Results of HMGB1 ELISA. Concentrations of HMGB1 released
by scaffolds functionalized with HMGB1 (HMGB1_1 to HMGB1_3), respectively with a combination of
VEGF and HMGB1 (VEGF + HMGB1_1 to VEGF + HMGB1_3) were measured at different points in
time using sandwich ELISA in (ng/mL).

Concentration of HMGB1 (ng/mL) Day 5 Day 8 Day 11 Day 14

HMGB1_1 858 89 27 19
HMGB1_2 991 173 49 28
HMGB1_3 >1678 316 152 107

VEGF + HMGB1_1 1477 110 41 26
VEGF + HMGB1_2 1655 228 37 27
VEGF + HMGB1_3 1479 121 29 19
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Table 3. Releasing kinetics of VEGF. Results of VEGF ELISA. Concentrations VEGF released by scaffolds
functionalized with VEGF (VEGF_1 to VEGF_3), respectively with a combination of VEGF and HMGB1
(VEGF + HMGB1_1 to VEGF + HMGB1_3) were measured at different points in time using sandwich
ELISA in (ng/mL).

Concentration of VEGF (ng/mL) Day 5 Day 8 Day 11 Day 14

VEGF_1 118 19 9 6
VEGF_2 139 15 6 3
VEGF_3 93 16 7 5

VEGF + HMGB1_1 101 8 9 1
VEGF + HMGB1_2 127 23 2 1
VEGF + HMGB1_3 134 6 2 1
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3. Discussion

Supernatants from titanium implants functionalized with VEGF and/or HMGB1 showed
significantly higher chemotactic attraction for GM7373 compared to the starvation medium or 20%
DMEM. VEGF is a well-known proangiogenic factor and HMGB1 has also been proven to induce
migration of GM7373 [30]. Both cytokines were comparatively evaluated in previous studies and
HMGB1 was found to be the more potent chemoattractive factor for GM7373 [31]. The aim of the
onset was to prove that cytokines diffused out of the PCL layer of titanium implants are still bioactive
and able to induce migration. The results show that VEGF as well as HMGB1 are still functional after
incorporation into PCL coated titanium implants. Released concentrations are sufficient to induce
chemotactic effects. There was no significant difference between VEGF and HMGB1, but VEGF alone
was slightly better than the combination of VEGF and HMGB1. Adsorption and releasing kinetics of
these cytokines into and from PCL-coated titanium implants are not well known yet.

Tubuli formation and building of junctions as well as nets was visible using titanium implants
coated with PCL and functionalized with both, VEGF and a combination of VEGF and HMGB1.
VEGF lead to significantly more tubuli formation than the combination of both factors. This could be
due to interactions between VEGF and HMGB1 during adsorption and releasing, resulting in higher
released concentrations of HMGB1 when both cytokines are incorporated. Furthermore, different
signal pathways were activated in cells, which maybe act antagonistically, because the same amount
of VEGF was released like in VEGF only-loaded scaffolds. As HMGB1 alone did not have any effect
or show more sprouting than pure titanium implants or titanium implants coated with PCL, it can
be assumed that the released concentration of HMGB1 failed to stimulate cells used in this assay.
Another possibility might be that HMGB1 does not stimulate cells under these assay conditions at all.

To rule out any negative impact of the implant in combination with the cytokines, a second
angiogenesis assay was performed with cytokines dissolved in the cell culture media. In this, a
constant concentration of each cytokine was compared to the declining concentrations released
during the first angiogenesis assay. VEGF at a constant concentration of 10 ng/mL reached the best
angiogenesis stimulating results. This concentration has also been proven to stimulate migration
of endothelial cells [31]. It was even significantly better than the positive control in this assay
(VEGF at a concentration of 2 ng/mL). Nevertheless, VEGF at declining concentrations (117 ng/mL,
16 ng/mL, 7 ng/mL, 5 ng/mL) was significantly more stimulating than the controls (cell culture
medium without supplements) and HMGB1, both at a constant concentration of 100 ng/mL and at a
declining concentration (924 ng/mL, 130 ng/mL, 76 ng/mL, 24 ng/mL). In fact, neither the constant
concentration nor the declining concentrations of HMGB1 lead to any stimulation of angiogenesis
recognisable by similar results to the controls of the assay (medium without supplements and
negative control with suramin). In a previous study, it was shown that the interaction between
HMGB1 and its receptor RAGE does not have any effect on neovascularization in the fibroblast
growth-factor mediated angiogenesis pathway [32]. This might be a reason for the failure of HMGB1
in this assay. Otherwise, the added concentration of 100 ng/mL could be insufficient for this onset.
This concentration was tested by Matena et al. and found to be chemotactic for endothelial cells [31].
Best angiogenetic effects in an in vitro spheroid model were reached at a concentration of 2 µg/mL
HMGB1 [28].

However, pure titanium implants lead to better results than titanium implants coated with PCL.
Although PCL is proven to enable cell growth and proliferation on its surface [18], it seems to have a
negative impact on angiogenesis. PCL is used as material for coronary stents and thus proven to be
biocompatible but still should not promote vessel ingrowth in this application [33]. PCL might not be
the perfect material for our investigation, but it has been proven to stimulate angiogenesis when VEGF
has been incorporated. Therefore, titanium implants coated with PCL as a local drug delivery device
are adequate, but it should also be taken into consideration to investigate more suitable polymers for
angiogenesis in future.
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Results show a fast initial release of the cytokines. This burst release indicates that most of the
cytokines adsorb to the polymer surface. The released concentrations measured three days after
insertion of the implants into the assay (day 5 of the assay) were 10-fold higher than following
concentrations (10 ng/mL for VEGF and 100 ng/mL for HMGB1, respectively). The released
concentrations at day 5 of the assay of HMGB1 from scaffolds functionalized with HMGB1 range
from 858 ng/mL to above 1678 ng/mL. 1678 ng/mL was the highest measurable concentration and
was exceeded by one of the scaffolds. At day 8 of the assay, concentrations ranged from 89 ng/mL to
316 ng/mL. Huge differences were also visible at day 11 and day 14 of the assay as shown in Table 2.
This indicates that the cytokines also diffuse into deeper layers of the polymer. Besides, another reason
for the vast differences between the single scaffolds releasing amounts of VEGF and HMGB1 might be
an uneven PCL coating thickness of the titanium scaffolds.

A larger amount of HMGB1 is released using titanium PCL scaffolds functionalized with both
cytokines. On occasions, this might be explained by the competitive protein exchange. It was first
observed in 1960 and is now commonly referred to as the “Vroman effect” [34,35]. In a first step,
abundant proteins of high concentrations and a lower affinity adsorb reversibly to the surface. Later,
scarcer proteins of higher affinity displace the preadsorbed protein [36]. Another possible exchange
process, which describes adsorption and desorption of protein molecules on surfaces postulates
that, besides the concentration, also proteins with smaller molecular mass adsorb first to the surface.
Proteins with a larger molecular mass embed themselves into the previously adsorbed protein and
build a transient complex [37]. Probably HMGB1 with a molecular mass of 21 kDa and a higher
loading concentration (200 µg/mL) bound to the PCL surface first. In a second step, the larger VEGF
molecules with a mass of 46 kDa and a lower loading concentration (20 µg/mL) bound to the HMGB1
layer and built a transient complex. This complex turns upside down as VEGF has a higher adsorption
energy due to its higher molecular mass. HMGB1 forms a layer on the VEGF and additionally fills the
gaps on the PCL surface, which cannot be filled by VEGF because of its size. Nevertheless, releasing
behavior is similar with a quick initial release, reaching a plateau afterwards. The initial release even
seems to be slightly higher and faster when both cytokines are incorporated. This could be due to
interference between VEGF and HMGB1 during the release from the PCL coating by the “transient
complex” model [37].

4. Materials and Methods

4.1. Cell Culture

GM7373 is an endothelial cell line derived from the aorta of a bovine calf (kindly provided by
Prof. Dr. Anaclet Ngezahayo, Leibniz University, Institution of Biophysics, Hannover, Germany).

The cells were cultured under standard conditions in DMEM medium (Biochrom AG, Berlin,
Germany) with 10% fetal calf serum (FCS) at 37 ˝C and 5% CO2.

4.2. PCL Coating of Titanium Implants and Characterization

Coating was performed as described elsewhere [18]. The quality of surface morphology of the
PCL coatings was checked by environmental scanning electron microscopy (Quanta FEG 250, FEI,
Eindhoven, The Netherlands) before and after in vitro studies. Furthermore, cross-section polishes
of PCL coated titanium implants were prepared after in vitro studies to determine the thickness of
the PCL coating (n = 3). For this purpose, we performed several measurements at different positions
regarding the scaffold area and cross-section position with a minimum of 30 checkpoints. Washed and
dried coated titanium implants were also weighed to determine the PCL mass of coatings with a
special accuracy balance (UMX 5 Mettler Toledo, Greifensee, Switzerland, n = 5). Procedures were
performed according to Matena et al. [38].
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4.3. Incorporation of VEGF and HMGB1 into Titanium Implants

Titanium implants were produced as previously described [18] and coated by the Institute for
Biomedical Engineering, Rostock University Medical Center, Rostock, Germany. Scaffolds were
sanitized using fumigation with ethylene oxide, and all operations were performed under laminar
flow. Human VEGF (450-32, Peprotech, Hamburg, Germany) and HMGB1 (H4652, Sigma-Aldrich,
Taufkirchen, Germany) were incorporated in polymer coatings by sorption. The sorption of
VEGF (20 µg/mL) and HMGB1 (200 µg/mL) and both supplements in combination (VEGF
20 µg/mL + HMGB1 200 µg/mL) took place in aseptic filtered sodium carbonate buffer (0.05 M,
pH 9.6) at 37 ˝C for 24 h on a shaker.

4.4. Migration Assay of GM7373 on Functionalized Titanium PCL Implants

Implants functionalized with VEGF (n = 9), HMGB1 (n = 9) and the combination of both cytokines
(n = 9) were immersed into serum-free DMEM (Biochrom AG, Berlin, Germany) and incubated for
24 h at 37 ˝C with 5% CO2. Supernatants of three implants were each pooled and collected. 70,000
GM7373 cells of passage P 22 were seeded onto 12-well transwells (353182, BD Falcon, Erembodegem,
Belgium) with 8 µm pore-size, which were inserted into DMEM with 0.1% fetal calf serum (FCS) (PAA,
Coelbe, Germany) and preheated at 37 ˝C and 5% CO2 for 30 min. 0.1% DMEM under the transwells
was replaced by the supernatants of functionalized implants in triplicate. 0.1% DMEM (n = 3) and
20% DMEM (n = 3) served as negative controls. Cells that did not migrate after 75 min were removed
from the upper side of the transwells using a cotton stick. Migrated cells at the bottom site of the
transwells were washed with Phosphate Buffered Saline (PBS) (Biochrom AG, Berlin, Germany), fixed
with ice-cold methanol (AppliChem, Darmstadt, Germany) and stained with 1% crystal violet (Sigma
Aldrich, Munich, Germany). Five pictures at different positions of each transwell were taken at a
magnification of 40x using Live Cell Imaging Microscope (DMI6000B, Leica Microsystems, Wetzlar,
Germany) with the program LAS V4A, and migrated cells were counted.

4.5. Angiogenesis Assay with Functionalized Titanium PCL Implants

In order to investigate the impact of functionalized implants on tubulus formation in vitro, V2a
Kit™—Vasculogenesis to Angiogenesis (TCSCellworks, Buckingham, UK)—was performed according
to the protocol provided by the manufacturer [39]. The kit supplies growing co-cultures of human
matrix and endothelial cells in a 24 well plate format.

V2a Co-Culture Cells (TCSCellworks, Buckingham, UK) were thawed in V2a Seeding Medium
(TCSCellworks, Buckingham, UK), seeded evenly in a 24-well plate and incubated at 37 ˝C with 5%
CO2. After 24 h, the medium was changed to V2a Growth Medium (TCSCellworks, Buckingham,
UK) and test compounds added. Controls were performed according to the manufacturer’s
recommendations in order to verify the results of the assay. Different implant materials with and
without coating and proangiogenic factors were tested as compounds. Pure titanium scaffolds (n = 3)
and PCL coated titanium scaffolds (n = 3) were each placed in one well. Titanium implants coated
with PCL and functionalized with VEGF (n = 3) and HMGB1 (n = 3) were added as well as titanium
PCL implants functionalized with VEGF and HMGB1 in combination (n = 3). Every 72 h, co-cultures
were examined microscopically and medium was changed carefully to avoid movement of the implant
according to the protocol. Supernatants were collected and stored at ´20 ˝C for further experiments.

After 14 days, cells were washed with Phosphate Buffered Saline (PBS) (Biochrom AG, Berlin,
Germany), fixed with 70% ice-cold ethanol (AppliChem, Darmstadt, Germany) and stained with
mouse anti-human CD31 primary antibody and goat anti-mouse IgG AP conjugate secondary antibody
according to the protocol provided by TCSCellworks. In a final step, staining was performed
using 5-bromo-4-chloro-3-indolyl-phosphate/nitro blue tetrazolium (BCIP/NBT) (TCSCellworks,
Buckingham, UK). Pictures of cells were taken at five different determined fields (four evenly spread
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in the border area and one in the middle next to the implant) at ˆ40 magnification using Live Cell
Imaging Microscope (DMI6000B, Leica Microsystems, Wetzlar, Germany) with the program LAS V4A.

By using the software ImageJ (Wayne Rasband, National Institutes of Health, Bethesda, MD,
USA), pictures were processed and tubule formation was analyzed with the help of Cellworks Image
Analysis Software, AngioSys 2.0 (TCSCellworks, Buckingham, UK).

4.6. Angiogenesis Assay with Cytokines VEGF and HMGB1

Another Angiogenesis Assay was performed as described above. VEGF and HMGB1 were added
at concentrations according to releasing kinetics of functionalized titanium implants (n = 4 for VEGF
and n = 4 for HMGB1) with medium changes every 72 h. As the measured concentrations had changed
over the period of 14 days, different concentrations were added at each medium change. Added
concentrations are shown in Table 4. These concentrations were compared to steady concentration of
VEGF (10 ng/mL) (n = 4) and HMGB1 (100 ng/mL) (n = 4).

Table 4. Cytokine concentrations. Cytokine concentrations of VEGF and HMGB1 added to the
angiogenesis assay at different points in time.

Points in Time VEGF (ng/mL) HMGB1 (ng/mL)

Concentration added at day 2 117 924
Concentration added at day 5 16 130
Concentration added at day 8 7 76

Concentration added at day 11 5 24

4.7. Factor Releasing Kinetics of Functionalized Titanium Implants

A specific VEGF sandwich-ELISA using RayBio® Human VEGF-A ELISA Kit (RayBiotech,
Norcross, GA, USA) and a specific HMGB1 sandwich-ELISA (HMGB1 Elisa Kit II, Shino-Test
Corporation, Kanagawa, Japan) were performed with supernatants from Angiogenesis Assay of
functionalized titanium implants. Supernatants were taken 3, 6, 9, and 12 days, respectively after
insertion of functionalized titanium implants into the Angiogenesis Assay and stored at ´20 ˝C.

5. Conclusions

VEGF and HMGB1 maintain their chemotactic effect on endothelial cells after being released from
functionalized PCL-coated titanium implants.

VEGF-functionalized PCL-coated titanium implants were proven to act also proangiogenically
in the V2a Kit™, whereas HMGB1-functionalized PCL-coated titanium implants did not have any
proangiogenic effect.

A burst release could be observed when evaluating the releasing profile of functionalized implants,
indicating that the major amount of the cytokines is located at the polymer surface.
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