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Abstract: Renal transplantation is the gold-standard procedure for end-stage renal disease patients,
improving quality of life and life expectancy. Despite continuous advancement in the management
of post-transplant complications, progress is still needed to increase the graft lifespan. Early iden-
tification of patients at risk of rapid graft failure is critical to optimize their management and slow
the progression of the disease. In 42 kidney grafts undergoing protocol biopsies at reperfusion, we
estimated the renal metabolome from RNAseq data. The estimated metabolites’ abundance was
further used to predict the renal function within the first year of transplantation through a random
forest machine learning algorithm. Using repeated K-fold cross-validation we first built and then
tuned our model on a training dataset. The optimal model accurately predicted the one-year eGFR,
with an out-of-bag root mean square root error (RMSE) that was 11.8 ± 7.2 mL/min/1.73 m2. The
performance was similar in the test dataset, with a RMSE of 12.2 ± 3.2 mL/min/1.73 m2. This model
outperformed classic statistical models. Reperfusion renal metabolome may be used to predict renal
function one year after allograft kidney recipients.

Keywords: AKI (acute kidney injury); renal transplantation; machine learning; metabolomics

1. Introduction

Chronic kidney disease (CKD) is defined as an alteration in renal structure or function
during a period of at least 3 months [1]. CKD is a major global health burden [2], affecting
about 10% of the world’s population. Many CKD patients progress to end-stage renal
disease (ESRD) and 2.4 million people are currently receiving renal replacement therapy
(RRT) [3,4], a number that is expected to rise dramatically by 2030 [4]. Renal transplantation
remains the gold standard treatment for renal replacement therapy in ESRD patients [5,6],
improving both quality of life and life expectancy [5–7]. However, while long-term renal
graft survival has gradually improved during the last decade [7], progress is still needed
in order to meet the demand created by increasing numbers of waitlisted patients [8].
Therefore, early identification of patients at risk of poor renal graft survival is critical in
optimizing their management [9]. Renal function within the first year of transplantation
has been proven to be strongly associated with long-term graft survival [10,11] and thus
may be an ideal predictor of graft survival.
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Kidneys are the organs with the second-highest metabolic rate [12], and several studies
have recently highlighted the critical role played by renal metabolism in both acute kidney
injury (AKI) and CKD [13–18]. Metabolomics, the comprehensive study of metabolites, is
increasingly becoming a powerful tool in understanding renal pathophysiology and in the
identification of new biomarkers [19]. In the field of renal transplantation, metabolomics
studies have reported interesting results; however, they are mostly limited to short time
points from transplantation [20–25], mostly focusing on delayed graft function, while later
outcomes remain to be explored.

Furthermore, collecting and analyzing metabolomics data in large cohorts is challeng-
ing. Machine Learning (ML) algorithms adopt a data-driven approach and are able to learn
optimal solutions for the analysis of new data. Among the available algorithms, random
forest (RF) has been widely used in the field of renal metabolomics [26–29]. This technique
generates a multitude of decision trees that have different experiences of the problem. Once
all the decision trees have been trained, RF makes its predictions by voting on all of its
decision trees.

In this study, we took advantage of a recently developed method which is able to
estimate metabolome abundance from RNAseq data [30]. This technique was applied
on transcriptomes of kidney biopsies sampled at reperfusion. The estimated metabolites’
abundance was further used to predict the one-year allograft renal function via an RF
machine learning algorithm.

2. Results
2.1. Description of the Cohort

Forty-two kidney allograft recipients, in which a renal biopsy was performed at
reperfusion, were included. Bulk RNA-sequencing technology was then applied on those
samples and the patients were followed-up on for one year [31]. Patients’ characteristics,
split by the median of the one-year eGFR (51 mL/min/1.73 m2), are shown in Table 1.
Patients with the highest one-year eGFR received a renal graft from a younger donor (39
versus 56 years) with a lower body mass index (24 versus 27 kg/m2). Other recorded
characteristics did not significantly differ among groups.

Using the renal transcriptomics data as an input, we used single-cell Flux Estimation
Analysis (scFEA) to estimate the metabolites’ abundance within the renal graft at reperfu-
sion [30]. An outline of the study design is displayed in Figure 1a. The resulting matrix
was analyzed through multidimensional scaling and did not cluster patients according to
their one-year eGFR (Figure 1b). For each estimated compound, we fitted a robust linear
regression using the one-year eGFR as the dependent variable. The signed logarithm of
the ß coefficient extracted from every model is plotted against its associated p-value in
Figure 1c. A total of 26 estimated metabolites were significantly associated with one-year
eGFR in a linear fashion, 16 positively and 10 negatively.

Altogether, we were able to build a comprehensive map displaying whether or not
each metabolite or reaction flux, which was estimated at reperfusion, was associated with
one-year eGFR (Figure 2, Supplementary Figure S1a,b).

2.2. Machine Learning on Estimated Metabolomic Predicts One-Year eGFR

Using the estimation of the metabolite’s abundance, we predicted the one-year eGFR.
However, the input data presented many challenges. Firstly, analyses of the estimated
metabolites’ distribution revealed the presence of outliers (Supplementary Figure S2a).
Secondly, some of the estimated compounds displayed a nonlinear association with
the one-year eGFR (Supplementary Figure S2b). Thirdly, some estimated metabolites
were highly correlated with the 1-year eGFR, 14 of them having a Pearson coefficient
above 0.8 (Supplementary Figure S2c). Lastly, the number of predictors (70) exceeded
the number of patients (42), and the outcome measure displayed a skewed distribution
(Supplementary Figure S2a).
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Table 1. Baseline characteristics, according to the median one-year eGFR.

1-yr eGFR < 51
n = 21

1-yr eGFR > 51
n = 21

Total
n = 42 p-Value

Donor serum creatinine (mg/dL) 0.8 (0.3) 0.7 (0.2) 0.7 (0.2) 0.180
Donor sex male 9 (42.9%) 10 (47.6%) 19 (45.2%) 1.000

Donor age (years) 39.3 (16.6) 55.9 (6.7) 47.8 (14.9) 0.002
Donor type 1.000

Donation after brain death 12 (57.1%) 13 (61.9%) 25 (59.5%)
Deceased cadaveric donor 7 (33.3%) 6 (28.6%) 13 (31.0%)

Living donor 2 (9.5%) 2 (9.5%) 4 (9.5%)
Donor weight (kg) 71.5 (13.5) 77.0 (13.6) 74.2 (13.7) 0.175
Donor height (cm) 172.9 (8.6) 169.8 (8.6) 171.3 (8.6) 0.367

Donor body mass index (kg/m2) 23.9 (4.3) 26.7 (4.6) 25.3 (4.6) 0.002
Donor hypertension 1 (4.8%) 6 (28.6%) 7 (16.7%) 0.093

Recipient age (years) 50.0 (14.2) 54.6 (11.6) 52.3 (13.0) 0.385
Recipient sex male 14 (66.7%) 13 (61.9%) 27 (64.3%) 1.000

Cold ischemia time (hours) 11.4 (5.6) 12.9 (5.2) 12.2 (5.4) 0.187
Warm ischemia time (min) 49.5 (18.5) 47.9 (13.6) 48.7 (16.1) 0.995

Delayed graft function 2 (9.5%) 4 (19.0%) 6 (14.3%) 0.663
Immunosuppression 0.520

TAC-MMF-CS 9 (42.9%) 6 (28.6%) 15 (35.7%)
Induction with Basiliximab 12 (57.1%) 15 (71.4%) 27 (64.3%)

1-week Serum Creatinine (mg/dL) 2.8 (3.0) 4.0 (3.4) 3.4 (3.3) 0.110
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Figure 1. Global description of the study: (a) schematic representation of the study design,
(b) volcano-plot showing the signed logarithm of the absolute ß coefficient extracting from a ro-
bust linear model using one-year eGFR as the dependent variable, and its associated p-value, for each
estimated metabolite abundance, and (c) scatter plot showing the multidimensional scaling of the
estimated metabolomics, colored by the one-year eGFR.
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Figure 2. Comprehensive map linking estimation of fluxome and metabolites’ abundance with
one-year eGFR. In blue are any positive associations between the metabolites’ estimated abundance
or estimated reaction flux with one-year eGFR while in red are negative associations. Non-significant
associations are shown in grey.

To handle this data, we chose to perform an RF machine learning algorithm and
followed a classic pipeline of analyses [32,33].

We first randomly split the whole dataset in a training and a test partition, using a
0.8:0.2 ratio. The distribution of one-year eGFR among the two sets of data is shown in
Supplementary Figure S2d and Table 2.

We then trained an RF on the training dataset using a repeated K-fold cross-validation
resampling method. A hyperparameter grid was used to tune the model, whose per-
formance was iteratively assessed by the Root Mean Square Error (RMSE). The optimal
model that minimizes the RMSE presented the following hyperparameters: 56 for mtry
(the number of predictors randomly samples as candidate at each node split), 25 for ntree
(the number of trees to grow) and 8 for the nodesize (the minimum size of terminal node)
(Supplementary Figure S3a).

By applying this model on the whole dataset, we were able to build a proximity
matrix. Using Multidimensional Scaling (MDS), we could two-dimensionally represent the
distances between samples. The dots were found to be ordered according to the one-year
eGFR (Figure 3a).

In the training dataset, the out-of-bag RMSE was 11.8 ± 7.2 mL/min/1.73 m2, similar
to that obtained in the test dataset, which was 12.2 ± 3.2 mL/min/1.73 m2 (Table 3).
Figure 3b,c shows the observed one-year eGFR and the residuals, respectively, plotted
against the predicted one-year eGFR for both the training and test cohorts.

Lastly, we extracted the importance of every estimated metabolite for the one-year
eGFR prediction from the optimal RF model. The output is shown in Figure 3d. We further
colored the bars according to its positive or negative marginal effect on outcome, depending
on the partial dependance plot (Supplementary Figure S3b).

RF was able to capture nonlinear association between metabolites and one-year eGFR
(Figure 3e and Supplementary Figure S3b)



Metabolites 2022, 12, 57 5 of 13

�0.10

±0.00

0.10

0.20

-0.2 -0.1 0.0 0.1 0.2 0.3
leading logFC dim1

le
ad

in
g 

lo
gF

C
 d

im
2

50 75 100

dC
M

P
X

.G
al

.2
..G

lc
A

.1
..X

yl
.1

..S
er

.1
X

.E
.E

..F
ar

ne
sy

l.P
P

C
ho

nd
ro

iti
n

D
ol

ic
hy

l.p
ho

sp
ha

te
.D

.m
an

no
se

H
yp

ox
an

th
in

e
G

3P
Fu

m
ar

at
e

X
.G

al
.1

..G
lc

N
A

c.
1.

.M
an

.1
..S

er
.T

hr
.1

P
ut

re
sc

in
e

X
.G

lc
.3

..G
lc

N
A

c.
2.

.M
an

.9
..A

sn
.1

P
R

P
P

G
M

P
H

is
tid

in
e

A
ce

ty
l.C

oA
Th

re
on

in
e

B
.A

la
ni

ne
Fa

tty
.A

ci
d

O
xa

lo
ac

et
at

e
ly

si
ne

O
rn

ith
in

e
M

al
at

e
X

2O
G

G
lu

co
se

G
lu

ta
m

in
e

X
.G

lc
N

A
c.

4.
.M

an
.3

..A
sn

.1
G

ly
ci

ne
C

itr
ul

lin
e

M
et

hi
on

in
e

U
D

P
.g

lu
cu

ro
ni

c.
ac

id
P

yr
im

id
in

e
Is

ol
eu

ci
ne

C
itr

at
e

X
M

P
A

IC
A

R
Le

uc
in

e
S

er
in

e
La

ct
at

e
G

lu
ta

th
io

ne
U

M
P

C
ho

lin
e

dC
D

P
S

uc
ci

na
te

X
an

th
in

e
P

yr
uv

at
e

C
D

P
A

M
P

A
rg

in
in

e
P

ro
lin

e
D

eo
xy

ad
en

os
in

e
Ty

ro
si

ne
U

D
P

.N
.a

ce
ty

lg
lu

co
sa

m
in

e
S

uc
ci

ny
l.C

oA
C

ho
le

st
er

ol
S

pe
rm

in
e

dT
M

P
P

he
ny

la
la

ni
ne

A
sp

ar
ta

te
G

6P
G

lu
co

se
.1

.p
ho

sp
ha

te

0
25

50
75

10
0

va
ria

bl
e 

im
po

rta
nc

e

b ca

d

1-yr eGFR

e
Glucose.1.phosphate

Phenylalanine
dTMP

Spermine
Cholesterol

Succinyl.CoA
Tyrosine 

G6P
Aspartate

UDP.N.acetylglucosamine
Deoxyadenosine

Choline
Pyrimidine

Argininosuccinate
Fumarate

Proline
PRPP
GMP

Glycine
Arginine

CDP

Succinate
AMP

Leucine
Glutathione

Glucose

25

50

75

100

40 60 80 100
predicted 1-year eGFR

ob
se

rv
ed

 1
-y

ea
r e

G
FR

test train

�60

�40

�20

±0

20

40 60 80 100
predicted 1-year eGFR

pr
ed

ic
te

d 
- o

bs
er

ve
d

test train

Figure 3. ML-based prediction of the one-year eGFR: (a) Multidimensional reduction plot showing
the similarity of samples and colored by one-year eGFR, (b) scatter plot showing the observed (y-axis)
predicted (x-axis) one-year eGFR, in the test (red) and training (blue) datasets. The grey line highlights
the perfect relation, (c) Scatter plot showing the residuals for each predicted value, in the test (red)
and training (blue) datasets. (d) Variable importance in the RF model for one-year eGFR prediction.
Values are normalized to the most important variable, which was set to 100, and colored in blue if the
variable is associated with a higher one-year eGFR and in red if associated with a lower one-year
eGFR and (e) Venn diagram reporting the logical relation between the top 11 variable used in the
RF model (blue) and the variables significantly associated with the one-year eGFR identified via
robust linear regression (red), after exclusion of correlated variables (i.e., glutamate, cysteine, IMP
and GABA).

Table 2. Training and test dataset characteristics, according to the median one-year eGFR.

Cohort Test
n = 8

Cohort Train
n = 34

Total
n = 42 p-Value

Donor serum creatinine (mg/dL) 0.8 (0.2) 0.7 (0.3) 0.7 (0.2) 0.352
Donor sex male 3 (37.5%) 16 (47.1%) 19 (45.2%) 0.760

Donor age (years) 40.7 (18.0) 49.4 (14.0) 47.8 (14.9) 0.227
Donor type 0.491

Donation after brain death 6 (75.0%) 19 (55.9%) 25 (59.5%)
Deceased cadaveric donor 1 (12.5%) 12 (35.3%) 13 (31.0%)

Living donor 1 (12.5%) 3 (8.8%) 4 (9.5%)
Donor weight (kg) 71.0 (7.9) 75.0 (14.7) 74.2 (13.7) 0.508
Donor height (cm) 169.5 (10.0) 171.8 (8.4) 171.3 (8.6) 0.759

Donor Body Mass Index (kg/m2) 24.8 (2.6) 25.4 (5.0) 25.3 (4.6) 0.987
Donor hypertension 1 (12.5%) 6 (17.6%) 7 (16.7%) 0.093

Recipient age (years) 56.5 (10.7) 51.3 (13.5) 52.3 (13.0) 0.370
Recipient sex male 5 (62.5%) 22 (64.7%) 27 (64.3%) 1.000
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Table 2. Cont.

Cohort Test
n = 8

Cohort Train
n = 34

Total
n = 42 p-Value

Cold ischemia time (hours) 12.8 (5.6) 12.0 (5.4) 12.2 (5.4) 0.564
Warm ischemia time (min) 37.6 (8.5) 51.2 (16.4) 48.7 (16.1) 0.034

Delayed graft function 1 (12.5%) 5 (14.7%) 6 (14.3%) 1.000
Immunosuppression 0.425

TAC-MMF-CS 4 (50.0%) 23 (67.6%) 27 (64.3%)
Induction with Basiliximab 4 (50.0%) 11 (32.4%) 15 (35.7%)
1-week Serum Creatinine

(mg/dL) 3.8 (3.8) 3.3 (3.2) 3.4 (3.3) 0.974

1-year Glomerular filtration rate
(estimated, mL/min/1.73 m2) 57.4 (19.3) 52.2 (16.3) 53.2 (16.8) 0.586

Table 3. Accuracy metric of the three predictive models on the test dataset.

RMSE MAE R2

random forest 12.2 ± 3.2 9.2 ± 2.9 0.5 ± 0.6
univariable linear model 24.4 ± 7.5 16.4 ± 6.68 −0.8 ± 1.0

stepwise linear model 23.2 ± 6.2 18.0 ± 5.4 −0.6 ± 1.0

2.3. ML Approach Outperforms Classic Statisical Method

We thus aimed at comparing the performance of the ML model trained on the esti-
mated metabolome to a more classic approach, both in terms of the modeling technique
and the set of predictors. To do this, we performed linear regression using the available
biological and clinical variables as predictors, instead of estimated metabolites’ abundance.

As 1-week serum creatinine (SCr) is associated with long-term renal function [10,34],
we started with a simple model using only 1-week SCr to predict one-year eGFR. This
model displayed an RMSE of 13.3 ± 8.1 mL/min/1.73 m2 in the training dataset that
dramatically increased in the training dataset (RMSE equal to 24.4 ± 7.5 mL/min/1.73 m2,
Table 3), suggesting overfitting (Figure 4a,b).
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datasets (a), scatter plot showing the residuals for each predicted value, in the test (red) and training
(blue) datasets (b). (c–e) stepwise regression: forest plot showing the ß coefficient ±95% confidence
interval of each variable selected in the optimal model (d), scatter plot showing the observed (y-axis)
predicted (x-axis) one-year eGFR, in the test (red) and training (blue) datasets and (e) scatter plot
showing the residuals for each predicted one-year eGFR, in the test (red) and training (blue) datasets.

As a second model, we adopted a more sophisticated technique. As missing data were
present for three variables (donor serum creatinine, donor age and warm ischemia time),
we first put in data using bagged tree imputation [35]. The distribution of those variables,
before and after the imputation, is reported in Supplementary Figure S4. We thus filtered
potential predictors by the significance levels of the univariable association with one-year
eGFR (cutoff threshold set to 0.3) and took advantage of repeated K-fold cross-validation to
find the optimal predictors’ combination, using stepwise selection. We trained the model
by fixing the number of final predictors from 1 to the total number of available variables.
The optimal model included 5 predictors, with their ß coefficients reported in Figure 4e.
The RMSE was 12.7 ± 7.0 mL/min/1.73 m2 and 23.2 ± 6.2 mL/min/1.73 m2 in the training
and test datasets, respectively (Figure 4d,e and Table 3).

3. Discussion

In this study, we applied scFEA software to estimate reaction fluxes and abundance
of metabolites in renal grafts, sampled at the time of transplant reperfusion. Those data
were further used to (1) draw a comprehensive map of the association between estimated
renal metabolism at reperfusion and one-year eGFR, and (2) to predict the renal graft
function at one year. This outcome was selected as the renal graft function one year
after transplantation has been largely identified as a major factor associated with graft
survival [34–41]. Using multivariable analyses, two studies have also shown that estimated
one-year GFR was the best predictor of long-term renal graft survival [10,11]. The one-year
eGFR was part of a tool designed to predict the risk of graft loss within the first five years of
transplant [42]. Finally, the eGFR at one year post kidney transplantation has been widely
used in clinical trials as a surrogate endpoint for long-term renal graft outcomes [43].

We observed a positive association between the one-year eGFR and the estimated
flux from glucose to glucose-6-phosphate (G6P), the first step of glycolysis. Glucose
metabolism is modified during AKI [13,17], and glycolysis enhancement has been described
as protective in AKI [44–47]. In this situation, glycolysis may ensure energy production,
even at low levels, to provide the amounts of ATP necessary to maintain cell viability at the
acute phase of the injury and to initiate the repair [12,47,48]. On the contrary, the estimated
synthesis of glycogen from glucose-1-phosphate (G1P) was decreased in patients exhibiting
a worse outcome. This is in line with recent studies reporting a deleterious effect of renal
glycogen accumulation during glycogen storage disease type 1 [49,50]. Among metabolites
associated with one-year eGFR, three (i.e., succinyl-CoA, succinate and fumarate) are part
of the Tricarboxylic Acid (TCA) cycle. Numerous studies have shown that the mitochondria
and TCA cycles are dysregulated at the renal level during AKI and CKD [16,17,50–52].
We noticed that the estimated succinate levels were linked to a worse outcome, while
the opposite was observed for fumarate. In CKD patients, similar findings have been
reported, where succinate and fumarate levels were negatively and positively associated
with the eGFR, respectively [53]. In addition, we found the abundance of several amino
acids (i.e., phenylalanine, leucine, glycine, proline, arginine) to be significantly linked
to one-year eGFR, in accordance with reports from other groups in CKD patients and
in animal models of CKD [54–58]. Lastly, spermine abundance was associated with a
better outcome. This is in line with the improvement in renal outcome after AKI by
spermidine supplementation [59] or the inhibition of catabolism by spermidine/spermine
N1 acetyltransferase [60]. However, when considering CKD, both spermine and spermidine
serum levels were increased in animals [61].
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The analysis of metabolic data presents significant challenges, in particular due to
the large amount of generated material, which includes many collinear variables and
non-linear associations with phenotypic traits as well as the typically low number of
samples [62]. In this context, a data-driven approach via a machine learning algorithm has
gained prominence in recent years [63]. Among the available methods, RF is reported as an
excellent regressor, with several advantages, including fast-speed, noise insensitivity and
overfitting robustness [64]. RF combines two ML methods: bagging and random feature
selection. Briefly, RF builds an ensemble of independent decision trees from multiple
samplings of the original dataset. At each node of the tree, only one random selection
of the available predictors is considered for the partition of the node, thus reducing the
trees’ similarity grown from different samples. Once a sufficiently large forest of trees has
been grown, the results are bagged in the usual way [65–67]. An RF algorithm also has the
ability to measure the importance of each predictor, i.e., how it contributes to the prediction
performance [29]. In our work, the optimal RF model was chosen to minimize the RMSE, in
order to penalize large errors. However, it is interesting to note that the optimal model did
not differ when using the R-squared or the mean absolute error metrics. We found the ML
approach to largely outperform classic statistical approaches, which were characterized by
a high degree of overfitting. Thus, our RF model displayed an R-squared of 0.6 and 0.5 in
the training and test cohorts, respectively, meaning that 60 and 50% of the one-year eGFR
variability is explained by the model. Interestingly, some metabolites that did not show any
significant association with one-year eGFR displayed a high importance in the RF model
that well captured their non-linear association with the outcome.

Our study has three main limitations. Firstly, the metabolites’ abundance has been
estimated and not measured. Therefore, we cannot claim to obtain similar results using
measured metabolomics profiles. However, in their original manuscript, the authors of
the scFEA algorithm validated its prediction with several matched metabolomics data [30].
They also successfully applied their software in another study [68]. Secondly, we did not
validate our prediction model on an external cohort. However, we trained our model
using cross-validation and further assessed its performance in a test dataset not used
during the model building. Thirdly, our sample size was limited, although the similar low
RMSE calculated in both training and test datasets suggests good calibration without under
or overfitting.

This work paves the way for further studies to develop clinical applications using,
for example, urinary metabolites, which have been found to reflect the renal metabolite
composition [69]. Ultimately this technique could be part of clinical trials, allowing for
more research into the early and individualized management of renal graft recipients to
extend transplant survival.

Our study is a proof of concept. Renal metabolomics may be used to predict, at
a very early point in time, long-term renal graft survival. This approach, in combina-
tion with ML algorithms, seems much more accurate than the classic mixed clinical and
biological approach.

4. Materials and Methods
4.1. Inclusion of Patients

Using a biobank of kidney transplant biopsies, we included allograft kidney recipients
from the University Hospitals of Leuven according to the following criteria: (1) signed
informed consent for Biobank Kidney Transplantation, (2) single kidney transplantation,
(3) at least one year of follow-up, (4) availability of all material and (5) kidney transplanta-
tion performed between March 2012 and May 2015. Forty-two patients were included as
previously described [31]. For each patient, the eGFR within the first year of transplantation
was calculated with the CKD-EPI formula [70]. The study was conducted according to the
guidelines of the Declaration of Helsinki, and approved by the Ethical Review Board of the
University Hospitals of Leuven (S53364 and S59572).
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4.2. Estimation of Metabolomics

For each included patient, bulk-RNA sequencing technology was applied to kidney
reperfusion biopsies as previously described [31]. Raw data are available at GEOi accession
GSE126805. We performed normalization by the trimmed mean of M-value method (TMM)
using the EdgeR package (RRID: SCR_012802) between samples. The output matrix of nor-
malized counts was log-normalized and used as an input in the single scFEA software [30].
scFEA is a computational method, inferring fluxome from transcriptomics data. The output
was composed of two matrices reporting the metabolites’ abundance and the reaction fluxes
estimation, respectively, which were further merged into the clinical database.

4.3. Relation between One-Year eGFR and Each Metabolite Abundance Estimation

The relation between one-year eGFR and each metabolite abundance estimation as
well as inferred reaction fluxes were fitted using a robust linear model. The ß parameter
was estimated with the M-Estimator with Huber’s psi-function. The p-value was calculated
through a robust F-Test, and a threshold of 0.05 was needed for significance.

For nonlinear fitting, we used a locally estimated scatterplot smoothing (LOESS) regression.

4.4. Random Forrest Model

We first assessed the pairwise correlation of every estimated metabolite. Fourteen
pairs of metabolites exhibited a Pearson coefficient above 0.8. For each pair, we adopted
three strategies:

• We only kept the final product (i.e., AMP, Dolichyl-phosphate-D-mannose, d-UTMP
and Succinate).

• When two metabolites were correlated with a third one, we removed the third to
maximize the number of predictors (Arginosuccinate, 3PD and Propanoyl-CoA).

• In the case of glutathione, glutamate and cysteine, we only kept glutathione, which
has been associated with AKI or CKD in the literature [71–73].

The data were then randomly split in two sets, to train and test the model, respectively,
in a 0.8:0.2 ratio. We used the matrix of metabolites’ estimated abundance, at the exclusion
of the previously discarded variables, as a matrix of predictors for the RF model. Model op-
timization was performed using repeated K-fold cross-validation (5 repetitions of 10 K-fold
cross-validations), which has recently been shown to outperform other resampling meth-
ods [74]. During this process, the model was tuned to find the optimal hyperparameters:

• The number of predictors randomly sampled as candidates for each split (mtry), were
the square root and the log2 of the number of predictors, and a sequential vector of
integer from 1 to the total number of predictors.

• The minimum sizes of terminal node (nodesize) tried were 2, 4 and 8.
• The numbers of trees to grow tried were 25, 50, 100, 150, 300, 500, 1000 and 2000.
• The optimal model was selected to maximize the RMSE.

The optimal model was finally applied to the test dataset, and the RMSE was calculated
as a metric of accuracy. To estimate the standard deviation of the RMSE in the test dataset,
we bootstrapped the test cohort 1000 times, applying the RF model on every resampling
cohort and calculated the standard deviation.

4.5. Statistical Models

For the first model, we fitted the relation between the one-year eGFR (dependent
variable) and the one-week serum creatinine (independent variable) with a linear regression,
on the training dataset. We also used repeated K-fold cross-validation to assess the out-
of-bag accuracy of the model in the training dataset. We further applied this model on
the test dataset and calculated the RMSE with its standard deviation, as described in the
previous paragraph.

For the second model, we first fitted the relation between the one-year eGFR (de-
pendent variable) and each of the clinical and biological variables available. As three of
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these presented missing values (donor serum creatinine and age, hot ischemia time), they
were imputed using bagged tree imputation, which has been shown to achieve the best
imputation quality and improvements on the downstream predictions in a recent bench-
mark [36]. Variables with an invariable association with a one-year eGFR p-value below
0.3 were preselected. We thus used repeated K-fold cross-validation to find the optimal
multivariable model, using a stepwise approach and a maximum number of predictors
varying from 1 to the total number of available variables. The best model was selected to
maximize the RMSE. This model was further tested on the test data, using the RMSE as the
performance measure. The standard deviation of the RMSE metric in the test cohort was
calculated as described in the previous paragraph.

4.6. TRIPOD Guidelines

To develop more reproducible approaches in the development of predictive models,
a recent scientific initiative has suggested following standard guidelines [75]. For this
purpose, the TRIPOD (Transparent reporting of a multivariable prediction model for
individual prognosis or diagnosis) statement has been proposed. It consists of a 22-item
checklist, which details vital information that must be incorporated into a prediction model
study. In this study, we fulfilled these recommendations and have reported supporting
information in the Supplementary Table S1.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo12010057/s1, Figure S1: Relation of the one-year eGFR with the estimation of metabo-
lites abundance and reactions flux, Figure S2: data exploration, Figure S3: Random Forest model selec-
tion and Figure S4: Missing value imputation, Supplementary Table S1: TRIPOD guidelines report.
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