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Cerebral artery stenosis is currently diagnosed by transcranial Doppler (TCD), computed tomographic angiography (CTA), or
magnetic resonance angiography (MRA). CTA exposes a patient to radiation, while CTA and MRA are invasive and side effects
were related to contrast medium use. This study aims to provide a technique that can simply discriminate between people with
normal blood vessels and those with cerebral artery stenosis using photoplethysmography (PPG), which is noninvasive and
inexpensive. Moreover, the measurement takes only 120 seconds and is conducted on the fingers. The technique projects the
light of a specific wavelength and analyzes the pulse waves which are generated when the blood passes through the blood vessels
according to one’s heartbeat using the transmitted light. Normalization was performed after dividing the extracted pulse
waveform into windows, and maximum positive and negative amplitudes (MPA, MNA) were extracted from the detected pulse
waves as features. The extracted features were used to identify normal subjects and those with cerebral artery stenosis using a
linear discriminant analysis. The study results showed that the recognition rate using MPA was 92.2%, MNA was 90.6%, and
combined MPA+MNA was 90.6%. The technique proposed is expected to detect early stage asymptomatic cerebral artery
stenosis and help prevent ischemic stroke.

1. Introduction

Photoplethysmography (PPG) is a technology that presents
the pulse wave generated by the blood passing through the
blood vessels along with the heartbeat and is measured by
extracting the transmitted light after projecting the light
of a specific wavelength. The measurement of a biosignal
using PPG is noninvasive, and it is possible to measure
various signals including respiration, heart rate, vasomotor
activity, and saturation by pulse oximetry (SPO2) using
just one probe [1–4]. PPG can be used to evaluate athero-
sclerosis [5, 6], arterial stenosis [7–10], arterial properties
[2, 11–13], hypertension [10, 12], diabetes mellitus [14],

and cardiovascular risk factors [15]. PPG has been widely
used to study cardiovascular function. PPG is a very effec-
tive method measuring the blood volume of each heartbeat
in the body using the characteristics of the light. It enables
the measurement of the subtle changes in blood volume of
the arterioles and capillary vessels in the tissue along the
systole-diastole cycle of the heart by using the changes in
the transmittance of light even when the absorbance of a
material is unknown.

Cardiovascular function is closely related to the brain, the
top-level organ regulating all the body’s functions. The brain
requires high energy to maintain its vigorous metabolism,
and energy is delivered to the brain by the blood. The blood
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is then delivered to every area of the body through the blood
vessels. Ischemic stroke (cerebral infarction) indicates a cere-
brovascular disease induced by energy depletion in the brain
due to the insufficient blood supply to the brain caused by the
abnormal blood vessel to the brain that damages the brain
tissues and causes abnormal brain function. Cerebral artery
stenosis may induce hemodynamic disturbance in the flow
of the blood to the brain that can create blood clots in the
narrowed blood vessel. Therefore, it is an important risk fac-
tor causing ischemic stroke.

The cerebral artery is divided into large arteries (e.g.,
cerebral artery) and small perforating arteries that diverge
from the large artery. The carotid and vertebral arteries are
important large arteries that supply blood to the brain from
the aorta. Since stenosis slowly progresses in the large arter-
ies, the cerebral artery does not show any symptoms until
the blood vessel is occluded. When the blood vessel is
completely occluded due to stenosis, blood is not supplied
to brain parenchyma. Consequently, cell death occurs due
to ischemia and symptoms associated with the necrosis of
these cells and tissues occur. Ischemic stroke indicates these
phenomena. Since necrotic brain cells do not regenerate,
most people who experience ischemic stroke suffer perma-
nent disability. Therefore, it is very important to prevent
ischemic stroke and identify its curable risk factors such as
cerebral artery stenosis.

Magnetic resonance angiography (MRA), computed
tomographic angiography (CTA), carotid ultrasonography
(CUS), and transcranial Doppler (TCD) are representative
methods used to confirm cerebral artery stenosis. However,
the majority of cases of cerebral artery stenosis are asymp-
tomatic, as stated above, so it is recommended that preventa-
tive measures should be taken via periodic examinations.
Most of the stated tests are expensive and have a risk of side
effects due to the use of contrast medium. In addition, CUS
can detect carotid artery stenosis at the neck and TCD has
a poor temporal window because it cannot visualize the area
when the temporal bone is too thick.

The objective of this cardiovascular function study was
to evaluate the correlation between cerebral artery stenosis
and the PPG signal reflecting the characteristics of micro-
vessels in the tissues according to the cardiac contraction
and relaxation cycle. If there is a correlation between the
PPG signal and cerebral artery stenosis, it is expected that
we can periodically screen for the presence of cerebral
artery stenosis using a noninvasive, side-effect-free, and
inexpensive technology instead of the known invasive and
expensive methods. In addition, the advantage of PPG
screening is that it can simultaneously check for stenosis
of the intracranial artery and the carotid artery rather than
that of limited blood vessels. People can easily notice that a
more thorough blood vessel test is necessary when abnor-
malities are observed in the screening test. Moreover, if
the location and degree of cerebral artery stenosis are found
on a thorough medical examination, the stenosis can be
treated by using drug therapy in the early stage and managed
systematically by exercise. The results of this study will help
clinicians control the occurrence of ischemic stroke, which
burdens society.

2. Material and Methods

The PPG waveform amplitude was used to extract the char-
acteristics of cerebral artery stenosis between the neck and
the brain. Previous results showed that the PPG pulse wave
amplitude was proportionate to the vessel distensibility
under highly variable heartbeat conditions [16]. Data collec-
tion and preprocessing were conducted as a preparation step
to extract the PPG waveform amplitude’s characteristics.
After preprocessing, the amplitude was transformed as a nor-
malized pulse wave to compare the subjects’ amplitudes. The
characteristics of the amplitudes were extracted from the
normalized pulse waves. The extracted features were ana-
lyzed using a linear discriminant analysis method and used
to differentiate normal people from patients with cerebral
artery stenosis. A schematic diagram of the proposed tech-
nique is shown in Figure 1.

2.1. Data Collection. In recent years, MRA has been increas-
ingly used as a noninvasive imaging method for evaluating
intracranial cerebral artery atherosclerosis [17], intracranial
cerebral artery stenosis [18], internal carotid artery (ICA) ste-
nosis, or middle cerebral artery (MCA) stenosis [19–21]. Ste-
nosis of the cerebral artery on MRA is frequently observed in
the ICA and MCA [18–21]. Therefore, the detection of cere-
bral artery stenosis within ICA or MCA appears greatly
accomplished via a noninvasive method such as MRA.

Our study subjects were divided into a treatment
group and a control group. The treatment group included
outpatients with cerebral artery stenosis or ischemic stroke
detected on brain MRA who consented to participate in
the study. The control group included patients without
cerebral artery stenosis who consented to participate in
the study. The medical records and brain MRA scans were
reviewed and determined by H.G.K (a neurologist). A total
of 64 research subjects were included: 32 in the treatment
group and 32 in the control group. The study subjects
received an explanation of the PPG test method, provided
written consent, and underwent PPG measuring. This
study was conducted after receiving approval from the
Chosun University Hospital Medical Ethics Review Com-
mittee (CHOSUN 2016-06-017).

Blood oxygen saturation measurement sensors were con-
nected to an INNO-MEDU 100, a biological signal measure-
ment system development kit based onmedical grade sensors
(INNOTEMS Co. Ltd., Korea). PPG probes were mounted
on the index fingers of a study subject in a seated position.
The pulse wave was measured for 2 minutes, and data were
stored in a PC wirelessly. The PPG measures the pulse wave
using the differences in light attenuation in the blood using
the photodetector detecting the decay of transmitted light
irradiated from a light-emitting diode light to the capillary
vessel in an index finger. Figures 2(a) and 2(b) show screen-
shots of the measurement instrument and the PPG measure-
ment software used in this study.

2.2. Preprocessing. It is necessary to resample a certain num-
ber of waveform data within a set timeframe to compare the
magnitude of the subjects’ waveform amplitudes measured
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by the PPG pulse wave. The resampling of this study was
conducted by extracting 66,000 data points during 1 min-
ute (60 seconds) from the initial waveform data points
(1,200,000) extracted at a 1KHz sampling rate during 2
minutes (Figure 3(a)). After resampling in 66,000 data
points, the resampled data size reduced to 449KB from the
initial waveform data size 10.3MB. The reduced data size
provides great advantages for fast processing time and a small
memory size. The resampling data were designed to facilitate
the extraction of the heart rate within the waveform. The
extracted resampling data have an overlapped wave pattern
in a single heartbeat (Figure 3(b)).

Therefore, the second step of the resampling procedure
should be conducted to remove it and produce the optimized
sample pulse wave (Figure 3(c)). The optimization sampling
was used to design the sampling interval to make the pulse
wave include mean heart rate per minute. In this study, sam-
pling was conducted at 23 intervals. Figure 4 shows the pulse
waves extracted from the control and treatment groups after
the optimization sampling. The results revealed that the
amplitude of the normal subject (Figure 4(a)) was larger than
that of the patient with cerebral artery stenosis (Figure 4(b)).

2.3. Feature Extraction. Multiple optimally sampled pulse
waves were normalized to reduce the changes in the pulse
wave signals that showed variations. Pulse wave normaliza-
tion was conducted as follows:

w = sqrt 〠
N

j=1
Yij

2 ,

Y∗
i =

Yi

w

1

Y = Yi
N
i=1 can be calculated where Y is the total number

of measurements obtained from the subject and N is the

number of subjects. Moreover, the pulse waves obtained from
the same subject can be expressed as Yi = Yij

Ni

j=1 Pulse

wave (Yij) indicates the jth pulse wave of the ith subject.
The normalized pulse wave of each subject was divided

into multiple windows, and a representative pulse wave
amplitude was calculated for the pulse wave of each win-
dow. The advantage of dividing the whole section into
windows is the possible extraction of representative feature
values from each similar pulse wave section in a continu-
ous time scale. Moreover, it makes it possible to easily
compare the magnitudes of the amplitudes between subjects
in the same window. Two feature values were extracted for
each window (i.e., maximum positive amplitude [MPA]
and maximum negative amplitude [MNA]). MPA indi-
cated the largest positive amplitude, and MNA indicated
the largest negative amplitude in each window. Conse-
quently, 120 features were extracted from 60 windows
for each subject.

2.4. Identification. Normal subjects and those with cerebral
artery stenosis were classified using a linear discriminant
analysis (LDA) algorithm [22] based on the extracted
MPA and MNA feature values. LDA is a method that uses
a linear classifier and dimensionality reduction by map-
ping data along the main axis to maximize the class sepa-
ration in a specific space. It can be used as a classifier
when it is applied to previously extracted features. The
basic principle of the LDA algorithm is to reduce the
dimension of a feature vector for data by maximizing the
ratio of inter- and intraclass scatter. Electrocardiography
and oscillometric arterial blood pressure measurements
were used to identify individuals using features of the
heartbeats [23, 24]. These studies reported that the LDA
technique is a successful classifier for the amplitude fea-
tures of the heart rate. It was believed that the amplitude

PPG probe

Sensing blood volume pulsations

Extracting heartbeat pulse wave

Heartbeat normalization Segmentation into windows

Linear discriminant analysis

Identification

Extraction of maximum positive
amplitude (MPA)

Extraction of maximum negative
amplitude (MNA)

DB

Figure 1: Flow diagram of the proposed screening method.
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features extracted from the capillary blood vessels from the
proposed PPG would be similar to the amplitude features
of previous studies. Consequently, this study used the LDA
algorithm to optimally classify normal subjects and those
with cerebral artery stenosis using the MPA and MNA
features extracted from each window.

When N =∑c
i=1Ci of the study subjects exists, C repre-

sents the classes to be classified and N is the number of
PPG samples extracted from all subjects. This study classified
the PPG samples of the 64 subjects into two groups. When a
learning group is considered Y = Y∗

i
C
i=1, each class is com-

posed of Y∗
i = Y∗

ij
Ci

j=1
in the C class, where Y∗

ij indicates the

(a)

(b)

Figure 2: (a) Measurement device. (b) Screenshot of the photoplethysmography (PPG) measurement software.
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features extracted from the PPG. SWT and SBT represent
intra- and interclass scatter, respectively, as follows:

SWT =
1
N
〠
c

i=1
〠
ci

j=1
Y∗
ij − μi Y∗

ij − μi
T
,

SBT =
1
N
〠
c

i=1
μi − μ μi − μ T

2

C represents the number of classes, and ci indicates the
feature values in class i. The symbols μi, μ, and Y∗

ij represent

the mean of class i, the mean of all classes, and the jth feature
value of class i, respectively. LDA finds a set of feature basis
vectors described by ψ that maximizes the ratio between
SWT and SBT of the training sample set [22] as follows:

ψ = arg max
ψTSBTψ

ψTSWTψ
3

When SWT is nonsingular, the basis vectors ψ in (3) cor-
respond to the first M ≤N eigenvectors with the largest
eigenvalues of S−1WTSBT The feature representation based on
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Figure 3: (a) Original PPG signal acquired from the measurement device. (b) Resampled PPG signal. (c) Optimized PPG signal.
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the LDA is produced by projecting input features Y∗ onto the
subspace spanned by the M eigenvectors X = ψTY∗

3. Results

The classification results of the control group and treatment
group were determined using the first eigenvector of the
LDA algorithm and the MPA and MNA feature values. The
MPA and MNA data extracted from both index fingers of
the 64 study subjects were studied: 32 subjects in the control
group (mean age, 59.8± 14.6 years) and 32 subjects in the
treatment group (mean age, 62.7± 11.2 years). The feature
values of MPA and MNA were composed of 60 data points
each. Figure 5 shows the classification results of the control
and treatment groups using the first eigenvector and the sec-
ond eigenvector in the LDA algorithm after applying each
MPA and MNA feature. Figure 5(a) reveals the results after

application of the MPA features, while Figure 5(b) indicates
the results after application of the MNA features. Regarding
the decision boundary of the control and treatment groups,
a patient was classified into the cerebral artery stenosis group
when the first eigenvector from the LDA results was larger
than 0 or into the normal group when it was smaller than 0.

The results showed that the recognition rate was higher
when the features of both index fingers were used than when
those of only one index finger were used. When the features
of both index fingers were used, the recognition rate using
MPA was 92.2%, while that using MNA was 90.6%. Table 1
compares the recognition rate results when the features of
the right index finger, left index finger, and both index fingers
were used. When the combination of MPA and MNA was
used for the classification, the recognition rate was 90.6%,
which was not better than the results derived from the inde-
pendent use of the MPA and MNA features. Table 2 shows
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Figure 4: Pulse wave signals extracted from a normal subject and from a subject with cerebral artery stenosis after optimization sampling: (a)
normal subject and (b) cerebral artery stenosis subject.
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the sensitivity and specificity of the normal subjects and
those with cerebral artery stenosis within the highest recogni-
tion rate. Sensitivity and specificity using the MPA features
were 90.6% and 93.8%, respectively, while those using
MNA features were 80% and 100%, respectively.

4. Discussion

Precision instruments such as MRA, CTA, CUS, and TCD
are used to diagnose cerebral artery stenosis and have many
advantages. However, diagnosing cerebral artery stenosis
using PPG signals is advantageous because it is noninvasive,
simple to use, and inexpensive. During the study period, 98

patients were asked to participate in this study. Of them, 31
patients refused to participate (control group: 19, stenosis
group: 12) and 3 patients excluded due to poor image quality.
Finally, 64 patients were enrolled and analyzed. The results of
this study confirm the possibility of screening for cerebral
artery stenosis using the PPG signal characteristics. The
results of this study can be summarized as follows.

First, the results of the study indicated that the MPA and
MNA features of the PPG signal may contribute to screening
for early stage cerebral artery stenosis. In particular, MPA
features are expected to show high classification accuracy,
specifically 92.2%, for normal people and patients with cere-
bral artery stenosis. In contrast, MNA features revealed a
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Figure 5: Classification results of normal subjects and those with cerebral artery stenosis using a linear discriminant analysis algorithm after
applying the maximum positive amplitude (MPA) and maximum negative amplitude (MNA): (a) MPA features and (b) MNA features.

Table 1: Experimental results based on the linear discriminant analysis (LDA).

Feature type Experiment Recognition rate (%)

Maximum positive amplitude

Left + right index finger 92.2

Left index finger 78.1

Right index finger 81.1

Maximum negative amplitude

Left + right index finger 90.6

Left index finger 76.6

Right index finger 79.7

Table 2: Sensitivity and specificity for the proposed technique in the best recognition rate.

Feature type
Performance parameters

Sensitivity (true positive) Specificity (true negative)

Proposed technique
MPA 90.6% 93.8%

MNA 80% 100%

MPA: maximum positive amplitude; MNA: maximum negative amplitude.
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90.6% accuracy. Sensitivity and specificity analyses, a statisti-
cal method for evaluating performance, indicated that MPA
features had a sensitivity of 90.6% and a specificity of
93.8%, while MNA features had a sensitivity of 80% and a
specificity of 100%. A test’s sensitivity represents its ability
to correctly identify patients with a certain condition [25].
Regarding a medical diagnostic test’s ability to diagnose a
disease, sensitivity means the percentage of people with
the disease. On the other hand, specificity refers to a test’s
ability to correctly identify patients without a specific
condition. Regarding medical diagnostic tests, sensitivity
means the ratio of correctly diagnosed healthy people
without the disease. The results of this study showed that
the classification using MPA features showed >90% accuracy
sensitivity and specificity, suggesting that MPA features
have high accuracy for differentiating subjects with cerebral
artery stenosis from normal subjects. The MNA features
were less effective at identifying patients with cerebral
artery stenosis (80%) but very effective at detecting normal
people (100%).

Second, using both index fingers showed the highest
discrimination power for screening for early stage cerebral
artery stenosis using the MPA and MNA features of PPG
signals. In particular, the recognition rate of the right index
finger was higher than that of the left index finger using
both MPA and MNA features. This could be because of
the anatomical characteristics that the left subclavian
artery, delivering the blood from the heart to left arm,
and common carotid artery, delivering the blood from
the heart to the brain, emerge separately from the aortic
arch on the left side of the body while the right subclavian
artery, delivering the blood from the heart to the right
arm, and right common carotid artery, delivering the
blood from the heart to the brain, split from the innomi-
nate artery at the neck (Figure 6). In other words, we
believe that the recognition rate was higher because the
presence of cerebral artery stenosis could affect the ability
of the right subclavian artery to move blood through the
innominate artery to the right arm.

Third, discrimination between the normal group and the
cerebral artery stenosis group could be successfully achieved
using the first eigenvector of the LDA classification algo-
rithm using the PPG signal. The decision boundary distin-
guishing normal people from people with cerebral artery
stenosis was first eigenvector = 0; a positive first eigenvec-
tor indicated patients with cerebral artery stenosis, while
a negative first eigenvector indicated normal people. The
majority of errors generated in the recognition rate using
the MPA and MNA features occurred in data near the
decision boundary of a 0 value.

Fourth, the MPA and MNA features from PPG signals
were determined as the important detector parameters for
distinguishing normal people from those with cerebral artery
stenosis. In particular, MPA features were considered the
most important parameter with the best discriminatory
power to detect the possibility of cerebral artery stenosis.

5. Conclusions

The objective of the study was to evaluate the correlation
between cerebral artery stenosis and the PPG signal charac-
teristics that could reflect the characteristics of the microves-
sels in the tissues according to the contraction and relaxation
period of the heart. The study results showed that the MPA
and MNA features of the PPG signals measured on the index
fingers of both hands were important parameters for dis-
criminating cerebral artery stenosis. MPA had particularly
high discrimination power. Moreover, the right index finger
better identified cerebral artery stenosis than the left index
finger. One limitation of the study was its sample size. The
study was conducted after patients provided informed con-
sent, so it was challenging to secure a large number of study
subjects. Therefore, the generalization of the study results
should be made carefully. We plan to conduct a systematic
study including more patients to identify a powerful and
accurate marker for identifying patients with cerebral artery
stenosis. To secure a large number of study subjects, we are
designing multicenter linking neighboring hospitals and
hospitals of overpopulation zone in the metropolitan area.
The study results confirmed that PPG was a successful tool
for screening for early stage cerebral artery stenosis. When
a patient with cerebral artery stenosis is identified on the
screening, the patient may receive clinical or drug treat-
ment after a thorough examination. It is expected that the
method presented here will play an important role in pre-
venting cerebrovascular disease, which places a great bur-
den on advanced society.
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