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The preoptic area (POA) has long been recognized as a sleep center, first proposed
by von Economo. The POA, especially the medial POA (MPOA), is also involved in the
regulation of various innate functions such as sexual and parental behaviors. Consistent
with its many roles, the MPOA is composed of subregions that are identified by different
gene and protein expressions. This review addresses the current understanding of the
molecular and cellular architecture of POA neurons in relation to sleep and reproductive
behavior. Optogenetic and pharmacogenetic studies have revealed a diverse group
of neurons within the POA that exhibit different neural activity patterns depending on
vigilance states and whose activity can enhance or suppress wake, non-rapid eye
movement (NREM) sleep, or rapid eye movement (REM) sleep. These sleep-regulating
neurons are not restricted to the ventrolateral POA (VLPO) region but are widespread in
the lateral MPOA and LPOA as well. Neurons expressing galanin also express gonadal
steroid receptors and regulate motivational aspects of reproductive behaviors. Moxd1,
a novel marker of sexually dimorphic nuclei (SDN), visualizes the SDN of the POA (SDN-
POA). The role of the POA in sleep and other innate behaviors has been addressed
separately; more integrated observation will be necessary to obtain physiologically
relevant insight that penetrates the different dimensions of animal behavior.

Keywords: preoptic area, parental behavior, male sexual behavior, sexual dimorphism, galanin, Moxd1, NREM
sleep, REM sleep

INTRODUCTION

The preoptic area (POA), the most anterior part of the hypothalamus, is a brain region that has
a complex structure consisting of different groups of neurons that control various functions and
behaviors essential for the survival of individuals and species. The POA, especially the medial POA
(MPOA), plays a crucial role in the regulation of sleep and reproduction-associated behavior, such
as parenting and male mating (Tsuneoka et al., 2013; Hull and Dominguez, 2015; Tan et al., 2016;
Chung et al., 2017; Kohl et al., 2018). The MPOA is also involved in aggression, predation, feeding,
and body temperature regulation (Hashikawa et al., 2016; Han et al., 2017; Ishii et al., 2017; Park
et al., 2018; Morrison and Nakamura, 2019). Importantly, some of the MPOA nuclei show distinct
sexual dimorphism (Simerly et al., 1984; Bloch and Gorski, 1988; Alexander et al., 1991; Orikasa and
Sakuma, 2010; Tsuneoka et al., 2017a). The POA’s various important roles attracted researchers, but
at the same time, many researchers believe that the POA is complex and difficult to understand.
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One of the reasons why there is so much confusion
surrounding the POA is the inconsistent nomenclature of
its subregions/nuclei. Even the two most commonly used mouse
brain atlases are not consistent regarding the terminology and
subnucleus structure of the POA (Paxinos et al., 2012; Allen
Brain Atlas1). Therefore, in this review, we first describe the
organization of the POA and then discuss how this region
regulates sleep/wakefulness and various other behaviors.

CELLULAR ORGANIZATION AND GENE
EXPRESSION IN THE POA

In mammals, the MPOA is the brain region between the anterior
commissure and the optic chiasm in the vicinity of the anterior
third ventricle (Gurdjian, 1927; Paxinos et al., 2012; Simerly,
2015). The lateral POA (LPOA) is an area flanked by the MPOA
medially, the bed nucleus of the stria terminalis (BNST) dorsally,
and the substantia innominata laterally. The ventrolateral side
of the LPOA is bordered by the nucleus of the diagonal band.
The LPOA contains the medial forebrain bundle, and the medial
border of the bundle corresponds to the medial border of the
LPOA (Simerly, 2015). Several genes are differentially expressed
between the MPOA and LPOA. For example, neurons expressing
the neuropeptide galanin, which are involved in the regulation
of sleep/wakefulness and reproductive behavior, are abundant
in the MPOA but not in the LPOA (Figures 1, 2). Similarly,
neurotensin-expressing neurons are abundant in the MPOA
but not in the LPOA (Figures 1, 2). Estrogen receptor (ER) α

and androgen receptor (AR), which play an important role in
reproductive behavior, are also plentiful in the MPOA but not in
the LPOA. Conversely, choline acetyltransferase (ChAT)-positive
neurons are present in the LPOA but not in the MPOA (Uschakov
et al., 2007). Therefore, although both LPOA and MPOA contain
the region name POA, there are significant differences in their
constituent cells and gene expression.

The MPOA contains several nuclei, such as the medial
preoptic nucleus (MPN), median preoptic nucleus (MnPO),
and posterodorsal preoptic nucleus (PD), according to regional
differences in terms of neuron density and the expressions
of various neuropeptides, neuropeptide receptors, and gonadal
steroid receptors (Figure 1; Simerly et al., 1986, 1988, 1990; Ju
and Swanson, 1989; Simerly, 2015; Tsuneoka et al., 2017b). The
MPN is a cell-dense, highly conspicuous structure located in
the medial MPOA. The MnPO is a dense cluster of small cells
located on the dorsal midline of the anterior third ventricle.
The PD is a small region containing large neurons close to the
BNST, which abundantly expresses proenkephalin (Penk). The
ventrolateral POA (VLPO) is a small region located on the
ventrolateral margin of the MPOA, adjacent to the nucleus of the
diagonal band (Simerly, 2015).

We have recently proposed additionally subdividing the
MPOA apart from the established nuclei MPN, PD, and VLPO
into four regions, namely, the dorsomedial part of the MPOA
(dmMPOA), the central part of the MPOA (cMPOA), the ventral

1http://atlas.brain-map.org/

FIGURE 1 | Neuroanatomy and heterogeneity of the medial preoptic area.
(A) Coronal mouse brain diagram showing the MPOA subregions at the level
of the MPNc (bregma, –0.02 mm). (B) Double ISH for Penk (blue) and
neurotensin (magenta) mRNAs with immunostaining for calbindin (green).
(C) ISH for Vglut2 (green) mRNA with immunostaining for oxytocin (magenta).
(D) Summary of marker genes expression in selected MPOA subregions.
Each subregion has a characteristic pattern of marker expression. Scale bars:
100 µm. 3v, third ventricle; ac, anterior commissure; ACN, anterior
commissural nucleus; BNSTdm, dorsomedial nucleus of the BNST; BNSTmg,
magnocellular nucleus of the BNST; cMPOA, central part of the MPOA;
dmMPOA, dorsomedial part of the MPOA; MPNc, central part of the MPN;
MPNl, lateral part of the MPN; MPNmp, posteromedial part of the MPN;
MPNvl, ventrolateral part of the MPN; opt, optic tract; PD, posterodorsal
preoptic nucleus; vMPOA, ventral part of the MPOA; vlMPOA, ventrolateral
part of the MPOA; VLPO, ventrolateral preoptic nucleus. Modified from
Tsuneoka et al. (2017b).

part of the MPOA (vMPOA), and the ventrolateral part of
the MPOA (vlMPOA), based on gene expression (Tsuneoka
et al., 2017b) (Figure 1). The cMPOA and vMPOA show higher
expression of gonadal steroid receptors than the dmMPOA or the
vlMPOA. The central part of the MPN (MPNc) has been shown
to predominantly overlap with the sexually dimorphic nucleus of
the POA in rats (Gorski et al., 1978; Bloch and Gorski, 1988),
which can be identified as a dense cluster of calbindin-positive
cells in rats and mice (Sickel and McCarthy, 2000; Orikasa and
Sakuma, 2010; Jahan et al., 2015; Tsuneoka et al., 2017a) or by the
expression of Moxd1 in mice (Tsuneoka et al., 2017a).
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The lateral subdivision of the MPN (MPNl) has a cluster of
neurotensin-positive cells (Simerly et al., 1986; Tsuneoka et al.,
2013). The anterior commissural nucleus (ACN) is characterized
by a population of oxytocinergic neurons in the dorsal MPOA.
In the mouse ACN, there are also many thyrotropin-releasing
hormone (TRH)-positive neurons (Biag et al., 2012; Tsuneoka
et al., 2017b). The MPNm is divided into the anterior part
(MPNma), which contains a cluster of Penk-expressing cells, and
the posterior part (MPNmp), which has a high density of cocaine-
and amphetamine-regulated transcript (Cart)-expressing cells.
The most posterior part of the MPNl (MPNp) was different from
the main part of the MPNl in the densities of neurotensin-, Penk-,
prodynorphin (Pdyn)-, and tachykinin 1 (Tac1)-positive cells.
Thus, as summarized in Figure 1D, the MPOA is not randomly
populated with neurons that show different gene expressions
but is composed of subregions that have characteristic gene
expression patterns.

Recent single-cell RNA-seq analysis of the mouse MPOA
demonstrated that the messenger RNA (mRNA) expression of
neuropeptides such as neurotensin, galanin, Tac1, Tac2, Penk,
Pdyn, Cart, and Trh contributed to the clustering of 23 excitatory
subpopulations and 43 inhibitory subpopulations (Moffitt et al.,
2018). In addition to single-cell RNA-seq, multiplexed error-
robust fluorescent in situ hybridization (MERFISH), which
visualizes hundreds of mRNAs at single-cell resolution with
position information (Moffitt et al., 2016; Shah et al., 2016),
showed that the locations of 30% of cell clusters matched each of
the MPOA subnuclei (Moffitt et al., 2018). In other words, each
MPOA subnucleus contains cell cluster(s) that represent and are
limited to the subnucleus; in addition, there are also cell clusters
that are broadly distributed across the MPOA.

Reflecting the fact that MPOA is associated with sex-
hormone-related behaviors, ER and AR are highly expressed in
the MPOA (Simerly et al., 1990; Murphy and Hoffman, 2001;
Merchenthaler et al., 2004; Jahan et al., 2015). At the subregion
level, gonadal steroid receptors are abundantly expressed in
the cMPOA, MPNvl, and MPNma (Tsuneoka et al., 2017b),
which are involved in sexual, parental, and aggressive behavior
(Tsuneoka et al., 2015). More than 70% of galanin-positive
neurons show ERα and AR immunoreactivity in the cMPOA and
MPN (Tsuneoka et al., 2017b). Neurotensin-, Penk-, and Tac2-
positive cell groups also showed high proportions of ERα and AR
immunoreactivity, but Trh-positive cells did not (Tsuneoka et al.,
2017b). Through region- and neuron group-specific expression
of their receptors, gonadal hormones are thought to regulate sex
differences in various behaviors, including sleep.

The boundaries of the MPOA can also be defined according
to its characteristic gene expression. ER and AR are abundant
in the MPOA, but posterior to the anterior commissure, their
expression decreases sharply and is observed in only a few dorsal
hypothalamic regions. Similarly, galanin and neurotensin are
abundantly expressed in the MPOA with a distribution pattern
similar to that of gonadal steroid receptors, but their expression is
sharply reduced posterior to the anterior commissure (Tsuneoka
et al., 2017b; Figure 2). Thus, we consider the oblique plane
containing the posterior end of the anterior commissure and
the center of the SCN to be the caudal limit of the POA.

FIGURE 2 | Galanin and neurotensin mRNA expression in the preoptic area.
(A,B) Double ISH for (A) galanin and (B) neurotensin of a coronal section of
the mouse brain (bregma + 0.10 mm). (C,D) Double ISH for (C) galanin and
(D) neurotensin of a coronal section of the mouse brain (bregma –0.02 mm).
(E,F) Double ISH for (E) galanin and (F) neurotensin of a coronal section of the
mouse brain (bregma, –0.14 mm). (G,H) Double ISH for (G) galanin and
(H) neurotensin of a coronal section of the mouse brain (bregma, –0.24 mm).
Scale bars: 200 µm. 3v, third ventricle; ac, anterior commissure; ACN,
anterior commissural nucleus; AH, anterior hypothalamus; BNST, bed nucleus
of the stria terminalis; fx, fornix; LAN, lateroanterior hypothalamic nucleus
LPOA, lateral preoptic area; MPOA, medial preoptic area; MPN, medial
preoptic nucleus; NDB, nucleus of the diagonal band; opt, optic tract;
PVPOA, periventricular preoptic area; SCN, suprachiasmatic nucleus; SI,
substantia innominata; SON, supraoptic nucleus; VLPO, ventrolateral preoptic
nucleus. Adapted from Tsuneoka et al. (2013).

This view is also supported by the expression region of the
transcription factor Nkx2.1, which plays an important role in
the development of various hypothalamic structures and is
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abundantly expressed in the embryonic and infant POA in
mice (García-López et al., 2008; Puelles et al., 2012). Thus,
the MPOA subregions and LPOA can be defined according to
gene expressions.

DIVERSE POA NEURONS REGULATE
SLEEP/WAKEFULNESS

The POA has long been recognized as being crucial for sleep
induction (Saper et al., 2005; Liu and Dan, 2019). In the
winter of 1916, there was a sudden increase in the number of
patients suffering from high fever, fatigue, double vision, sleep
problems, and catatonia in Vienna. Thereafter, an epidemic of
this disease recurred every winter until approximately 1926.
Austrian psychiatrist von Economo noticed a certain pattern
of brain damage in these patients and named it encephalitis
lethargica. He further found that patients who suffered from
insomnia had damage in the anterior hypothalamus, while those
who suffered from somnolence had broad damage rostral to the
oculomotor nucleus level (von Economo, 1930). His pioneering
findings provided the first argument for the existence of sleep
centers in the brain. Subsequent lesion studies added to the
findings supporting a role of the POA in the regulation of
sleep (Nauta, 1946; McGinty and Sterman, 1968; Szymusiak
and McGinty, 1986b; Sallanon et al., 1989; John and Kumar,
1998; Lu et al., 2000). For example, lesions of the MPOA using
N-methyl-D-aspartate (NMDA) in rats reduced deep non-rapid
eye movement (NREM) and rapid eye movement (REM) sleeps,
shortened NREM sleep episodes, and increased body temperature
(John and Kumar, 1998).

Consistent with its role in sleep induction, unit recordings
of POA neurons showed the presence of sleep-active neurons
(Kaitin, 1984; Szymusiak and McGinty, 1986a; Ogawa and
Kawamura, 1988; Koyama and Hayaishi, 1994; Szymusiak et al.,
1998; Takahashi et al., 2009; Alam et al., 2014). For example, out
of 98 neurons in the rat POA, 14 neurons were active specifically
during NREM sleep, and 26 neurons were most active during
REM sleep (Koyama and Hayaishi, 1994). Seventy-six percent of
rat MnPO neurons were sleep active, and most of them showed a
gradual increase in firing rates before sleep onset (Suntsova et al.,
2002). Single-unit activity of rat MnPO neurons increased during
sleep deprivation but decreased during recovery sleep (Alam
et al., 2014), suggesting that the activity of sleep-active POA
neurons is closely related to NREM sleep delta power generation.
In mice, among 872 single units in the POA and adjacent
region, 552 were sleep active (Takahashi et al., 2009), and 60%
of sleep-active neurons were active during both NREM and REM
sleep and resting during wakefulness. Sleep-active neurons were
broadly distributed within the MPOA and LPOA, and different
types of sleep-active neurons, such as NREM sleep-specific, REM
sleep-specific, and NREM/REM sleep-specific neurons, were
intermingled in the POA. Importantly, wake-active neurons were
also found in the MPOA and LPOA and were more restricted to
the middle and ventral POA than sleep-active neurons (Takahashi
et al., 2009). Wake-active neurons ceased firing immediately
before sleep onset and started firing around 0.5 s before the onset

of wakefulness. Thus, the POA contains different sets of neurons
that are most active during each vigilance state.

Visualization of Fos protein as a marker of active cells showed
that Fos-positive neurons during sleep and after sleep deprivation
were found abundantly and broadly in the MnPO and LPOA
(Cirelli et al., 1995; Gong et al., 2000; Semba et al., 2001), which
is consistent with a broad distribution of sleep-active neurons
in the POA (Takahashi et al., 2009). Fos-positive cells during
recovery sleep were also broadly distributed in the lateral MPOA
and the LPOA (Zhang et al., 2015). Genetic labeling of active
neurons using FosCreER mice demonstrated that the LPOA was
one of a few brain regions where the number of labeled neurons
increased during recovery sleep compared to sleep deprivation
(Zhang et al., 2015). More than 75% of sleep-active neurons in
the POA were positive for glutamic acid decarboxylase (GAD),
the rate-limiting enzyme in gamma aminobutyric acid (GABA)
production (Gong et al., 2004). REM sleep restriction induced Fos
immunoreactivity in GAD-positive neurons in the rat POA and
MnPO (Gvilia et al., 2006), consistent with REM sleep-specific
neurons in the POA (Takahashi et al., 2009). These findings
indicate that the POA contains neurons that are active in different
aspects of sleep regulation.

Optogenetic and pharmacogenetic manipulation of POA
neurons directly demonstrated their role in the regulation of
sleep/wakefulness (Table 1). Activation of a group of LPOA
and lateral MPOA neurons using CNO/hM3Dq induced NREM
sleep (Zhang et al., 2015). Surprisingly, activation of GABAergic
neurons in the LPOA and lateral MPOA enhanced wakefulness
(Chung et al., 2017). However, activation of GABAergic POA
neurons that projected to the tuberomammillary nucleus (TMN),
where wake-promoting histaminergic neurons are located,
immediately enhanced NREM sleep and a markedly increased
REM sleep within 1 min, whereas inhibition of those neurons
suppressed NREM and REM sleep (Chung et al., 2017). In
contrast to GABAergic POA neurons projecting to the TMN,
optogenetic activation of glutaminergic POA neurons projecting
to the TMN enhanced wakefulness (Chung et al., 2017).
Optrode recording of 17 TMN-projecting POA GABAergic
neurons revealed that they were sleep active, with their highest
discharge rate occurring during REM sleep. Regarding the
subtype of TMN-projecting GABAergic neurons, these neurons
partly overlapped with cholecystokinin (CCK)-, corticotropin-
releasing hormone (CRH)-, and Tac1-positive neurons. Whereas
optogenetic activation of CCK- and CRH-positive neurons
increased both NREM and REM sleep (Chung et al., 2017),
optogenetic activation of Tac1-positive neurons increased only
NREM sleep and not REM sleep (Chung et al., 2017). However,
chemogenetic activation of Tac1-positive POA neurons increased
wakefulness (Reitz et al., 2020).

In conclusion, we can identify diverse inhibitory neuron
populations with different neurotransmitters and projection
patterns, and each population is thought to regulate sleep
in different ways.

Since almost all POA neurons expressing the neuropeptide
galanin are GABAergic, galanin-positive POA neurons are
thought to be a subgroup of POA GABAergic neurons.
Optogenetic activation of galanin-positive POA neurons at high
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TABLE 1 | Preoptic area neuron subtypes that regulate physiology and behavior.

Marker Localization1 Manipulation Results References

Adcyap1 VMPO Activation Decrease in body temperature Tan et al., 2016

BDNF VMPO Activation Decrease in body temperature Tan et al., 2016

CCK Lateral MPOA and LPOA Activation Increase in NREM and REM sleep Chung et al., 2017

Decrease in wakefulness

Inhibition Decrease in NREM and REM sleep Chung et al., 2017

Increase in wakefulness

CRH Lateral MPOA and LPOA Activation Increase in NREM and REM sleep Chung et al., 2017

Decrease in wakefulness

Inhibition Decrease in NREM and REM sleep Chung et al., 2017

Increase in wakefulness

Esr1 MPOA Activation Enhanced pup retrieval Fang et al., 2018; Wei et al., 2018

Activation No change in maternal nest building Li et al., 2019

Activation Enhanced male-type mounting of both males and females Wei et al., 2018

Inhibition Suppressed pup-directed behavior Fang et al., 2018; Wei et al., 2018

Inhibition Suppressed male mounting Wei et al., 2018

Ablation Suppressed pup retrieval Wei et al., 2018

Ablation Suppressed male mounting Wei et al., 2018

GAD2 Lateral MPOA and LPOA Activation Increase in wakefulness Chung et al., 2017

GAD2, projection Lateral MPOA and LPOA Activation Increase in NREM and REM sleep Chung et al., 2017

to TMN Decrease in wakefulness

Inhibition Decrease in NREM and REM sleep Chung et al., 2017

Increase in wakefulness

Galanin Lateral MPOA and LPOA Activation Increase in wakefulness Chung et al., 2017

Activation Increase in NREM sleep Ma et al., 2019

Increase in NERM sleep delta power

Activation Decrease in body temperature Ma et al., 2019

Ablation Fragmented sleep Ma et al., 2019

Blunted response to sleep deprivation

Ablation Increase in body temperature Ma et al., 2019

Lateral MPOA Activation Increased in NREM sleep Kroeger et al., 2018

No change in REM sleep

Increase in delta power during all states

Activation Decrease in body temperature Kroeger et al., 2018

Inhibition Increase in wakefulness Kroeger et al., 2018

Decrease in NREM sleep

No change in REM sleep

Activation Suppressed infanticide Wu et al., 2014

Enhanced pup grooming

Activation No change in male sexual behavior Wu et al., 2014

Ablation Suppressed pup retrieval Wu et al., 2014

Enhanced infanticide

Ablation Suppressed male sexual behavior Wu et al., 2014

Galanin, projection MPOA Activation Suppressed male infanticide Kohl et al., 2018

to PAG Enhanced pup grooming

Inhibition Suppressed pup grooming Kohl et al., 2018

Galanin MPOA Activation Enhanced motivation to interact with pups Kohl et al., 2018

Projection to VTA Inhibition Suppressed motivation to interact with pups Kohl et al., 2018

Galanin, projection MPOA Activation No change in pup-directed behavior Kohl et al., 2018

to MeA Enhanced male–male aggression

Inhibition No change in pup-directed behavior Kohl et al., 2018

No change in male–male aggression

(Continued)
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TABLE 1 | Continued

Marker Localization1 Manipulation Results References

Leptin receptor VMPO Activation Decrease in body temperature Yu et al., 2016

Nos1 warm-sensitive MnPO and MPOA Activation Increase in NREM sleep Harding et al., 2018

Activation Decrease in body temperature Harding et al., 2018

Opn5 VMPO Activation Decrease in body temperature Zhang et al., 2020

Inhibition Increase in body temperature Zhang et al., 2020

Pdyn Lateral MPOA and LPOA Activation Increase in NREM sleep Chung et al., 2017

Tac1 Lateral MPOA and LPOA Activation Increase in NREM sleep Chung et al., 2017

Activation Increase in wakefulness Reitz et al., 2020

Inhibition Decrease in NREM and REM sleep Chung et al., 2017

Inhibition No change in wakefulness Reitz et al., 2020

Trpm2 MPOA Activation Decrease in body temperature Song et al., 2016

Inhibition Increase in body temperature Song et al., 2016

Vgat MnPO Activation Increase in NREM sleep Vanini et al., 2020

Decrease in REM sleep

No change in wakefulness

Ablation Increase in body temperature Machado et al., 2020

Vgat MnPO Activation No change in body temperature Vanini et al., 2020

MPOA Activation Enhanced pup retrieval Li et al., 2019

Enhanced maternal nest building

Activation No change in body temperature Song et al., 2016

Inhibition Suppressed maternal nest building Li et al., 2019

No change in pup retrieval

VMPO Activation No change in body temperature Yu et al., 2016

Vglut2 Lateral MPOA and LPOA Activation Increase in wakefulness Chung et al., 2017

MPOA Activation Decrease in body temperature Song et al., 2016

MnPO Activation Decrease in body temperature Vanini et al., 2020

VMPO Activation Decrease in body temperature Yu et al., 2016

VLPO Activation Increase in wakefulness Vanini et al., 2020

Decrease in NREM and REM sleep

Vglut2, projection to PAG Lateral MPOA and LPOA Activation Increase in wakefulness Chung et al., 2017

1Target sites of AAV injection according to the figures and coordinates.
MeA, medial amygdala; MnPO, median preoptic nucleus; MPOA, medial preoptic area; PAG, periaqueductal gray; TMN, tuberomammillary nucleus; VMPO, ventromedial
preoptic area; VLPO, ventrolateral preoptic area; VTA, ventral tegmental area.

frequencies enhanced wakefulness (Chung et al., 2017). However,
another study showed that optogenetic activation of galanin-
positive POA neurons at a frequency close to physiological
discharge rates, such as 2–5 Hz, enhanced NREM sleep but
did not change the amount of REM sleep (Kroeger et al.,
2018). Accordingly, optogenetic inhibition of galanin neurons
in the LPOA and lateral MPOA decreased NREM sleep but
did not alter the REM sleep amount (Kroeger et al., 2018).
Activation of galanin-positive neurons increased the number of
sleep episodes but did not change episode length, suggesting
a role of galanin-positive POA neurons in the initiation of
NREM sleep episodes rather than their maintenance. In addition,
sustained activation of galanin neurons in the POA using
pharmacogenetic tools resulted in a mild increase in NREM sleep,
a decrease in REM sleep, and prominent hypothermia (Kroeger
et al., 2018). Inhibition of galanin-positive POA neurons by
GABAergic neurons of the ventral lateral hypothalamic area
(LHA) induced wakefulness (Venner et al., 2019), which supports
a sleep-inducing role of galanin-positive POA neurons.

Importantly, when galanin-positive POA neurons were
photoactivated, the electroencephalogram (EEG) showed high-
amplitude slow waves entrained to photoactivation and presented
an increase in NREM sleep delta power (Kroeger et al., 2018),
which is often used as an indicator of sleep need (Franken et al.,
2001). Ablation of galanin neurons in the LPOA and lateral
MPOA (defined according to their coordinates) weakened the
response to 5 h sleep deprivation; mice with ablated galanin
neurons showed markedly diminished increase in sleep time and
a blunted increase in delta power during recovery NREM sleep
(Ma et al., 2019). These findings suggest that galanin neurons in
the POA play a role in the homeostatic regulation of sleep.

Galanin-expressing neurons in the POA may also be
implicated in sleep in humans and fish. The number of
galaninergic neurons in the human intermediate nucleus,
equivalent to the rodent POA, was correlated with sleep
fragmentation in older individuals with and without Alzheimer’s
disease (Lim et al., 2014). Galanin-expressing POA neurons were
active during recovery sleep in zebrafish. Additionally, galanin
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expression increased during wakefulness and sleep deprivation in
zebrafish (Reichert et al., 2019). Thus, POA neurons expressing
galanin may play a conserved role in sleep promotion in
diverse animal species.

PREOPTIC AREA FIBER CONNECTIONS
FOR SLEEP/WAKEFULNESS

Microinjection of AAV-EF1α-DIO-ChR2-mCherry in the
LPOA of galanin-Cre mice visualizes axon terminals in the
dorsomedial nucleus (DMH), LHA, TMN, pedunculopontine
tegmental nucleus, medial parabrachial nucleus, locus coeruleus,
ventrolateral and lateral periaqueductal gray matter, lateral
pontine tegmentum, and raphe pallidus but none in the median
or MPOA (Kroeger et al., 2018). Regarding the functional
connections of sleep-active neurons in the POA, neurons that
express Fos during sleep and project to the paraventricular
nucleus or LHA are distributed in the LPOA and MPOA
(Uschakov et al., 2006). GABAergic neurons in the POA
project to the POA, TMN, ventral tegmental area (VTA), locus
coeruleus, orexin neurons/LHA, and laterodorsal tegmentum
(Saito et al., 2013), which mainly promote wakefulness. As
expected, optogenetic stimulation of GABAergic neurons in the
POA inhibited orexin neuron activity in brain slices (Saito et al.,
2013). Similarly, MnPO neurons send their axons to the whole
MPOA and LPOA, the dorsal raphe, the locus coeruleus, and
orexin neurons in the LHA (Uschakov et al., 2007). Optogenetic
activation of the axons of POA GABAergic neurons in the
TMN increased NREM sleep (Chung et al., 2017). In contrast
to GABAergic neurons, optogenetic activation of glutamatergic
POA neurons projecting to the TMN enhanced wakefulness
(Chung et al., 2017).

As for the neurons upstream of sleep-regulating POA neurons,
monosynaptic input to TMN-projecting LPOA neurons was
found in the hypothalamus and amygdala (Chung et al., 2017).
DMH neurons send their fibers to galanin-expressing GABAergic
neurons in the POA (Chen et al., 2018). Optogenetic activation
of these DMH neurons enhanced NREM sleep and suppressed
REM sleep. Thus, there are mutual functional connections
between POA GABAergic neurons and DMH neurons. In
conclusion, since sleep-regulating neurons are intermingled in
the POA, it is necessary to divide POA neurons into subgroups
according to their afferent and efferent connections in addition
to gene expression to understand how POA neurons regulate
sleep/wake behavior.

SLEEP-INDUCING NEURONS ARE NOT
RESTRICTED TO THE VLPO

As discussed above, sleep-active or sleep-inducing neurons are
broadly distributed in the lateral MPOA and LPOA (Figure 3A),
which extends the idea that the VLPO is a sleep center
(Saper et al., 2005; Saper and Fuller, 2017). Neurons that
were Fos positive after sleep deprivation were found broadly
in the medial and lateral POA (Cirelli et al., 1995; Gong

FIGURE 3 | Models of POA neuron groups that regulate sleep and
reproductive behavior. (A) Different subgroups of POA GABAergic neurons
control sleep and wakefulness differently. TMN-projecting GABAergic neurons
promote NREM sleep and strongly REM sleep. Galanin-positive POA neurons
that are mainly GABAergic generally promote NREM sleep. POA
glutamatergic neurons promote wakefulness. (B) Estrogen receptor α and/or
galanin-positive neurons in the MPOA regulate parental behavior and male
sexual behavior. Neurons involving nest building behavior was not estrogen
receptor α positive. BNST, bed nucleus of the stria terminalis; LPOA, lateral
preoptic area; MeA, medial amygdala; MPOA, medial preoptic area; PAG,
periaqueductal gray; TMN, tuberomammillary nucleus; VLPO, ventrolateral
preoptic nucleus; VTA, ventral tegmental area.

et al., 2000; Semba et al., 2001). TMN-projecting GABAergic
neurons are also broadly distributed in the lateral POA
(Chung et al., 2017). AAV-based gene expression cannot be
localized but rather tends to be widespread, and its distribution
varies widely among injected mice (Kroeger et al., 2018).
Therefore, optogenetic and chemogenetic activation of the
LPOA regions led to broadly increased Fos-positive cells in
both the MPOA and LPOA (Kroeger et al., 2018). CCK-,
CRH-, and Tac1-positive neurons that enhance sleep are also
broadly distributed across the MPOA and LPOA (Chung
et al., 2017). Although GABA and galanin are sometimes
used as markers for the VLPO (Sherin et al., 1998; Gaus et al.,
2002), GABAergic neurons are distributed throughout the
POA, and galanin is expressed abundantly in the medial
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MPOA but only sparsely in the VLPO regions (Figure 2).
At the caudal end of the POA, galanin expression is sharply
reduced and is restricted to the supraoptic nucleus (SON),
which is caudally adjacent to the VLPO and induces sleep
(Jiang-Xie et al., 2019). We have examined the expression of
many genes and proteins in the POA but have not found
any suitable marker for the VLPO. Since gene expression
cannot clearly define the VLPO, we can identify the VLPO
only according to its brain atlas coordinates. The problem is
that these coordinates are not completely consistent between
brain atlases. Neurons regulating sleep are not only found
in the VLPO but throughout POA with diverse groups
that can enhance or suppress wake, NREM sleep, or REM
sleep, indicating that the POA is more than just a sleep-
inducing center.

PARENTAL BEHAVIOR

In addition to sleep, galanin-expression POA neurons are
involved in parental behavior (Wu et al., 2014; Kohl et al., 2018).
Before the identification of galanin-expressing neurons as major
players in parental behaviors, it had been known that the MPOA
was most critical for parental motivation, especially related to
pup retrieval behavior and inhibition of aggression toward pups,
known as infanticide (Febo, 2011; Pereira and Morrell, 2011;
Stolzenberg and Numan, 2011).

Pup retrieval is a parental behavior in which a parent
picks a pup up in the mouth and carries it to the nest in
response to chemical signals and ultrasonic vocalization of the
pup (Okabe et al., 2010; Isogai et al., 2018). Whereas virgin
female mice retrieve pups, virgin male mice often display
aggression toward pups or infanticide. However, once a virgin
male mouse mates and cohabitates with a female mouse,
the male will show pup retrieval behavior. In other words,
female mice always show pup retrieval, whereas male mice
switch from infanticide to pup retrieval in a sexual experience-
dependent manner.

In rats, the dorsolateral MPOA is considered to be more
important in pup retrieval behavior than the ventral or medial
MPOA (Jacobson et al., 1980; Numan et al., 1990). The
distribution of Fos-expressing neurons differs among MPOA
subregions during maternal behavior toward pups (Numan
and Numan, 1994; Lin et al., 1998; Li et al., 1999; Sheehan
et al., 2000; Mathieson et al., 2002). In mice, a high density
of Fos expression during parental behavior was observed in
the ACN, cMPOA, and vMPOA regardless of the reproductive
condition of the mice, such as virgin females, parturient females,
postpartum dams, and father mice (Tsuneoka et al., 2013,
2015). Lesion ablating cMPOA neurons completely abolished
pup retrieval in male mice and surprisingly led virgin and
parous females to conduct infanticide (Tsuneoka et al., 2013,
2015). Fos-expressing cells in the cMPOA during parental
behavior are galanin-positive neurons in both females and males
(Tsuneoka et al., 2013; Wu et al., 2014). Ablation of galanin-
positive POA neurons enhanced infanticide (Wu et al., 2014).
These results indicate that cMPOA suppresses aggression toward

pups in both sexes, possibly through the activation of galanin-
positive neurons.

Estrogen and prolactin regulate maternal behavior toward
pups. Pharmacological blockade of estrogen in the MPOA and
small interfering RNA (siRNA) silencing of Esr1 encoding
ERα suppressed maternal behaviors in mice (Ribeiro et al.,
2012; Catanese and Vandenberg, 2017). Acute deletion of
prolactin receptors in the mouse MPOA completely abolished
pup retrieval (Brown et al., 2017). Activation of Esr1-positive
MPOA neurons promoted pup retrieval and ablation of Esr1-
positive cells suppressed pup retrieval (Fang et al., 2018;
Wei et al., 2018). Similarly, activation of galanin-positive
MPOA neurons enhanced pup grooming and suppressed
infanticide (Wu et al., 2014). Since most galanin-positive
neurons express ERα, MPOA neurons expressing both ERα

and galanin control parental behavior under the influence
of estrogen (Figure 3B). In addition to estrogen, oxytocin
also regulates maternal behavior. The upregulation of oxytocin
signaling in the mouse MPOA promoted experience-induced
maternal motivation (Okabe et al., 2017). MERFISH showed
that neuron groups expressing oxytocin receptor are specifically
active during pup-directed aggression (Moffitt et al., 2018). These
cell populations are distinct from parental behavior-specific cells
expressing calcitonin receptor and bombesin receptor (Brs3).
However, it should be noted that the analysis included the
BNST subregions in addition to the MPOA (Moffitt et al.,
2018) because the BNST is also involved in parental behavior
(Tsuneoka et al., 2015).

Reciprocal connections between the MPOA and medial
amygdala (MeA) are important for parental behavior. Galanin
neurons in the MPOA send their projections to the MeA and
are activated during parenting regardless of the type of parental
behavior (Kohl et al., 2018). Optogenetic activation of the MPOA
galanin neuron fibers in the MeA inhibited aggression toward
pups in virgin male mice, although it did not affect parental
behavior (Kohl et al., 2018). MPOA-projecting MeA neurons
were activated during parenting behavior, especially in father
mice (Kohl et al., 2018). In female mice, optogenetic stimulation
of GABAergic neurons in the MeA promoted pup grooming but
not pup retrieval or crouching (Chen et al., 2019). Because almost
all MPOA galanin neurons are inhibitory, they may regulate
interaction with pups by inhibiting negative olfactory stimuli
encoded in the MeA (Kohl et al., 2018).

Projections from the MPOA to the VTA are thought to be
important for maternal motivation in rats (Numan and Smith,
1984; Hansen et al., 1991; Stack et al., 2002; Numan et al.,
2005). Similarly, Esr1-positive neurons in the mouse MPOA
send strong inhibitory input to non-dopaminergic neurons in
the VTA, and this inhibitory input promotes maternal pup
retrieval through disinhibition of dopaminergic neurons (Fang
et al., 2018). Since optogenetic manipulation of the axons
of MPOA galaninergic neurons in the VTA did not change
parental pup retrieval (Kohl et al., 2018), galanin-positive
MPOA neurons projecting to the VTA may not be involved
in pup retrieval. These results indicate that galanin-negative,
ERα-positive GABAergic neurons may be involved in pup
retrieval via the VTA (Figure 3B).
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NEST BUILDING BEHAVIOR

Many animals sleep in a certain posture in a nest. Rodents
build nests for resting, sleeping, keeping warm, raising children,
and hiding from enemies (Jirkof, 2014). Thus, nest building
behavior is necessary for sleep and parental behavior. Lesions
in the vMPOA of female mice suppressed nest building but
did not affect maternal behavior toward pups (Tsuneoka et al.,
2013). In contrast, cMPOA-lesioned mice showed disruption in
both nest building and parental behavior (Tsuneoka et al., 2013).
Activation of MPOA GABAergic neurons enhanced nest building
(Li et al., 2019). Activation of agouti-related protein (AGRP)
fibers from the arcuate nucleus to the MPOA markedly decreased
nest building but only slightly changed pup retrieval behavior (Li
et al., 2019). This suggests that different groups of neurons with
specific fiber connections separately regulate nest building and
retrieval of pups to the nest.

Although activation of Esr1-positive MPOA neurons
enhanced maternal pup retrieval (Fang et al., 2018; Wei et al.,
2018), activation of Esr1-positive MPOA neurons and local
estrogen blockade by bisphenol S in the MPOA did not affect
maternal nest building behavior (Catanese and Vandenberg,
2017; Li et al., 2019), suggesting that Esr1-positive MPOA
neurons are not involved in nest building. Mouse build nests
not only for nurturing but also for keeping warm. Mice
nesting becomes inactive in warm conditions. Warm-sensitive
neurons expressing pituitary adenylate cyclase-activating
polypeptide (PACAP)/brain-derived neurotrophic factor
(BDNF) in the MPOA drastically inhibited nest building
behavior (Tan et al., 2016).

MALE SEXUAL BEHAVIOR

Conceptually, sexual behaviors are composed of appetitive and
consummatory behaviors. In male rodents, appetitive sexual
behavior consists of behavioral components that increase mating
opportunities, such as approaching, pursuing, and sniffing.
Consummatory sexual behavior is a sequence consisting of
mounting, intromission, and ejaculation. Accumulated findings
indicate a crucial role of the MPOA in consummatory
sexual behavior (Hull and Dominguez, 2007, 2015). Electrical
stimulation of the rat MPOA during mounting facilitated
ejaculation (Malsbury, 1971). Lesions in the rat MPOA abolished
consummatory sexual behavior repertoires (Bermond, 1982;
Hansen et al., 1982; Arendash and Gorski, 1983). Such loss of
sexual performance due to MPOA lesions was not reversed even
after 8 months (Ginton and Merari, 1977), suggesting that there
is no alternative brain region carrying out this function of the
MPOA. Importantly, the number of neurons with enhanced
firing changed throughout a series of mating behaviors (Horio
et al., 1986; Shimura et al., 1994), and Fos expression in the
rat MPOA was increased from mounting to intromission and
then to ejaculation (Coolen et al., 1996; Veening and Coolen,
1998; Yamaguchi et al., 2018). This indicates that an increasing
number of MPOA cells are activated as consummatory sexual
behavior progresses.

Additionally, male pursuit of females disappeared in MPOA-
lesioned rats (Paredes et al., 1993, 1998; Paredes and Baum,
1995; Kindon et al., 1996), and their partner preference changed
from receptive females to stud males (Paredes and Baum,
1995; Kindon et al., 1996; Paredes et al., 1998). Therefore,
MPOA neurons are thought to be involved in appetitive
sexual behavior as well (Veening and Coolen, 2014). MPOA
neurons also mediate experience-dependent sexual arousal.
Sexual experience facilitates all components of mating behaviors,
and this facilitation is thought to be mediated by experience-
induced changes in MPOA neurons, such as synaptic plasticity
(Jean et al., 2017), dopamine sensitivity (McHenry et al., 2012;
Nutsch et al., 2016), oxytocin sensitivity (Gil et al., 2013), and
neuropeptide precursor expression (Maejima et al., 2018).

Testosterone plays a crucial role in the regulation of male
sexual behavior. After testosterone is aromatized into estradiol,
this estradiol induces male sexual behavior via ERα (Sano et al.,
2016). Esr1 knockdown in MPOA neurons by short-hair RNA
(shRNA) drastically suppressed a series of male sexual behaviors
and Esr1 knockdown in other Esr1-expressing sites such as
the VMH and MeA and suppressed specific components of
male sexual behaviors (Sano et al., 2013, 2016). In vivo calcium
imaging revealed that Esr1-positive POA neurons were activated
immediately after the initiation of any sexual behavior, and
optogenetic activation of Esr1-positive neurons enhanced male
sexual behavior (Wei et al., 2018). In addition, genetic ablation of
Esr1-positive POA neurons suppressed male mounting behavior,
and optogenetic inhibition suppressed both mounting and
intromission in a stimulus-timing-dependent manner (Wei et al.,
2018). Thus, estrogen derived from testosterone may activate a
subgroup of POA neurons to promote male sexual behavior.

In addition to estrogen, oxytocin also regulates male sexual
behavior. Male rat copulation was facilitated by microinjection of
oxytocin in the MPOA and suppressed by an oxytocin receptor
antagonist. Oxytocin binding in the MPOA was correlated with
the sexual performance of males (Okabe et al., 2017).

It is not clear what types of MPOA neurons are involved
in male sexual behaviors, but various neuropeptides and
neurotransmitters such as α-MSH, dopamine, NPY, galanin,
substance P, neurokinin K, opioids, orexin, and oxytocin have
been demonstrated to affect male sexual behavior through MPOA
neurons in rats (Argiolas and Melis, 2013). The distributions of
Fos-positive neurons were different during parental behavior and
male sexual behavior (Tsuneoka et al., 2015; Moffitt et al., 2018).
catFISH analysis showed that only a small percentage (∼10%)
of Esr1-positive neurons were activated during both parental
and sexual behavior (Wei et al., 2018), suggesting that the cell
populations involved in these two behaviors rarely overlap.

Moxd1, A NOVEL MARKER OF
SEXUALLY DIMORPHIC NUCLEI

In addition to reproductive behavior, there are also sex differences
in sleep (Komiya et al., 2018). The total wake time of female
mice is much longer than that of male mice (Funato et al., 2016).
Although it is not clear what mechanism is responsible for the sex
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FIGURE 4 | Moxd1 mRNA as a marker for sexually dimorphic nucleus. (A,B) Moxd1 mRNA expression in the sexually dimorphic nucleus of the POA (SDN-POA) of
(A) male and (B) female mice. The number of Moxd1-positive cells of the SDN-POA are higher in males than in females. (C,D) The SDN-POA has cells expressing
(C) Moxd1 and (D) calbindin. (E) Merged images of Moxd1 and Calbindin. (F,G) Moxd1, calbindin, merged image of dashed rectangles in panels (C–E). Scale bars:
(A) 200 µm, (E) 100 µm, and (H) 50 µm. Modified from Tsuneoka et al. (2017a).

difference in sleep, sexually dimorphic structures in brains may be
involved. To examine the role of sexual dimorphism in the brain,
a good marker for sexually dimorphic nuclei (SDN) is necessary.

We identified Moxd1 as a new and specific marker gene for
SDN through an in silico search of the Allen Gene Expression
Atlas (Figure 4). Moxd1 is expressed highly specifically in all
major SDN, such as the SDN-POA, the principal nucleus of
the BNST (BNSTpr), and posterodorsal part of the medial
amygdala (MePD) (Tsuneoka et al., 2017a). In the MPOA, only
a few Moxd1-positive cells exist outside the SDN-POA. Moxd1-
positive SDN-POA cells are more numerous in male mice than
in female mice (Figure 4). Subsequently, single-cell RNA-seq
and MERFISH analyses have confirmed Moxd1 as a marker
for a neuron subgroup in the preoptic region (Moffitt et al.,
2018). Importantly, Moxd1 expression in the SDN-POA was not
affected by adult castration or ovariectomy but was affected by
neonatal castration, suggesting that the expression of Moxd1 in
the SDN-POA is determined by the hormonal milieu during
the perinatal period and that the expression is independent of
the activating effect of gonadal steroids in adulthood. Moxd1
encodes a monooxygenase, DBH-like 1, that is localized in
the endoplasmic reticulum and is predicted to hydroxylate a
hydrophobic substrate based on its amino acid sequence, which
is similar to that of dopamine β-hydroxylase (Xin et al., 2004).
Because the substrates of Moxd1 protein have not been identified,
its biological role in sexually dimorphic neurons is not known.

Although calbindin has been used as a marker of the SDN-POA,
calbindin-positive cells are also distributed outside the SDN-POA
(Tsuneoka et al., 2017a) (Figure 4). Thus, the higher specificity of
Moxd1 allows us to visualize and manipulate SDN in order to
better understand sexual differences in behavior.

FUTURE DIRECTIONS

In summary, different approaches, including in vivo
neurophysiology, Fos imaging, cell ablation, and optogenetic and
chemogenetic manipulation, have generally shown that the POA
contains a diverse group of neurons that differentially control
wake, NREM sleep, and REM sleep. Detailed subgrouping
of POA neurons in terms of gene markers, input/output
connections, neurotransmitters, and neurophysiological
properties is necessary to better understand how POA neurons
regulate sleep/wakefulness.

So far, the role of the POA in sleep and other innate behaviors
has been addressed separately. However, given that galanin-
positive POA neurons are involved in the regulation of both
sleep and parental behavior, more integrated observation will be
necessary to obtain physiologically relevant insight. Since POA
neurons are involved in a variety of innate behaviors associated
with enhanced levels of arousal, changes in sleep/wakefulness
can be secondary to increased motivation for certain behaviors.
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For example, whereas galanin neurons projecting to the TMN
induce sleep, those projecting to the MeA promote pup-directed
behavior with an increased arousal level. In this case, activation
of all galanin neurons in the POA overcomes the sleep-inducing
effects of a subset of galanin neurons and leads to arousal.

Although it was not the focus here, the POA serves as
a hub for thermoregulation; it receives thermosensory signals
from the skin and regulates downstream pathways for heat
production by the brown adipose tissue and heat dissipation
by the skin through vasodilation (Nakamura, 2011; Morrison
et al., 2014; Harding et al., 2018; Tan and Knight, 2018; Ma
et al., 2019; Morrison and Nakamura, 2019). Given that body
temperature changes are associated with sleep/wake behavior,
the POA may coordinately be responsible for lower body
temperature during NREM sleep. The recent discovery of
warm-sensing neurons in the POA expressing PACAP/Adcyap1
and BDNF demonstrated that a specific group of neurons
in the POA are responsible for sensing warm environments
and inducing adaptive changes that reduce heat production
by brown adipose tissues and enhance heat dissipation from
the skin (Tan et al., 2016). Partly overlapping neuronal
populations in the midline POA have been shown to induce
hypothermia (Hrvatin et al., 2020; Takahashi et al., 2020;
Zhang et al., 2020).

Recent technical advances to visualize and manipulate specific
groups of POA neurons will uncover how different groups
of intermingled but largely separate POA neurons function in
coordination as hubs for diverse behavioral modalities. How this

system matured during ontogeny and evolved during phylogeny
will be a future challenge. We believe that the diversity of POA
reflects not only the diversity of individual behavior but also the
diversity of the animal kingdom.
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