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Abstract: In the absence of standard methods for the detection/quantification of nanoplastics (NPs)
in environmental samples, commercial nanopolymers are utilized as proxies for toxicity testing and
environmental risk assessment. In marine species, a considerable amount of data are now available on
the effects of nanopolystyrene (PS-NPs) of different size/surface characteristics. In this work, amino
modified PS-NPs (PS-NH2) (50 and 100 nm), purchased from two different companies, were compared
in terms of behavior in exposure media and of biological responses, from molecular to organism
level, in the model marine bivalve Mytilus. Different PS-NH2 showed distinct agglomeration and
surface charge in artificial sea water (ASW) and hemolymph serum (HS). Differences in behavior
were largely reflected by the effects on immune function in vitro and in vivo and on early larval
development. Stronger effects were generally observed with PS-NH2 of smaller size, showing less
agglomeration and higher positive charge in exposure media. Specific molecular interactions with
HS components were investigated by the isolation and characterization of the NP-corona proteins.
Data obtained in larvae demonstrate interference with the molecular mechanisms of shell biogenesis.
Overall, different PS-NH2 can affect the key physiological functions of mussels at environmental
concentrations (10 µg/L). However, detailed information on the commercial NPs utilized is required
to compare their biological effects among laboratory experiments.

Keywords: nanopolystyrene; size; charge; Mytilus; hemocytes; NP-protein corona; immune
responses; larvae

1. Introduction

Nanoplastics (NPs) are currently defined as particles produced from plastic degra-
dation and manufacturing, presenting a colloidal behavior, within the size range of
1–1000 nm [1]. Although NPs are expected to be nearly ubiquitous in aquatic compart-
ments, their presence in the marine environment has been detected so far only in the North
Atlantic Gyre [2,3] and, more recently, in coastal environments [4]. Such a lack of evidence
is related to the still open issue of analytical procedures for their determination and char-
acterization [5]. The formation of NPs from larger plastic items has been experimentally
demonstrated [6–9]. Consequently, several studies recently focused on the development of
alternative top–down processes to obtain fragmented NPs that are polydisperse and with
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irregular shapes, which can be representative of those occurring in the environment ([10]
and refs. quoted therein).

However, in the absence of standard methods for the routine detection and quantifi-
cation of environmental concentrations of NPs, different commercial nanopolymers are
utilized as proxies of NPs for toxicity testing and environmental risk assessment [11]. These
NPs are synthesized with a bottom–up approach as monodisperse and spherical, thus
mimicking environmental NPs on the basis of size and surface charges, but not of shape
and homogeneity, and they have been used to provide an estimate of the behavior of NPs
in different aquatic media [12,13] and their biological impact in aquatic species, marine in
particular [14–18].

In several marine invertebrates, NPs have been shown to affect the digestive system,
lowering food input for small organisms feeding on nano–micro range, molting, embryo
development, immune responses, and pro-antioxidant processes (reviewed in [19]). All
these impacts may lead to a loss in energy of the animals or in the population in the
environment. Several NP types were used, with the most widely utilized being polystyrene
nanoparticles (PS-NPs) of different sizes and surface characteristics (i.e., plain or labeled
with different fluorochromes, surface modified with cationic and anionic groups).

Bivalve mollusks have been shown to represent significant targets for nanosized
particles: as suspension-feeders, they have highly developed processes for the cellular inter-
nalization of nano- and micro-scale particles (endo- and phagocytosis), which are integral to
key physiological functions such as intra-cellular digestion and cellular immunity [20,21].

The model marine bivalve Mytilus has proven useful in evaluating the impact of
different types of nanomaterials, including model PS-NPs ([19] and refs. therein). In the
Mediterranean mussel M. galloprovincialis, amino-modified 50 nm PS-NH2 (from Bangs Lab.
Inc., Fishers, IN, USA), previously used for investigating nano-bio-interactions in human
cells [22] and effects in sea urchin embryos [23], has been utilized in studying the biological
interactions of NPs in different experimental settings in vitro and in vivo [19,24–26]. The
results underlined how mussel immune function in adults and early development in larvae
can represent significant targets for NPs.

In the last years, the increasing availability of commercial PS-NPs with different sizes
and functionalization has partly contributed to the increasing number of publications on
the potential impact of NPs on aquatic organisms, including bivalves [18,27]. However, this
raises some concern on the possibility to compare data obtained utilizing commercial NPs
with different sizes and/or surface modifications and/or obtained from different sources.

In this work, the effects of amino-modified PS-NPs (PS-NH2) of different sizes (50 and
100 nm) and purchased from two different companies, were evaluated in M. galloprovincialis
in terms of behavior in different exposure media and of in vitro and in vivo effects on
immune responses in adults and on early larval development.

2. Materials and Methods
2.1. PS-NP Characterization

Amino-modified (-NH2) polystyrene nanoparticles (PS-NPs) of two different nom-
inal sizes (50 and 100 nm) were purchased from two companies: Bangs Laboratories,
Inc. (Fishers, IN, USA) (PS50-B and PS100-B) and Sigma-Aldrich (Milan, Italy) (PS50-S
and PS100-S). PS50-B primary particles and their behavior in different media (milliQ water
(MQ), artificial seawater (ASW), and mussel hemolymph serum (HS)) were previously
characterized [28,29]. For other types of PS-NPs, primary characterization was carried out
by Field Emission Scan Electron microscopy (FESEM) (Zeiss, Sigma 300, Jena, Germany).
PS-NPs suspended in MQ water were spread onto a 0.22 µm polycarbonate filter, left to
dry, mounted on aluminum holders, and sputter-coated with chromium, using a precision
etching coating system (Quorum Technologies, G150TS plus, Lewes, UK). The hydrody-
namic diameter (Z-average), polydispersity index (PDI), and surface charge (zeta potential
in mV) of particle suspensions (50 µg/mL) in different media (MQ, ASW, and HS) were
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determined by Dynamic Light Scattering (DLS) using a Zetasizer Nano ZS instrument
(Malvern Panalytical, Malvern, UK).

2.2. Animals and Hemolymph Samples

Mussels (Mytilus galloprovincialis Lam.) were purchased from an aquaculture farm
(La Spezia, IT), transferred to the laboratory, and acclimatized in tanks containing aerated
artificial seawater (ASW) (1 L/animal), 35 ppt, at 16 ± 1 ◦C for 24 h.

Hemolymph samples were extracted from the adductor muscle of the animals using
a syringe, filtered with gauze, and pooled. Hemocyte monolayers were obtained as
previously described [28]. Hemolymph serum (HS, i.e., hemolymph free of cells) was
obtained by centrifugation of whole hemolymph samples at 900× g for 10 min and filtration
of the supernatant through 0.22 µm filters [29].

2.3. In Vitro and In Vivo Exposure Conditions

All procedures for in vitro experiments were performed as previously described [26,28,29].
For each independent experiment (n = 4), the hemolymphs were sampled and pooled
from 4–5 animals. Briefly, hemocyte monolayers or aliquots of the whole hemolymph,
depending on the endpoint measured, were incubated at 16 ◦C with different types of NPs
suspended in ASW or HS solution at different concentrations (10, 50, 100 µg/mL) for 30 or
60 min (according to the parameters of interest). Untreated samples were run in parallel in
both media.

For in vivo assay, mussels (4 groups of 12–15 mussels each, n = 4) were exposed
24 h to different NPs at the concentration of 10 or 50 µg/L, as previously described [25].
In these conditions, NPs have been shown to rapidly affect immune parameters in vivo.
Stock suspensions of PS-NPs in MQ water (1 mg/mL) were vortexed and immediately
spiked in the tanks in order to reach the desired concentrations. A group of control
(untreated) mussels was kept in clean ASW. Animals were not fed during the experiments.
No mortality was observed in different experimental conditions. At the end of exposure,
the hemolymphs were extracted, and the samples were processed as for in vitro assays.

2.4. Functional Immune Parameters

Hemocyte functional parameters (lysosomal membrane stability, phagocytosis, ex-
tracellular ROS production, and lysosomal enzyme release) were evaluated as previously
described [26,29]. Lysosomal membrane stability (LMS) was evaluated by the NRRT (Neu-
tral Red Retention time) assay in hemocyte monolayers incubated with a neutral red (NR)
solution (final concentration 40 µg/mL) for 15 min and washed with ASW. Samples were
examined under an optical microscope every 15 min until 50% of the cells showed signs of
lysosomal leaking. The results are reported as percent NRRT with respect to controls.

Phagocytosis was evaluated by the uptake of neutral red-stained zymosan on hemo-
cyte monolayers. Samples were incubated with neutral red-stained zymosan in 0.05 M
TrisHCl buffer (TBS) for 1 h. Then, monolayers were washed three times with ASW, fixed
with Baker’s formol calcium, and mounted in Kaiser’s glycerol gelatine medium for mi-
croscopical examination with a fluorescent microscope. For each slide, the percentage of
phagocytic hemocytes was calculated from a minimum of 200 cells in triplicate.

The extracellular production of Reactive Oxygen Species (ROS) by hemocytes was
measured by the reduction of cytochrome c. Aliquots of whole hemolymph (in triplicates)
were incubated with 500 µL of cytochrome c solution (75 mM ferricytochrome c in TBS
buffer). Samples were read for absorbance at 550 nm.

Lysozyme activity in HS samples from in vivo experiments was determined spec-
trophotometrically at 450 nm utilizing Micrococcus lysodeikticus.

Data on ROS production and lysozyme activity were corrected for total protein content,
evaluated by the Bradford method using bovine serum albumin (BSA) as a standard, and
expressed as percent of controls.
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2.5. Isolation of PS100-S–Protein Complexes and Characterization of NP-Protein Corona by
Nano-HPLC-ESI-MS/MS

All procedures for the isolation and characterization of the PS100-S–protein complex
with Mytilus hemolymph serum were performed as previously reported for PS50-B [29,30]
and details are reported in SI. Briefly, HS serum obtained from 100 mussels was dialyzed
to remove excess NaCl and subsequently lyophilized. PS100-S were incubated with con-
centrated (10×) HS at the nominal concentration of 25 µg NP/mg protein/mL for 24 h at
18 ◦C under gentle shaking. After incubation, particle protein complexes were obtained
by centrifugal isolation (see SI). After different washing steps, the pellet containing the
hard corona (HC) proteins was resuspended in 0.1 mL ASW, and protein content was
evaluated. Proteins were separated by 10% SDS/PAGE. Samples of PS100-S suspensions in
ASW (25 mg/mL) and of the HC pellet resuspended in ASW at the same concentration
were observed by FESEM (see SI).

2.6. Larval Toxicity Assay

Mussels sampled at the main spawning season (February 2021) were transferred to the
laboratory and acclimatized in static tanks containing aerated artificial seawater [31], pH
7.9–8.1, 35 ppt salinity (1 L/animal), at 16 ± 1 ◦C. Mussels were utilized within 2 days for
gamete collection as previously described [32]. At the beginning of spontaneous spawning,
each individual was immediately placed in a 250 mL beaker containing 200 mL of aerated
ASW until complete gamete emission. Then, mussels were removed from beakers, and
sperms and eggs were sieved through 50 µm and 100 µm meshes, respectively. Egg quality
(shape, size) and sperm motility were checked using an inverted microscope. Eggs were
fertilized with an egg/sperm ratio of 1:10 in polystyrene 96-microwell plates (Costar,
Corning Incorporate, Corning, NY, USA). After 30 min, fertilization success (n. fertilized
eggs/n. total eggs × 100) was verified by microscopical observation (>85%).

Aliquots of 20 µL of 10x PS-NP suspensions in filter-sterilized ASW were added to
fertilized eggs in each microwell to reach the nominal final concentrations (0–1000 µg/L)
in a 200 µL volume [24]. Microplates were gently stirred for 1 min and then incubated
at 18 ± 1 ◦C for 48 h, with a 16:8 h light/dark photoperiod. At the end of the incubation
time, samples were fixed with buffered formalin (4%). The recorded endpoint was the
percentage of normal D-larvae in each well with respect to the total, including malformed
larvae and pre-D stages, with an acceptability of test results based on a percentage of
normal D-shell stage larvae >75% in controls [31]. Four experiments were made using
6 replicate wells per condition. All larvae in each well (about 50 larvae per well) were
examined by optical microscopy using an inverted Olympus IX53 microscope (Olympus,
Milano, Italy) at 400× equipped with a CCD UC30 camera and a digital image acquisition
software (cellSens Entry).

2.7. Larval Shell Formation

The deposition of larval shell components at 24 and 48 h post fertilization (pf) was
visualized by Calcofluor White Fluorescent Brightener 28 (Sigma Aldrich, Lyon, France)
for organic matrix and by Calcein (Sigma Aldrich, Lyon, France) for CaCO3 deposition, re-
spectively, as previously described [33,34]. Larvae were imaged with a Leica SP8 Confocal
Laser Scanning Microscope (CLSM-Leica, Rueil-Malmaison, France) scanning sequentially
Brightfield, Calcofluor, and Calcein signals with a 0.5 µm Z-stack interval. Channels were
merged and 3D rendered and rotated to measure the area (in µm2) of each shell component
in a single valva of each larva by manual drawing using IMAGEJ software (Wayne Ras-
band, Bethesda, MA, USA) [33,34]. Analyses were performed on larvae obtained from 4
independent parental pairs (at least 15 individuals for each parental pair and experimental
condition). Data were normalized with respect to controls for each parental pair and
experimental conditions of exposure.
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2.8. Statistics

Data are the mean ± SD of 4 independent experiments (n = 4), with each assay
performed in triplicate. Data were analyzed by non-parametric Kruskal–Wallis followed
by Dunn’s multiple comparisons test (* p ≤ 0.05) and data on the area of the organic matrix
of larvae were analyzed by Mann–Whitney U test (* p ≤ 0.05). All statistical calculations
were performed using the GraphPad Prism version 7.03 for Windows, GraphPad Software,
San Diego, CA, USA.

3. Results
3.1. Particle Characterization

Data on the characterization of all PS-NH2 are reported in Figure 1. SEM images
showed a general homogenous size for primary particles PS50-B, PS100-B, and PS50-S,
whereas PS100-S included also particles of smaller dimensions (Figure 1A,B).
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With regard to particle behavior in different media, none of the PS-NPs showed
agglomeration in MQ. However, both PS-NH2 from Sigma generally showed a higher PDI
than Bangs’. In MQ, all particles showed a highly positive zeta potential (from about +42
to +50 mV), except for PS50-S (+4.2 mV). In ASW, both PS50-B and PS50-S formed small
agglomerates (≈200 nm) and showed a similar zeta potential (about +14 mV). For larger
particles, agglomeration was observed, in particular for PS100-B (1858 ± 82 nm); all particles
retained a positive charge; however, values were lower than those observed in MQ, in
particular for PS100-B. In mussel biological fluid, HS, a distinct behavior was observed for
different PS-NPs. HS did not significantly affect the behavior of PS50-B with respect to
ASW. In contrast, PS50-S showed a smaller agglomeration in HS than in ASW; what is more,
an inversion of the zeta potential was observed (−5 mV). The decrease in agglomeration
in HS with respect to ASW was more evident for larger particles, in particular for PS100-B.
Moreover, in these conditions, both PS100-S and PS100-B showed an inversion of the zeta
potential (−14.1 and −10.6 mV, respectively). Finally, in both ASW and HS, higher PDI
values than in MQ were observed for all particles, indicating the higher instability of the
suspensions in high ionic strength media.
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3.2. In Vitro Effects on Mussel Hemocytes

The short term in vitro effects of PS50-B and PS100-B in ASW and HS on mussel
hemocytes were evaluated, and the data obtained for LMS and phagocytosis are reported in
Figure 2. The effects on LMS were concentration dependent for both particles (Figure 2A,C).
For PS50-B, significantly stronger effects were observed in the presence of HS. PS100-B was
ineffective at the lowest concentration tested, showing significant effects in both media
only at 100 µg/mL, which were slightly higher in HS. The hemocyte phagocytic activity
was significantly reduced by exposure to PS50-B from 10 µg/mL in both media (about
−40% with respect to controls) (Figure 2B), whereas it was scarcely affected by PS100-B,
with significant effects only at 100 µg/mL and in the presence of HS (−20% with respect
to controls) (Figure 2D).
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either ASW (artificial seawater) or HS (hemolymph serum). Hemocytes were exposed for 30 min
to different concentrations of NPs 10, 50, and 100 µg/mL. PS50-B: Lysosomal Membrane Stability
(A); Phagocytic activity (B) PS100-B: Lysosomal Membrane Stability (C); Phagocytic activity (D).
Data are expressed as percent of control. Statistical analyses were performed by non-parametric
Kruskal–Wallis followed by the Dunn’s multiple comparisons test (p < 0.05). * All treatments vs.
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Data obtained with PS50-S and PS100-S are presented in Figure 3. Particles of both sizes
induced a significant decrease in LMS only from 50 µg/mL. At the highest concentration
tested (100 µg/mL), PS50-S induced a stronger decrease (−66% with respect to control) in
comparison to PS100-S (−40%) (Figure 3A,C). Moreover, for both PS-NH2, similar effects
were observed in different media. The phagocytic activity was unaffected by either PS-NP
at all the concentrations tested in ASW and HS (Figure 3B,D).
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3.3. Isolation and Characterization of PS100-S Protein Complexes in Hemolymph Serum

Suspensions of PS100-S in HS were subjected to a basic protocol (centrifugation, 1D gel
electrophoresis, MS) previously utilized to isolate the protein corona formed with PS50-B
in mussel hemolymph [29,30]. A representative gel is reported in Figure S1, showing
in the sample of hard corona proteins (HC) the presence of a main protein band of the
apparent MW of about 20 kDa. This band was cut from the gel, trypsin digested, and
analyzed by nano-HPLC-ESI-MS/MS [29,30]. The results allowed specifically identifying
the main PS100-S–corona protein as the Putative C1q domain containing protein MgC1q44
of M. galloprovincialis (F0V481), with a MW of 23.6 kDa and high confidence peptides
corresponding to a sequence coverage of 75.23%. Details on all the identified peptides
(nine in total) related to the MgC1q44 protein are reported in Table S1.

Samples obtained by the centrifugation procedure with PS100-S containing the protein–
corona complexes were observed by FESEM in comparison with samples of PS100-S sus-
pensions in ASW, and representative images are reported in Figure S2. As shown in
Figure S2A, samples in ASW formed small agglomerates, confirming data from DLS analy-
sis. In samples containing PS100-S–corona complexes, individual particles were embedded
in an amorphous material (Figure S2B,C).

3.4. In Vivo Experiments: Effects on Immune Parameters

The effects of in vivo exposure of adult mussels to PS50-B and PS100-B (10 µg/L, 24 h)
on hemolymph functional parameters are reported in Figure 4. The results show that
PS50-B induced significant decreases in hemocyte LMS and ROS production (Figure 4A,C),
(−45% and −20% vs. controls, respectively). A small although not significant decrease
in phagocytosis was observed (Figure 4B). Soluble lysozyme activity was significantly
increased (+90% than controls) (Figure 4D). In contrast, PS100-B was ineffective on all
parameters tested.
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On the basis of the results obtained in vitro, indicating that PS-NH2 from Sigma were
less effective than those from Bangs’, in vivo exposure of mussels was carried out at two
concentrations (10 and 50 µg/L), and the results are reported in Figure 5. PS50-S, at the
lowest concentration tested, significantly decreased LMS (−50% with respect to controls)
and increased lysozyme activity (+36%), with effects similar to those recorded with PS50-B
(Figure 5A,D), whereas no effects were observed at 50 µg/L. Phagocytosis was unaffected
by either concentration (Figure 5B). A reduction in ROS production, albeit not significant,
was observed at both concentrations (Figure 5C).
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PS100-S did not affect hemocyte LMS and phagocytosis at either concentration
(Figure 5A,B). However, significant increases in extracellular ROS production and lysozyme
activity were observed at 50 µg/L (+52% and +37% vs. controls, respectively) (Figure 5C,D).

3.5. In Vivo Experiments: Effects on Early Larval Development

The effects of PS50-S and PS100-S in a wide concentration range (from 0.001 to 1000 µg/L)
were evaluated on early larval development in the 48 h embryotoxicity assay, as previously
described for PS50-B [24]. The results, reporting the percentage of normally developed
D-veligers at 48 hpf, are shown in Figure 6. PS50-B induced a concentration-dependent
decrease in normal larval development that was significant from 10 µg/L, whereas PS100-S
was ineffective. Exposure to PS50 essentially resulted in malformations of D-larvae.

The effects on larval development were further investigated from earlier stages, 24 hpf,
when the processes of shell biogenesis begins [33], utilizing a single concentration of PS50-S
(150 µg/L) chosen of the basis of previous studies carried out with PS50-B [24]. Deposition
of the shell organic matrix and CaCO3 was evaluated by Calcofluor/Calcein staining and
confocal microscopy. As shown in Figure 7, at 24 hpf, the larva (trocophora) is characterized
by a ciliated epithelium and active movement (Figure 7A). In PS50-S exposed larvae, particle
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agglomerates around the cilia were observed, leading to apparent impairment of ciliary
beating and swimming activity (Figure 7B).
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in the 48 h embryotoxicity assay. Fertilized eggs were exposed to different concentrations of NPs
in ASW (0.001–1000 µg/L). Data, reporting the percentage of normal D-shaped larvae, represent
the mean ± SD of four experiments carried out in 96-multiwell plates (six replicate wells for each
sample). Statistical analyses were performed by non-parametric Kruskal–Wallis followed by the
Dunn’s multiple comparisons test (* p < 0.05).
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Figure 7. Effects of PS50-S on shell formation of M. galloprovincialis larvae at 24 (A–D) and 48 hpf (E,F) evaluated by
Calcofluor/Calcein staining and confocal microscopy. Fertilized eggs were exposed to 150 µg/L PS50-S in ASW. 24 hpf: light
microscopy images of Control (A) and NP-exposed larvae (B); calcofluor staining (blue) of the organic matrix the growing
shell of Control (C) and NP-exposed larvae (D). In (E), the effect on PS50-S on the area of the organic matrix is reported
(percent values with respect to control). 48 hpf: Calcein staining (green) of calcified shell. Control larvae show extensive
calcification with shell accretion rings (F); PS50-S exposure results in irregular calcification and shell malformations (G–I).
Scale bar: 20 µm. Statistical analyses were performed by Mann–Whitney U test (* p < 0.05).
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At 24 hpf, in control larvae, the growing shell is represented by the saddle-shaped
shell field occupied by the organic matrix (blue) (Figure 7C). In PS50-S-exposed samples, a
significant decrease in the area of the organic matrix was observed (Figure 7D) (−23% with
respect to controls, p < 0.05) (Figure 7E). It is worth noting that the Calcofluor signal was
absent in about 30% of the larvae, indicating the absence of organic matrix deposition.

Shell calcification was evaluated at 48 hpf by Calcein staining (for CaCO3 deposition,
green). Control shells show extensive calcification characterized by regular accretion rings
(Figure 7F). Following exposure to PS50-S, larval malformations were associated with
altered shell calcification patterns (Figure 7G–I).

4. Discussion

The results obtained in this work represent the first data on the comparison of different
types and sources of commercial PS-NPs and their biological responses in a marine inverte-
brate. The results indicate that the effects were dependent on the behavior of particles of
different sizes and from different sources in different exposure media. These data extend
previous observations on the biological interactions of PS-NPs in the model marine bivalve
M. galloprovincialis and provide evidence for the effects of exposure in different in vitro and
in vivo settings, from the molecular to the organism level.

Although few studies utilized homemade NPs (e.g., crushed from existing nanospheres
or larger plastics debris) [35,36], most data on the effects of NPs marine invertebrates have
been obtained utilizing commercial PS-NPs of different sizes and surface characteristics,
which were obtained from different companies, mainly from Polyscience, Inc. [12,37–39]
and Bangs Laboratories Inc. [12,29,40–42]. Different particle behavior and properties were
often observed in different media (changes in agglomeration state or surface charge).
These variables are likely to strongly affect the biological responses observed and therefore
comparisons among different studies.

To address this issue, in the present work, we compared PS-NH2 s of two different
sizes (50 and 100 nm) and purchased by two different manufacturers. The results underline
that PS-NPs of different sizes and sources have a distinct behavior in different media.
Larger particles generally showed stronger agglomeration that was however distinct in
ASW and HS, depending on the particle source, with less agglomeration of PS100-S than
PS100-B. With regard to the surface charge, PS100-B and both PS-NH2 from Sigma showed
an inversion of zeta potential in mussel HS. This was not unexpected, since changes in zeta
potential were previously reported for PS100-S in buffer (becoming negative), while PS50-S
remained positively charged [43]. Our data further underline the importance of distinct
particle behavior in different media, and in particular in biological fluids of different species,
that must be taken into account when comparing the biological effects observed in different
experimental systems.

The effects of PS-NH2 were first evaluated on mussel hemocytes in short term in vitro
tests, where the main biomarkers of cellular stress and immune function (LMS and phago-
cytosis) were evaluated. PS50-B clearly induced strong effects in both ASW and mussel HS,
with a concentration-dependent disruption of LMS and a large reduction in phagocytic
activity. The results are in line with the observed behavior of these NPs in both media,
which was characterized by the small agglomeration and maintenance of positive zeta
potential. Moreover, they confirm previous data obtained in Mytilus hemocytes, indicating
functional cellular damage from low concentrations (5 µg/mL) accompanied by gross
changes in cell morphology [26,28,29]. Interestingly, PS100-B induced less adverse effects
on LMS and phagocytosis in both media; this could be due to the distinct behavior of larger
particles, which was characterized by strong agglomeration in ASW and inversion of the
zeta potential in HS, respectively.

The same trend was observed for PS-NH2 from Sigma on LMS, with PS50-S being
slightly more effective than PS100-S. However, neither particle affected the phagocytic
activity of hemocytes. In HS, the lack of responses may be partly related to the inversion of
the zeta potential of both PS-NH2. Negatively charged NPs are generally considered less
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toxic than cationic particles in both mammalian cells and marine models [23,44]. However,
in ASW, no significant differences in behavior were observed for Sigma PS-NH2 with
respect to Bangs’ that could justify the smaller effects observed.

Overall, due to the large variability in particle behavior in different media, no generali-
ties can be drawn on their effects on mussel cells, depending on the type of PS-NPs utilized
and experimental factors. In the present work, we observed an important difference in
surface charge and behavior among different PS-NPs in HS. However, only PS50-B induced
stronger effects in HS than in ASW.

Researchers have now widely accepted the importance of understanding how, once
within the organism, nanoparticles interact at the molecular level with cells in a phys-
iological environment. Different types of particles associate with soluble components
of biological fluids organized into a ‘protein corona’, which confers a biological identity
to nanoparticles and affects their interactions with target cells [45]. We have previously
investigated the protein coronas formed with different types of nanoparticles in M. gal-
loprovincialis HS [30]. The results indicated that the formation of a biomolecular corona
is particle-specific and that the net surface charge retained by different nanoparticles in
mussel biological fluids, characterized by high ionic strength, rather than size or core com-
position, might be an important factor in the formation of a stable protein corona [30]. In
particular, using PS50-B, the results identified the PutativeC1q domain containing protein
(MgC1q6) as the only component of the hard protein corona formed by this type of PS-NP
in HS. This protein is characterized by its affinity for cations, which is in line with the
positive surface charge retained by PS50-B in HS [24,30]. The specific association with this
immune-related protein may be responsible for the strong effects of PS50-B observed in
mussel hemocytes.

In order to further investigate the nano-bio-interactions of PS-NPs in mussel biological
fluids, we evaluated the possible formation of PS100-S–protein corona in HS, utilizing the
same procedure previously described. PS100-S was chosen, since it showed the smaller
effects on mussel hemocytes, and a peculiar behavior in HS, which was characterized by
the absence of agglomeration and inversion of the zeta potential. This suggests strong
interactions with soluble hemolymph components that may reduce the potential adverse
effects of this type of NP on hemocytes. The results identified the MgC1q44 as the main
hemolymph serum protein stably associated with PS100-S. This protein, although belonging
to the wide group of MgC1q complement proteins of M. galloprovincialis [46], when searched
in the UNIPROT database did not show any sequence identity with MgC1q6 or other
proteins of M. galloprovincialis and only a 50% identity with MCOR_19868 of M. coruscus.
Although at present, the physiological function of this protein is unknown, it may be
responsible for the characteristic behavior of PS100-S in HS. The distinct composition of the
protein corona formed with PS50-B and P100-S further support the specificity of nano-bio-
interactions occurring in mussel physiological medium, resulting in a distinct outcome of
the biological response.

The effects of PS-NH2 were also investigated at the whole organism level, evaluating
different functional immune responses after short in vivo exposure of adult mussels (24 h).
In these conditions, NPs have been shown to induce changes in immune parameters [25,47].
Experiments were initially run with PS-NH2 from Bangs at 10 µg/L, which is in line
with previous works performed with PS50-B [25,47]. As in in vitro experiments, PS50-B
induced significant effects on LMS, ROS production, and lysozyme activity, whereas PS100-
B was ineffective. This absence of effects could be related to the strong agglomeration
observed in ASW, which may limit the uptake of these particles and consequent transfer to
the hemolymph.

For in vivo exposure to PS50-S and PS100-S, which showed smaller effects in in vitro
experiments, a higher concentration (50 µg/L) was also tested. Even though PS50-S was
less effective than PS50-B at the same concentration of 10 µg/L, LMS and lysozyme activity
were significantly affected. In contrast, PS100-S induced extracellular ROS and lysozyme
release only at higher concentrations; it was also more effective than PS100-B, which was
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probably due to its small agglomeration in ASW and consequent higher uptake. Overall,
the results obtained in vivo strongly support the link between the differences in the be-
havior of different PS-NH2 in ASW, according to their size and source, and the biological
effects observed.

Previous data showed that PS50-B affected early larval development; the effects were
partly ascribed to dysregulation of the transcription of genes involved in early shell for-
mation [24]. Here, we investigated the effects of PS-NPs from Sigma: the results indicate
that PS50-S affected the development of 48 hpf larvae from 10 µg/L. Although at higher
concentrations, the effects were smaller than those previously observed with PS50-B, here,
we show that PS50-S (150 µg/L) significantly affected the mechanisms involved in shell
biogenesis. PS50-S decreased the deposition of the organic shell matrix from 24 hpf and of
calcification at 48 hpf, resulting in altered larval phenotypes. In contrast, PS100-S did not
affect larval development at any concentration tested. Similar results were obtained with
PS100-B (Balbi, unpublished observations). Taken together, the results further support the
hypothesis that in mussels, early larval development can represent a sensitive target for
certain types of PS-NPs. In oysters, 50 and 100 nm PS-NPs from different sources induced
a decrease in fertilization rate [48], and agglomerates were attached to the sperm and the
jelly coating of eggs, impairing their mobility and fertilization success [49]. However, the
effects were observed at much higher concentrations (mg/L) than those utilized in the
present study (µg/L).

5. Conclusions

Overall, the results add information on the nano-bio-interactions occurring between
NPs and possible target species [19–21] in the marine environment. Moreover, our data
underline that care must be taken in comparing and interpreting the results obtained on the
effects of different types of commercial NPs for the same polymer. As to the environmental
relevance of the result obtained, as already underlined in the introduction, the experimental
approach utilized in the present study has obvious limitations in terms of types of NPs
used, due to the absence of environmental NP samples for toxicity testing; however, at
present, this applies to most available studies on the biological impact of NPs. With regard
to exposure conditions, predicted environmental concentrations are estimated from 1 pg to
15 µg/L for ≈50 nm plastic particles [50], and concentrations up to 15 µg/L in seawater
have been considered environmentally realistic for studies on marine bivalves [51]. The
results here obtained in in vivo experiments indicate that with 50 nm NPs, significant effects
on both immune parameters and larval development could be observed from 10 µg/L,
therefore at environmentally relevant concentrations. Further studies are needed utilizing
non-homogeneous nanoplastics such as those obtained from weathering or fragmentation
of larger plastic debris, fibres, and from different polymers.
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10.3390/nano11123291/s1, Figure S1: Representative gel of the separation of the PS100-S protein
complexes from HS of M. galloprovincialis proteins by SDS-PAGE and staining with Coomassie
Brilliant Blue. Table S1. Identification on HC peptides by Nano-HPLC-ESI-MS/MS. Figure S2:
FESEM analysis of PS100-S suspensions I ASW an HS.
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