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Epstein–Barr virus (EBV) is a human γ-herpesvirus that establishes latency and lifelong 
infection in host B cells while achieving a balance with the host immune response. When 
the immune system is perturbed through immunosuppression or immunodeficiency, 
however, these latently infected B cells can give rise to aggressive B cell lymphomas. 
Natural killer (NK) cells are regarded as critical in the early immune response to viral 
infection, but their role in controlling expansion of infected B cells is not understood. 
Here, we report that NK cells from healthy human donors display increased killing of 
autologous B lymphoblastoid cell lines (LCLs) harboring latent EBV compared to pri-
mary B cells. Coculture of NK cells with autologous EBV+ LCL identifies an NK cell 
population that produces IFNγ and mobilizes the cytotoxic granule protein CD107a. 
Multi-parameter flow cytometry and Boolean analysis reveal that these functional cells 
are enriched for expression of the NK cell receptor NKG2A. Further, NKG2A+ NK cells 
more efficiently lyse autologous LCL than do NKG2A− NK cells. More specifically, 
NKG2A+2B4+CD16−CD57−NKG2C−NKG2D+ cells constitute the predominant NK cell 
population that responds to latently infected autologous EBV+ B cells. Thus, a subset of 
NK cells is enhanced for the ability to recognize and eliminate autologous, EBV-infected 
transformed cells, laying the groundwork for harnessing this subset for therapeutic use 
in EBV+ malignancies.
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inTrODUcTiOn

Epstein–Barr virus (EBV) is a ubiquitous γ-herpesvirus that persists as a chronic, asymptomatic 
infection in over 90% of the adult human population (1). EBV preferentially establishes infection in 
naïve tonsillar B cells. EBV remains in the lytic phase of infection in a minority of cells, producing 
infectious viral particles that are spread by oral transmission. Latent infection is established in the 
vast majority of infected cells and is responsible for driving infected B cells into the memory B cell 
reservoir, where the virus persists for the lifetime of the host; in healthy carriers, an average of 10 of 
every million peripheral blood memory B cells are EBV-infected (1, 2). Distinct viral proteins from 
both lytic and latent cycles of infection elicit a robust cellular immune response in the host.
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While the T cell response to EBV-infected cells has been 
extensively studied (3), several lines of evidence from murine 
models and human studies suggest that natural killer (NK) cells 
are also critical in host immunity to EBV. First, in humanized 
murine models, depletion of NK cells increases features typical of 
infectious mononucleosis (IM) (4) and promotes EBV-associated 
tumorigenesis (4, 5). Second, human NK cells kill lytically 
infected allogeneic B cells in  vitro (6, 7). Third, NK cell num-
bers expand during primary symptomatic EBV infection in IM 
patients (8, 9). Finally, patients with X-linked lymphoproliferative 
syndrome and X-linked immunodeficiency with Mg2+ defect, 
EBV infection, and neoplasia (XMEN) have NK deficiencies 
and suffer from life-threatening complications of EBV infection 
including IM and spontaneous EBV-associated malignancies 
(10–18). Notably, these complications appear to be related to NK 
cell function because they often occur in the presence of normal 
CD8+ T cell responses and involve defective NK receptor (NKR) 
expression or signaling (13–18).

Natural killer cells are phenotypically heterogeneous in 
their expression of inhibitory and activating NKRs (19). 
Inhibitory receptors include NKG2A and many of the killer 
immunoglobulin-like receptors (KIR), while activating NKRs 
include NKG2D, NKG2C, and the natural cytotoxicity recep-
tors. Subsets of NK cells defined by their NKR expression 
have been described in response to specific pathogens. For 
example, NKG2C+ NK cells preferentially expand during acute 
human cytomegalovirus (CMV) infection as well as in CMV-
seropositive individuals co-infected with hantavirus, chikun-
gunya virus, chronic HIV, or chronic hepatitis B or C (20–26). 
Along similar lines, recent evidence suggests that particular 
NK cell subsets respond to EBV infection. For instance, a 
IFNγhiCD56brightNKG2A+CD94+CD54+CD62L− NK cell subset 
accumulates in the tonsils of EBV carriers and reduces B cell 
transformation by EBV more potently than other CD56bright 
NK cells (27). Further, CD56dimKIR−NKG2A+ NK cells pref-
erentially proliferate during acute EBV+ IM and degranulate 
in response to allogeneic B cells displaying EBV lytic antigens 
(7). Finally, a mature CD56dimNKG2A+CD57+ NK population 
persists after acute EBV infection in individuals co-infected 
with CMV (28).

Thus, various NKR and NK cell subsets have been implicated 
in the primary response to EBV-infected cells during acute IM 
and B cell transformation by EBV. However, latent infection 
dominates the landscape of EBV. Failure to control latent EBV 
infection can lead to serious disease, particularly from a variety of 
EBV-associated malignancies, including lymphoproliferative dis-
eases (EBV-LPD). EBV-LPD represent a spectrum of potentially 
fatal lymphoproliferations, often involving B lymphocytes, which 
arise when the immune system is compromised by posttransplant 
immunosuppression, HIV, immunomodulating biologicals, 
or advancing age (29–32). The role of NK cells in the immune 
response to autologous cells latently infected with EBV is unclear. 
Thus, our goal was to assess the ability of NK cells to recognize 
and respond to autologous lymphoblastoid cell lines (LCLs), in 
order to better understand mechanisms that prevent expansion 
of latently infected cells in healthy individuals and to present new 
therapeutic opportunities for EBV-LPD.

MaTerials anD MeThODs

lcl generation, Primary B cell and nK 
cell isolation, and cell lines
EBV+ LCLs were generated from 11 healthy donors by infection 
of freshly isolated PBMCs with the B95.8 laboratory strain of 
EBV, as previously described (33). LCL and the MHC-Ilo 721.221 
cell line were maintained in RPMI (Corning) supplemented 
with 10% FBS (Serum Source International) and 1% penicillin/
streptomycin (Corning) [complete RPMI (cRPMI)]. Primary NK 
cells or B cells were negatively selected from whole blood using 
the RosetteSep Human NK Enrichment Kit or Human B Cell 
Enrichment Kit, respectively (Stem Cell Technologies). Purity 
was routinely (90% (Figures S1A,B in Supplementary Material). 
Purified primary NK cells were cultured for 2 days in cRPMI sup-
plemented with 300 U/mL IL-2 (NIH Reagent Program) prior to 
stimulation or coculture. This study was performed in accordance 
with the Declaration of Helsinki and approved by the Stanford 
University Institutional Review Board, and written informed 
consent was obtained from all participants.

cytotoxicity assay
Natural killer cell cytotoxicity was assayed by a modified ACT1 
assay (Cell Technology). Briefly, target cells (721.221, primary 
B cells, autologous LCL) were incubated with 0.25 µM CFSE in 
PBS + 2.5% FBS for 5 min at room temperature, then washed 
twice with 10 volumes cRPMI. A total of 0.5 × 105 target cells 
were cocultured for 4 h in a 37°C-5% CO2 humidified incubator 
with 2 × 105 NK cells, for a final ratio of 4 NK cells:1 target cell. 
Cocultures were pelleted, resuspended in 200  µL cRPMI, and 
incubated with 5 µL 7-aminoactinomycin D (7-AAD) for 15 min 
on ice. Unlabeled target cells served as a control for gating, while 
CFSE-labeled target cells treated with 1× final FACS Perm (BD 
Pharmingen) for the final 15 min of the coculture served as a 
positive control for maximum target cell death. Cells were ana-
lyzed on a FACScan flow cytometer with CellQuest Software, 
and dead target cells were identified as CFSE+7-AAD+. Specific 
killing was calculated as [(%CFSE+7-AAD+

NK:Target − % CFSE+7-
AAD+

Target Only)/(%  CFSE+7-AAD+
Permeabilized Target  − %  CFSE+7- 

AAD+
Target Only)] × 100.

For the cytotoxicity assay using purified NKG2A+ and NKG2A− 
NK cells, NK cells were isolated using an NK Isolation Kit (Miltenyi) 
and cultured in RPMI complete with 300 U/ml IL-2 for 2 days. 
NK cells were then stained with NKG2A-PE (Beckman Coulter, 
clone Z199), CD3-APC (Biolegend), CD56-PE Cy7 (Biolegend), 
CD16-PerCP Cy5.5 (Biolegend), and Fixable Viability Dye eFluor 
780 (eBioscience) and sorted for live CD3−CD56+CD16+ and 
NKG2A± on a BD FACSAria. Sorted cells were rested in RPMI 
complete with 300 U/ml IL-2 for 2 h at 37°C before the start of 
the killing assay. LCLs were labeled with 0.5 µM CellTrace Violet 
(Invitrogen) for 20 min at 37°C, then washed twice with at least 
10 volumes of RPMI complete. LCL target cells (2.5 × 104) were 
cocultured with 1  ×  105 sorted NKG2A+ or NKG2A− NK cells 
for 4 h in a 37°C incubator for a 4:1 E:T ratio. At the end of the 
coculture, cells were stained for viability using Fixable Viability 
Dye eFluor 780 (eBioscience) at the manufacturer’s recommended 
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concentration, for 10 min on ice. Cells were then washed twice 
with PBS before analysis as above.

analysis of nK ligand expression
PBMCs were isolated from whole blood by Ficoll-Paque (GE 
Healthcare). PBMC and LCL were stained with the following 
antibodies or matched isotype controls: anti-CD48-PE, anti-
CD19-FITC, anti-CD19-PE, anti-HLA-E-PE, and anti-HLA-
A,B,C-FITC (BD Pharmingen) and analyzed by flow cytometry. 
All antibodies were titrated on positive control cell lines; these 
lines were stained as a positive control in each experiment. Stain 
indexes were used to compare NK ligand expression on CD19+-
gated primary B cells and autologous LCL (34). Stain indexes 
were calculated using the mean fluorescence intensities (MFI) as 
(MFIligand − MFIisotype)/(2 × SDisotype).

nK:Target cell cocultures and  
Flow cytometric analysis
IL-2 primed NK cells (0.25 × 106 cells/condition) were cocultured 
with equal amounts of 721.221, primary B cells, or autologous 
LCL in 200  µL final volume (Figure S2A in Supplementary 
Material). NK cells were left unstimulated (NK only) as a nega-
tive control or were stimulated with 1× PMA/Ionomycin Cell 
Stimulation Cocktail (eBioscience) as a positive control. All 
cells were cultured in cRPMI supplemented with 300  U/mL 
IL-2, 1× final brefeldin A/monensin protein transport inhibitor 
(eBioscience), and anti-CD107a-Pacific blue (BioLegend). After 
4 h incubation in a 37 C-5% CO2 humidified incubator, 1.8 mM 
EDTA was added for 5  min to arrest stimulation. Cells were 
stained with the near IR Live/Dead stain (Life Technologies), 
washed, and then stained with anti-CD3-Alexa 700, anti-CD14-
Alexa 700, anti-CD19-Alexa 700, anti-CD56-Brilliant Violet 
605, anti-NKG2D-PE,Cy7, anti-2B4-PerCP,Cy5.5 (BioLegend), 
anti-CD16-V500 (BD Pharmingen), anti-NKG2C-PE (R&D 
Systems), and anti-NKG2A-FITC (Miltenyi). Cells were then 
fixed and permeabilized with FACS Lyse and FACS Perm II (BD 
Pharmingen), according to the manufacturer’s instructions. Cells 
were then stained with anti-IFNγ-Brilliant Violet 785. All anti-
bodies were titrated on PBMC prior to use. Fluorescence minus 
one-stained PBMC were run for each experiment and used to set 
gates for each parameter. Data were collected on a four-laser LSRII 
with FACS DiVA software at the Stanford Shared FACS Facility.

Data and statistical analysis
Flow cytometry data were analyzed using FlowJo, version 9.7.6 
(Tree Star). Statistical analysis was performed using Prism, ver-
sion 6.0d (GraphPad Software). All paired data were compared 
using the Wilcoxon matched-pairs signed rank test. A Bonferroni 
correction was used to adjust for multiple comparisons.

resUlTs

expression of nK cell receptor  
ligands on eBV+ lcl
Lymphoblastoid cell lines are CD19+ EBV-transformed B 
cell lines which display a viral latency type III pattern of 

gene expression and resemble EBV-LPDs like posttransplant 
lymphoproliferative disorder (35). We, therefore, analyzed 
expression of NKR ligands on LCL to evaluate how these cells, 
as a model of predominantly latent infection, stimulate NK cell 
recognition. We compared NK cell ligand staining on EBV+ 
LCL with primary autologous CD19+ B cells (Figure 1; Figure 
S1A in Supplementary Material). To account for the increased 
autofluorescence of EBV+ LCL, we used the stain index (34) 
to normalize expression levels to the corresponding isotype 
staining (Figures  1A–F). After normalization, EBV+ LCL 
(n =  6) display increased expression of the 2B4 ligand CD48 
[Figures 1A,D (36)], lower expression of the inhibitory ligand 
MHC class I (HLA-A,B,C; Figures  1B,E), and no significant 
difference in expression of the NKG2A and NKG2C ligand 
HLA-E (Figures  1C,F) compared to autologous, primary 
CD19+ B cells.

nK cells Kill autologous eBV+ lcl
We next tested the ability of purified NK cells to kill autologous 
EBV+ LCL using a flow cytometry-based cytotoxicity assay 
(Figures S1B,C in Supplementary Material; Figure  1G). NK 
cells robustly kill the MHC-Ilo positive control cell line 721.221 
target (87.1  ±  3.7% SEM, Figure  1H). NK cells from healthy 
donors (n  =  7) display significantly more cytotoxicity against 
autologous EBV+ LCL than against primary unstimulated B cells 
(8 ± 2.1% SEM versus 2.8 ± 0.6% SEM, p = 0.016; Figure 1H). 
The NK cytotoxicity against autologous EBV+ LCL is likely 
predominantly directed at latently infected LCL, because less 
than 2% of EBV+ LCL express the lytic antigen BZLF1 (Figure 
S3 in Supplementary Material) (6). Thus, transformed B cells 
harboring a latent EBV infection can elicit a cytotoxic response 
by autologous NK cells.

To evaluate the NK cell activity during the targeting of autolo-
gous EBV-infected LCL, cocultures were stained with a panel of 
antibodies to identify NK cell subsets and their function (Figure 
S2A in Supplementary Material). NK cells (defined as CD3+ 
CD14+CD19+CD56+ live singlets, Figure S2B in Supplementary 
Material) capable of releasing cytotoxic granules and/or produc-
ing cytokines were identified by staining for CD107a mobilization 
and intracellular IFNγ, respectively. In response to the positive 
control cell line 721.221, 20  ±  2% SEM of NK cells produce 
IFNγ, 29 ± 2% SEM of NK cells degranulate, and 17 ± 2% SEM 
of NK cells both degranulate and produce IFNγ above NK only 
background (Figure  2). In response to the autologous EBV+ 
LCL, 4.1 ± 2% SEM of NK cells produce IFNγ, 13.5 ± 6% SEM 
degranulate, and 2.6 ± 1.2% SEM of NK cells both degranulate 
and produce IFNγ above NK only background levels in NK only 
conditions (Figure 2). Thus, a small population of NK cells can 
respond to autologous EBV+ LCL.

nKg2a expression Defines a subset  
of nK cells enriched in the ability to 
respond to autologous eBV+ lcl
To identify markers that can distinguish NK cells that respond to 
EBV+ LCL, we examined expression of the activating receptors 
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FigUre 1 | nK cells kill autologous eBV+ lcl. (a–F) Expression of NK ligands CD48, HLA-A,B,C, and HLA-E on autologous CD19+ B cells and EBV+ LCL. 
(a–c) Representative flow cytometry shows isotype (light gray shaded) or NK ligand-stained (light gray outline) primary CD19+ B cells or isotype (dark gray shaded) 
or NK ligand-stained (dark gray outline) autologous LCLs. (D–F) Stain indices (34) of N = 6 donors. (g) NK killing of CFSE-labeled target cells (721.221, primary 
B cells and autologous LCL target cells). The percentage of dead target cells, as detected by 7-AAD and CFSE, are shown in representative samples. (h) Specific 
killing was calculated as described in Section “Materials and Methods.” Each of the N = 7 donors is labeled with a unique symbol. Error bars represent the minimum 
and maximum values for each condition. All p-values were calculated using the Wilcoxon matched-pairs signed rank test.
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CD16, 2B4, NKG2C, and NKG2D, the inhibitory receptor NKG2A, 
and the maturity marker CD57 on NK cells that had produced 
IFNγ and/or degranulated after coculture with autologous EBV+ 

LCL. Within an individual, each marker is expressed on a sub-
set of total NK cells (Figure S4A in Supplementary Material). 
Expression of NK cell markers also varied among individuals. 
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FigUre 3 | higher frequencies of nK cells responding to autologous 
lcl are nKg2a+. Frequency of 2B4+, CD16+, CD57+, NKG2A+, NKG2C+, 
and NKG2D+ cells within IFNγ− or IFNγ+ (a), CD107a− or CD107a+ (B), and 
CD107a−IFNγ+ or CD107a+IFNγ+ (c) NK populations after coculture with 
autologous LCL (N = 10). All p-values were calculated using the Wilcoxon 
matched-pairs signed rank test.

FigUre 2 | nK cells respond to autologous lcl and primary B cells 
with similar frequency. IFNγ (a), CD107a (B), or both (c) expression on 
NK cells (CD3−CD14−CD19−CD56+) alone (NK only) or after coculture with 
target cells (721.221 cells, primary B cells, or autologous LCLs). Error bars 
represent the minimum and maximum values for each condition. Each of the 
N = 10 donors is labeled with a unique symbol. All p-values were calculated 
using the Wilcoxon matched-pairs signed rank test.
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For example, the frequency of NKG2A+ cells in the total NK 
population ranges from 23.6–76.3%, in line with other published 
data (19, 37). Responding (IFNγ+ and/or CD107a+) NK cells 
are far less likely to express CD16 than non-responding (IFNγ+ 
and/or CD107a−) NK cells (Figure 3), consistent with the fact 
that CD16 expression is downregulated upon NK cell activation 
(38, 39). There are no significant differences in the frequencies 
of responding versus non-responding NK cells that were 2B4+, 
CD57+, NKG2C+, or NKG2D+ (Figure 3). In contrast, the fre-
quency of NK cells mounting a functional response to autologous 
EBV+ LCL is significantly enriched for expression of NKG2A 
compared to NK cells that do not mount a functional response 
(Figure 3).

To determine whether the population of NK cells that 
respond to EBV+ LCL is distinct from those that respond to 
uninfected B cells, we compared the expression of the markers 
CD16, CD57, 2B4, NKG2A, NKG2C, and NKG2D on NK cells 
responding to autologous EBV+ LCL versus primary B cells. 
There are no significant differences in the frequency of NK cells 
expressing CD16 in NK cells responding to primary B cells versus 
autologous EBV+ LCL (Figure 4). In contrast, the population of 
NK cells responding to autologous, EBV+ LCLs contains sig-
nificantly higher frequencies of NKG2A+ cells than the NK cells 
responding to primary B cells (Figure 4). Moreover, the propor-
tion of NKG2C+ cells in the subset of CD107a+IFNγ+ NK cells 
that respond to autologous EBV+ LCL is reduced (Figure 4C). 
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FigUre 5 | higher frequencies of nK cells responding specifically to autologous lcl are nKg2a+2B4+cD16−cD57−nKg2c−nKg2D+.

FigUre 4 | higher frequencies of nK cells respond specifically to autologous lcl and not primary B cells are nKg2a+. Frequency of CD16+, NKG2A+, 
and NKG2C+ cells within IFNγ+ (a), CD107a+ (B), and CD107a+IFNγ+ (c) NK populations after coculture with primary B cells (open circles) or autologous LCL (filled 
circles) from N = 10 donors. All p-values were calculated using the Wilcoxon matched-pairs signed rank test.

(Continued)
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FigUre 5 | continued  
Visualization of the frequencies of 64 different NK receptor combinations in each of N = 10 donors within CD107a+IFNγ+ NK populations cocultured with primary 
B cells (a) and autologous LCL (B). The 11 most frequent receptor combinations are shown in color, and the legend describes these combinations of 2B4 (2B), 
CD16 (16), CD57 (57), NKG2A (2A), NKG2C (2C), and NKG2D (2D). (c) The average difference in each receptor combination between CD107a+IFNγ+ NK cells from 
cocultures with primary B cells or autologous LCLs and (D–n) comparisons of the frequencies between CD107a+IFNγ+ NK populations from coculture with primary 
B cells (open circles) and autologous LCL (filled circles). All p-values were calculated using the Wilcoxon matched-pairs signed rank test. A Bonferroni correction 
was used to adjust for multiple comparisons.
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There  are no significant differences in the percentage of 2B4+, 
CD57+, or NKG2D+ NK cells responding to autologous EBV+ 
LCLs versus primary B cells (Figure S4 in Supplementary 
Material). Together, these data suggest that expression of NKG2A 
can distinguish a subset of NK cells that can specifically respond 
to B cells displaying latent EBV infection.

To further characterize the NK cell subsets responding to 
latent EBV+ LCL, we examined the NK cell response to EBV 
using combinations of the six NKRs 2B4, CD16, CD57, NKG2A, 
NKG2C, and NKG2D. Using a Boolean approach, we determined 
the frequency of each of the 64 potential NK cell subsets defined 
by expression of the six NK cell receptors on NK cells respond-
ing, on the basis of CD107a and/or IFNγ expression, to coculture 
with primary B cells or autologous LCL (shown for each donor in 
Figures 5A,B, respectively). To identify EBV-responsive NK cell 

subsets, we normalized the frequency of NK cells responding to 
autologous LCL to the frequency responding to primary B cells. 
The average normalized percentage of each of these subsets 
among the 10 donors is displayed in Figure 5C. This analysis sug-
gests that the NKG2A+2B4+CD16−CD57−NKG2C−NKG2D+ NK 
cell population is the most responsive against EBV-infected LCL, 
as it was consistently more responsive to autologous LCL than to 
primary B cells, though this effect was not statistically significant 
after controlling for multiple comparisons (Figures  5D–N). 
Consistent with these observations, the diversity of the respond-
ing cells (CD107a+IFNγ+) was lower in 8 of 10 donors cocultured 
with autologous LCL compared to primary B cells (Figure S5 in 
Supplementary Material); this reduced diversity also suggests that 
the specific response to EBV infection may be driven by a subset 
of EBV-responsive NK cells. Together, these data suggest that a 
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FigUre 6 | nKg2a+ nK cells kill autologous lcl better than nKg2a− 
nK cells. NKG2A+ and NKG2A− NK cells were sorted and placed in a killing 
assay with CellTrace Violet-labeled autologous LCL targets at a 4:1 
effector:target ratio. Specific killing was calculated as described in Section 
“Materials and Methods.” Each of the N = 6 donors is labeled with a unique 
symbol. All p-values were calculated using the Wilcoxon matched-pairs 
signed rank test.
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subset of NK cells, identified as NKG2A+2B4+CD16−CD57−NK
G2C−NKG2D+, can respond specifically to EBV+ LCL.

To better define the NK cell subset responding to autologous 
LCL, we evaluated NK cell IFNγ secretion and CD107a activ-
ity in the presence of antibodies that were previously reported 
to block NKG2D, NKG2A, and 2B4. Blocking NKG2D led to a 
consistent decrease in the frequency of NK cells producing IFNγ 
and CD107a, but the effects of NKG2A and 2B4 blocking were 
less dramatic, in some cases enhancing activity (Figure S6 in 
Supplementary Material). This implies that NKG2D is involved in 
the recognition of autologous LCL, but cannot explain the entire 
effect. As NKG2A is an inhibitory receptor, it is likely that it may 
not be directly involved in killing but instead may mark a respon-
sive subset. Thus, to confirm the role of NKG2A-expressing NK 
cells in the response to autologous EBV+ LCL, we compared the 
ability of NKG2A+ and NKG2A− NK cells from the same donor 
for their ability to kill autologous EBV+ LCL. In all six donors, 
NKG2A+ NK cells display higher killing than did NKG2A− NK 
cells (Figure 6; Figure S7 in Supplementary Material, p = 0.03), 
confirming that NK cell subsets that are functionally responsive 
to EBV+ LCL are enriched for NKG2A expression.

DiscUssiOn

Latent infection dominates the EBV life cycle, and failure to 
adequately control latent EBV infection has serious consequences 
including the development of a spectrum of EBV-LPD. NK cells 
represent previously under-appreciated players in the immune 
response to EBV infection. Here, we demonstrate that NK cells 
display cytotoxicity specifically against autologous EBV+ LCL. 
Compared to host B cells, autologous EBV+ LCL upregulate 

expression of the NK activating ligand CD48 and reduce expres-
sion of the NK inhibitory ligand MHC class I, potentially making 
them targets of NK cell-mediated lysis. Consistent with this 
observation, we find that NKG2A-expressing NK cells are par-
ticularly enriched for the ability to respond to autologous EBV+ 
LCL. Thus, while prior studies highlighted the ability of NK cells 
to distinguish active, lytic infection (4, 7, 27), our data indicate 
that NK cells are capable of distinguishing autologous EBV+ 
LCL from healthy B cells, potentially laying the groundwork for 
harnessing their activity in the treatment of EBV-LPD.

The majority of studies on the NK cell response to EBV have 
focused on NK cells during primary infection or upon lytic 
reactivation of the virus. NK cell activity has been shown to be 
greater against lytically infected targets than against the corre-
sponding latently infected targets (6, 7). However, these studies 
used the allogeneic Akata target cell lines, raising the possibility 
that “missing self ” targeting by NK cells could have contributed 
to the activity observed. Our data demonstrating that NKG2A-
expressing NK cells predominate in the NK response to latently 
infected LCL represents a clinically relevant autologous interac-
tion given that latency is the major phase of the EBV life cycle. 
Our analysis takes into account any relevant non-specific activity 
against uninfected host B cells, allowing us to identify the subset of 
NK cells enriched in their responsiveness against the autologous 
EBV+ LCL. Further, we directly examine killing of target cells, 
rather than only NK-specific outcomes such as degranulation 
and IFNγ production as indirect measures for effects on target 
cells. Thus, despite the fact that the frequency of “responding” NK 
cells, as defined by expression of IFNγ or CD107a, was similar in 
cocultures with autologous B cells and EBV+ autologous LCL, our 
data clearly demonstrate that there is enhanced killing of EBV+ 
LCL by autologous NK cells. These results are consistent with the 
idea that NK cells can serially kill multiple targets (40–42), and 
explain why it has been hard to detect specific targeting of EBV+ 
LCL in past studies. This small subset of “serial” killers will be dif-
ficult to identify from the non-specific activity noted in cultures. 
Thus, here, we have phenotypically identified the small frequency 
of NK cells that account for the specific targeting of LCL.

We demonstrate that NKG2A-expressing NK cells are 
enriched for activity against latent EBV-infected LCL, with a 
more granular definition of NKG2A+2B4+CD16−CD57−NKG
2C−NKG2D+ NK cells. Further, blocking experiments suggest 
that NKG2D may play a role in the recognition of autologous 
LCL, but likely other receptors are involved. The absence of 
CD57 expression and the presence of NKG2A expression 
suggests that these are relatively immature NK cells since 
terminally differentiated NK cells typically lose expression of 
NKG2A and gain expression of CD57 (21, 43). NKG2A+CD57− 
NK cells have also been identified as important during other 
stages of EBV infection and thus may be relevant in innate 
regulation of EBV throughout its life cycle. EBV-responsive NK 
cells from the peripheral blood during primary symptomatic 
EBV infection have been described as CD56dimKIR−NKG2A+ 
(7), while those persisting after acute EBV infection are 
CD56dimNKG2A+CD57+ (28). Within the tonsils, an IFNγhiCD
56brightNKG2A+CD94+CD54+CD62L− NK cell subset has been 
implicated as the EBV-responsive NK cell that restricts primary 
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B cell infection (27). In fact, the age-related decline in immature 
NK cells (CD56dimNKG2A+NKR−NKG2C−CD57−), which make 
up the predominant subset in newborn infants and humanized 
mice, may reduce NK control of EBV infection and predispose 
adolescents for EBV+ IM (44). Thus, multiple lines of evidence 
suggest that NKG2A+CD57− NK cells play a critical role in con-
trolling EBV infection. It will, therefore, be of interest to study 
if the relative abundance of NKG2A+CD57− NK cells predicts 
susceptibility to EBV-LPD or EBV+ IM, or if these subsets can be 
expanded in vivo or ex vivo and used therapeutically.

Common among all studies of the NK cell response to EBV 
is the involvement of NKG2A, an NK inhibitory receptor, as a 
marker of EBV-responsive NK cells. The role of the inhibitory 
receptor NKG2A in NK cell responses to EBV remains unclear. 
NKG2A+ NK cells are also enriched in the ability to respond 
to HIV (45). This observation is explained by the presenta-
tion of a conserved HIV peptide by HLA-E that abrogates the 
interaction between NKG2A and HLA-E, resulting in the loss 
of this inhibitory signal and sensitization to killing by NKG2A+ 
NK cells (45). A similar mechanism could play a role in EBV, 
particularly since HLA-E is not downregulated by either HIV 
or EBV (46). It will be of interest to determine if EBV similarly 
expresses a conserved peptide that allows escape from NK 
cell inhibition mediated by the interaction of NKG2A and 
HLA-E. Alternately, it is possible that NKG2A is a marker of 
the EBV-responsive NK cell population but plays no direct 
role in NK cell function against EBV-infected cells. Most 
NKG2A-expressing NK cells do not co-express KIR (47–49), 
so these data could suggest that the absence of the inhibitory 
KIR receptors may allow this subset to be more activate against 
autologous LCL. Similarly, our data suggest that NGK2D may 
play a role in recognition of autologous LCL, since blocking 
NKG2D reduces NK cell IFNγ secretion by approximately 30%, 
strongly suggesting that multiple receptors are involved in the 
recognition of autologous LCL.

Our data suggest that the response to latent EBV infection 
may result from a shift in the balance from NK inhibition toward 
NK activation. Specifically, we observed reduced expression of 
the NK inhibitory ligands MHC class I and increased expression 
of the NK-activating ligand CD48 on EBV+ LCLs compared to 
host B cells. While Azzi et al. (7) reported an increase in MHC 
class I expression on autologous LCLs compared to CD19+ B 
cells from PBMCs, it is unclear if they accounted for differences 
in autofluorescence between the two cell types. In accord with 
our results, LCLs generated from an EBV strain lacking the 
latent protein LMP2a display increased MHC class I expres-
sion, suggesting that latent viral genes can downregulate MHC 
class I expression (50). Along similar lines, the downregulation 
of inhibitory ligands and an upregulation of activating ligands 
are thought to contribute to the NK response toward lytic EBV. 
In fact, the further downregulation of MHC class I during lytic 
infection and the upregulation of additional activating ligands, 
including CD112, ULBP1, MICA, and CD155 (6, 7), may 
help explain the difference in magnitude of the NK response 
to lytically versus latently EBV-infected B  cells. Ultimately, all 
NK studies are limited by our knowledge of verified ligands for 

NK cell receptors. Further studies enumerating the differential 
regulation of NK ligand expression between lytic and latent EBV 
infection in B cells may provide additional mechanistic insight 
into NK cell control of EBV infection.

Our results provide the first clear demonstration of a significant 
NK cell response to autologous EBV+ LCL as a model of latent 
EBV infection. These data help to complete our understanding 
of the role of NK cells throughout the EBV life cycle and may lay 
the groundwork for developing novel NK-based therapeutics for 
EBV-LPD.

eThics sTaTeMenT

This study was carried out in accordance with the recommen-
dations of the International Compilation of Human Research 
Standards from the Office of Human Research Protections at 
the US Department of Health & Human Services with written 
informed consent from all subjects. All subjects gave writ-
ten informed consent in accordance with the Declaration of 
Helsinki. The protocol was approved by the Stanford University 
Institutional Review Board.

aUThOr cOnTriBUTiOns

OH, DS-A, NZ, SK, OM, and CB conceived and designed the 
research; OH, MH, JP, and NZ performed the research; OH, 
DS-A, NZ, SK, OM, and CB analyzed data; and OH, DS-A, SK, 
OM, and CB wrote the paper. All the authors agree to be account-
able for the content of the work.

acKnOWleDgMenTs

The authors thank Joanne Lau and Todd Shawler for assistance 
with sample collection and Thanmayi Ranganath and Julia 
McKechnie for assistance with experiments. Cell sorting/flow 
cytometry analysis for this project was done on instruments in 
the Stanford Shared FACS Facility.

FUnDing

OH was supported by an NIH/NIGMS IRACDA grant awarded 
to Stanford University and San Jose State University. This work 
was also supported by the Transplant and Tissue Engineering 
Center of Excellence (OM), NSF training grant DGE-114740 
(DS-A), Ruth L. Kirschstein National Research Service Award 
1F31AI118469-01 (DS-A), NIH Directors’ New Innovator Award 
DP2AI11219301 (CB), NIH AI113130 (OM), NIH AI115313 
(OM), and NIH AI104230 (SK).

sUPPleMenTarY MaTerial

The Supplementary Material for this article can be found 
online at http://journal.frontiersin.org/article/10.3389/fimmu. 
2016.00607/full#supplementary-material.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
http://journal.frontiersin.org/article/10.3389/fimmu.2016.00607/full#supplementary-material
http://journal.frontiersin.org/article/10.3389/fimmu.2016.00607/full#supplementary-material


10

Hatton et al. NKG2A Defines EBV-Responsive NK Cells

Frontiers in Immunology | www.frontiersin.org December 2016 | Volume 7 | Article 607

reFerences

1. Snow AL, Martinez OM. Epstein-Barr virus: evasive maneuvers in the 
development of PTLD. Am J Transplant (2007) 7:271–7. doi:10.1111/ 
j.1600-6143.2006.01650.x 

2. Thorley-Lawson DA. EBV persistence – introducing the virus. Curr Top 
Microbiol Immunol (2015) 390:151–209. doi:10.1007/978-3-319-22822-8_8 

3. Taylor GS, Long HM, Brooks JM, Rickinson AB, Hislop AD. The immunology 
of Epstein-Barr virus-induced disease. Annu Rev Immunol (2015) 33:787–821. 
doi:10.1146/annurev-immunol-032414-112326 

4. Chijioke O, Müller A, Feederle R, Barros MHM, Krieg C, Emmel V, et  al. 
Human natural killer cells prevent infectious mononucleosis features by 
targeting lytic Epstein-Barr virus infection. Cell Rep (2013) 5:1489–98. 
doi:10.1016/j.celrep.2013.11.041 

5. Baiocchi RA, Ward JS, Carrodeguas L, Eisenbeis CF, Peng R, Roychowdhury S, 
et al. GM-CSF and IL-2 induce specific cellular immunity and provide pro-
tection against Epstein-Barr virus lymphoproliferative disorder. J Clin Invest 
(2001) 108:887–94. doi:10.1172/JCI12932 

6. Pappworth IY, Wang EC, Rowe M. The switch from latent to productive 
infection in Epstein-Barr virus-infected B cells is associated with sensitization 
to NK cell killing. J Virol (2007) 81:474–82. doi:10.1128/JVI.01777-06 

7. Azzi T, Lünemann A, Murer A, Ueda S, Béziat V, Malmberg K-J, et al. Role 
for early-differentiated natural killer cells in infectious mononucleosis. Blood 
(2014) 124:2533–43. doi:10.1182/blood-2014-01-553024 

8. Balfour HH, Odumade OA, Schmeling DO, Mullan BD, Knight JA, Vezina HE, 
et al., editors. Behavioral, virologic, and immunologic factors associated with 
acquisition and severity of primary Epstein-Barr virus infection in university 
students. J Infect Dis (2013) 207:80–8. doi:10.1093/infdis/jis646 

9. Williams H, McAulay K, Macsween KF, Gallacher NJ, Higgins CD, Harrison N, 
et al. The immune response to primary EBV infection: a role for natural killer 
cells. Br J Haematol (2005) 129:266–74. doi:10.1111/j.1365-2141.2005.05452.x 

10. Eidenschenk C, Dunne J, Jouanguy E, Fourlinnie C, Gineau L, Bacq D, et al. 
A novel primary immunodeficiency with specific natural-killer cell deficiency 
maps to the centromeric region of chromosome 8. Am J Hum Genet (2006) 
78:721–7. doi:10.1086/503269 

11. Shaw RK, Issekutz AC, Fraser R, Schmit P, Morash B, Monaco-Shawver L, 
et  al. Bilateral adrenal EBV-associated smooth muscle tumors in a child 
with a natural killer cell deficiency. Blood (2012) 119:4009–12. doi:10.1182/
blood-2011-10-385377 

12. Purtilo DT. X-linked lymphoproliferative disease (XLP) as a model of Epstein-
Barr virus-induced immunopathology. Springer Semin Immunopathol (1991) 
13:181–97. doi:10.1007/BF00201468 

13. Tangye SG, Phillips JH, Lanier LL, Nichols KE. Functional requirement for 
SAP in 2B4-mediated activation of human natural killer cells as revealed by 
the X-linked lymphoproliferative syndrome. J Immunol (2000) 165:2932–6. 
doi:10.4049/jimmunol.165.6.2932 

14. Nakajima H, Cella M, Bouchon A, Grierson HL, Lewis J, Duckett CS, et al. 
Patients with X-linked lymphoproliferative disease have a defect in 2B4 
receptor-mediated NK cell cytotoxicity. Eur J Immunol (2000) 30:3309–18. 
doi:10.1002/1521-4141(200011)30:11<3309::AID-IMMU3309>3.0.CO;2-3 

15. Parolini S, Bottino C, Falco M, Augugliaro R, Giliani S, Franceschini R, et al. 
X-linked lymphoproliferative disease. 2B4 molecules displaying inhibitory 
rather than activating function are responsible for the inability of natural killer 
cells to kill Epstein-Barr virus-infected cells. J Exp Med (2000) 192:337–46. 
doi:10.1084/jem.192.3.337 

16. Bottino C, Falco M, Parolini S, Marcenaro E, Augugliaro R, Sivori S, et  al. 
NTB-A [correction of GNTB-A], a novel SH2D1A-associated surface mol-
ecule contributing to the inability of natural killer cells to kill Epstein-Barr 
virus-infected B cells in X-linked lymphoproliferative disease. J Exp Med 
(2001) 194:235–46. doi:10.1084/jem.194.3.235 

17. Li F-Y, Chaigne-Delalande B, Su H, Uzel G, Matthews H, Lenardo MJ. XMEN 
disease: a new primary immunodeficiency affecting Mg2+ regulation of 
immunity against Epstein-Barr virus. Blood (2014) 123:2148–52. doi:10.1182/
blood-2013-11-538686 

18. Chaigne-Delalande B, Li F-Y, O’Connor GM, Lukacs MJ, Jiang P, Zheng L, 
et al. Mg2+ regulates cytotoxic functions of NK and CD8 T cells in chronic 
EBV infection through NKG2D. Science (2013) 341:186–91. doi:10.1126/
science.1240094 

19. Horowitz A, Strauss-Albee DM, Leipold M, Kubo J, Nemat-Gorgani N, 
Dogan  OC, et  al. Genetic and environmental determinants of human NK 
cell diversity revealed by mass cytometry. Sci Transl Med (2013) 5:208ra145. 
doi:10.1126/scitranslmed.3006702 

20. Gumá M, Angulo A, Vilches C, Gómez-Lozano N, Malats N, López-Botet 
M. Imprint of human cytomegalovirus infection on the NK cell receptor 
repertoire. Blood (2004) 104:3664–71. doi:10.1182/blood-2004-05-2058 

21. Lopez-Vergès S, Milush JM, Pandey S, York VA, Arakawa-Hoyt J, Pircher H, 
et  al. CD57 defines a functionally distinct population of mature NK cells 
in the human CD56dimCD16+ NK-cell subset. Blood (2010) 116:3865–74. 
doi:10.1182/blood-2010-04-282301 

22. Lopez-Vergès S, Milush JM, Schwartz BS, Pando MJ, Jarjoura J, York VA, 
et al. Expansion of a unique CD57+NKG2Chi natural killer cell subset during 
acute human cytomegalovirus infection. Proc Natl Acad Sci U S A (2011) 
108:14725–32. doi:10.1073/pnas.1110900108 

23. Petitdemange C, Becquart P, Wauquier N, Béziat V, Debré P, Leroy EM, et al. 
Unconventional repertoire profile is imprinted during acute chikungunya 
infection for natural killer cells polarization toward cytotoxicity. PLoS Pathog 
(2011) 7:e1002268. doi:10.1371/journal.ppat.1002268 

24. Björkström NK, Svensson A, Malmberg K-J, Eriksson K, Ljunggren H-G. 
Characterization of natural killer cell phenotype and function during recur-
rent human HSV-2 infection. PLoS One (2011) 6:e27664. doi:10.1371/journal.
pone.0027664 

25. Gumá M, Cabrera C, Erkizia I, Bofill M, Clotet B, Ruiz L, et al. Human cyto-
megalovirus infection is associated with increased proportions of NK cells 
that express the CD94/NKG2C receptor in aviremic HIV-1-positive patients. 
J Infect Dis (2006) 194:38–41. doi:10.1086/504719 

26. Béziat V, Dalgard O, Asselah T, Halfon P, Bedossa P, Boudifa A, et al. CMV 
drives clonal expansion of NKG2C+ NK cells expressing self-specific KIRs 
in chronic hepatitis patients. Eur J Immunol (2012) 42:447–57. doi:10.1002/
eji.201141826 

27. Lünemann A, Vanoaica LD, Azzi T, Nadal D, Münz C. A distinct subpopu-
lation of human NK cells restricts B cell transformation by EBV. J Immunol 
(2013) 191:4989–95. doi:10.4049/jimmunol.1301046 

28. Hendricks DW, Balfour HH, Dunmire SK, Schmeling DO, Hogquist KA, 
Lanier LL. Cutting edge: NKG2C(hi)CD57+ NK cells respond specifically to 
acute infection with cytomegalovirus and not Epstein-Barr virus. J Immunol 
(2014) 192:4492–6. doi:10.4049/jimmunol.1303211 

29. Hasserjian RP, Chen S, Perkins SL, de Leval L, Kinney MC, Barry TS, et al. 
Immunomodulator agent-related lymphoproliferative disorders. Mod Pathol 
(2009) 22:1532–40. doi:10.1038/modpathol.2009.131 

30. Rizzi R, Curci P, Delia M, Rinaldi E, Chiefa A, Specchia G, et al. Spontaneous 
remission of “methotrexate-associated lymphoproliferative disorders” after 
discontinuation of immunosuppressive treatment for autoimmune disease. 
Review of the literature. Med Oncol (2009) 26:1–9. doi:10.1007/s12032- 
008-9069-8 

31. Oyama T, Yamamoto K, Asano N, Oshiro A, Suzuki R, Kagami Y, et  al. 
Age-related EBV-associated B-cell lymphoproliferative disorders constitute a 
distinct clinicopathologic group: a study of 96 patients. Clin Cancer Res (2007) 
13:5124–32. doi:10.1158/1078-0432.CCR-06-2823 

32. Asano N, Yamamoto K, Tamaru J-I, Oyama T, Ishida F, Ohshima K, et al. 
Age-related Epstein-Barr virus (EBV)-associated B-cell lymphoproliferative 
disorders: comparison with EBV-positive classic Hodgkin lymphoma in 
elderly patients. Blood (2009) 113:2629–36. doi:10.1182/blood-2008-06-164806 

33. Neitzel H. A routine method for the establishment of permanent growing 
lymphoblastoid cell lines. Hum Genet (1986) 73:320–6. doi:10.1007/ 
BF00279094 

34. Maecker HT, Frey T, Nomura LE, Trotter J. Selecting fluorochrome conju-
gates for maximum sensitivity. Cytometry A (2004) 62:169–73. doi:10.1002/
cyto.a.20092 

35. Longnecker R, Kieff E, Cohen JI. Epstein-Barr virus. In: Knipe DM, Howley 
PM, editors. Fields Virology. Philadelphia: Lippincott Williams & Wilkins 
(2013). p. 1898–959.

36. Yokoyama S, Staunton D, Fisher R, Amiot M, Fortin JJ, Thorley-Lawson DA. 
Expression of the Blast-1 activation/adhesion molecule and its identification 
as CD48. J Immunol (1991) 146:2192–200. 

37. Yawata M, Yawata N, Draghi M, Partheniou F, Little A-M, Parham P. MHC 
class I-specific inhibitory receptors and their ligands structure diverse human 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1111/
j.1600-6143.2006.01650.x
https://doi.org/10.1111/
j.1600-6143.2006.01650.x
https://doi.org/10.1007/978-3-319-22822-8_8
https://doi.org/10.1146/annurev-immunol-032414-112326
https://doi.org/10.1016/j.celrep.2013.11.041
https://doi.org/10.1172/JCI12932
https://doi.org/10.1128/JVI.01777-06
https://doi.org/10.1182/blood-2014-01-553024
https://doi.org/10.1093/infdis/jis646
https://doi.org/10.1111/j.1365-2141.2005.05452.x
https://doi.org/10.1086/503269
https://doi.org/10.1182/blood-2011-10-385377
https://doi.org/10.1182/blood-2011-10-385377
https://doi.org/10.1007/BF00201468
https://doi.org/10.4049/jimmunol.165.6.2932
https://doi.org/10.1002/1521-4141(200011)30:11<3309::AID-IMMU3309>3.0.CO;2-3
https://doi.org/10.1084/jem.192.3.337
https://doi.org/10.1084/jem.194.3.235
https://doi.org/10.1182/blood-2013-11-538686
https://doi.org/10.1182/blood-2013-11-538686
https://doi.org/10.1126/science.1240094
https://doi.org/10.1126/science.1240094
https://doi.org/10.1126/scitranslmed.3006702
https://doi.org/10.1182/blood-2004-05-2058
https://doi.org/10.1182/blood-2010-04-282301
https://doi.org/10.1073/pnas.1110900108
https://doi.org/10.1371/journal.ppat.1002268
https://doi.org/10.1371/journal.pone.0027664
https://doi.org/10.1371/journal.pone.0027664
https://doi.org/10.1086/504719
https://doi.org/10.1002/eji.201141826
https://doi.org/10.1002/eji.201141826
https://doi.org/10.4049/jimmunol.1301046
https://doi.org/10.4049/jimmunol.1303211
https://doi.org/10.1038/modpathol.2009.131
https://doi.org/10.1007/s12032-008-9069-8
https://doi.org/10.1007/s12032-008-9069-8
https://doi.org/10.1158/1078-0432.CCR-06-2823
https://doi.org/10.1182/blood-2008-06-
164806
https://doi.org/10.1007/
BF00279094
https://doi.org/10.1007/
BF00279094
https://doi.org/10.1002/cyto.a.20092
https://doi.org/10.1002/cyto.a.20092


11

Hatton et al. NKG2A Defines EBV-Responsive NK Cells

Frontiers in Immunology | www.frontiersin.org December 2016 | Volume 7 | Article 607

NK-cell repertoires toward a balance of missing self-response. Blood (2008) 
112:2369–80. doi:10.1182/blood-2008-03-143727 

38. Harrison D, Phillips JH, Lanier LL. Involvement of a metalloprotease in spon-
taneous and phorbol ester-induced release of natural killer cell-associated Fc 
gamma RIII (CD16-II). J Immunol (1991) 147:3459–65. 

39. Grzywacz B, Kataria N, Verneris MR. CD56(dim)CD16(+) NK cells 
downregulate CD16 following target cell induced activation of matrix 
metalloproteinases. Leukemia (2007) 21:356–9; author reply 359. doi:10.1038/ 
sj.leu.2404499 

40. Bhat R, Watzl C. Serial killing of tumor cells by human natural killer cells – 
enhancement by therapeutic antibodies. PLoS One (2007) 2:e326. doi:10.1371/
journal.pone.0000326 

41. Choi PJ, Mitchison TJ. Imaging burst kinetics and spatial coordination during 
serial killing by single natural killer cells. Proc Natl Acad Sci U S A (2013) 
110:6488–93. doi:10.1073/pnas.1221312110 

42. Vanherberghen B, Olofsson PE, Forslund E, Sternberg-Simon M, 
Khorshidi  MA, Pacouret S, et  al. Classification of human natural killer 
cells based on migration behavior and cytotoxic response. Blood (2013) 
121:1326–34. doi:10.1182/blood-2012-06-439851 

43. Béziat V, Descours B, Parizot C, Debré P, Vieillard V. NK cell terminal differen-
tiation: correlated stepwise decrease of NKG2A and acquisition of KIRs. PLoS 
One (2010) 5:e11966. doi:10.1371/journal.pone.0011966 

44. Münz C. Role of human natural killer cells during Epstein-Barr virus 
infection. Crit Rev Immunol (2014) 34:501–7. doi:10.1615/CritRevImmunol. 
2014012312 

45. Davis ZB, Cogswell A, Scott H, Mertsching A, Boucau J, Wambua D, et al. 
A conserved HIV-1-derived peptide presented by HLA-E renders infected 
T-cells highly susceptible to attack by NKG2A/CD94-bearing natural killer 
cells. PLoS Pathog (2016) 12:e1005421. doi:10.1371/journal.ppat.1005421 

46. Cohen GB, Gandhi RT, Davis DM, Mandelboim O, Chen BK, Strominger JL, 
et al. The selective downregulation of class I major histocompatibility complex 
proteins by HIV-1 protects HIV-infected cells from NK cells. Immunity (1999) 
10:661–71. doi:10.1016/S1074-7613(00)80065-5 

47. Uhrberg M, Valiante NM, Shum BP, Shilling HG, Lienert-Weidenbach 
K, Corliss B, et al. Human diversity in killer cell inhibitory receptor genes. 
Immunity (1997) 7:753–63. doi:10.1016/S1074-7613(00)80394-5 

48. Valiante NM, Uhrberg M, Shilling HG, Lienert-Weidenbach K, Arnett KL, 
D’Andrea A, et  al. Functionally and structurally distinct NK cell receptor 
repertoires in the peripheral blood of two human donors. Immunity (1997) 
7:739–51. doi:10.1016/S1074-7613(00)80393-3 

49. Shilling HG, Young N, Guethlein LA, Cheng NW, Gardiner CM, Tyan D, et al. 
Genetic control of human NK cell repertoire. J Immunol (2002) 169:239–47. 
doi:10.4049/jimmunol.169.1.239 

50. Rancan C, Schirrmann L, Hüls C, Zeidler R, Moosmann A. Latent membrane 
protein LMP2A impairs recognition of EBV-infected cells by CD8+ T cells. 
PLoS Pathog (2015) 11:e1004906. doi:10.1371/journal.ppat.1004906 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2016 Hatton, Strauss-Albee, Zhao, Haggadone, Pelpola, Krams, 
Martinez and Blish. This is an open-access article distributed under the terms of 
the Creative Commons Attribution License (CC BY). The use, distribution or repro-
duction in other forums is permitted, provided the original author(s) or licensor are 
credited and that the original publication in this journal is cited, in accordance with 
accepted academic practice. No use, distribution or reproduction is permitted which 
does not comply with these terms.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1182/blood-2008-03-143727
https://doi.org/10.1038/
sj.leu.2404499
https://doi.org/10.1038/
sj.leu.2404499
https://doi.org/10.1371/journal.pone.0000326
https://doi.org/10.1371/journal.pone.0000326
https://doi.org/10.1073/pnas.1221312110
https://doi.org/10.1182/blood-2012-06-439851
https://doi.org/10.1371/journal.pone.0011966
https://doi.org/10.1615/CritRevImmunol.
2014012312
https://doi.org/10.1615/CritRevImmunol.
2014012312
https://doi.org/10.1371/journal.ppat.1005421
https://doi.org/10.1016/S1074-7613(00)80065-5
https://doi.org/10.1016/S1074-7613(00)80394-5
https://doi.org/10.1016/S1074-7613(00)80393-3
https://doi.org/10.4049/jimmunol.169.1.239
https://doi.org/10.1371/journal.ppat.1004906
http://creativecommons.org/licenses/by/4.0/

	NKG2A-Expressing Natural Killer Cells Dominate the Response to Autologous Lymphoblastoid Cells Infected with Epstein–Barr Virus
	Introduction
	Materials and Methods
	LCL Generation, Primary B Cell and NK Cell Isolation, and Cell Lines
	Cytotoxicity Assay
	Analysis of NK Ligand Expression
	NK:Target Cell Cocultures and 
Flow Cytometric Analysis
	Data and Statistical Analysis

	Results
	Expression of NK Cell Receptor 
Ligands on EBV+ LCL
	NK Cells Kill Autologous EBV+ LCL
	NKG2A Expression Defines a Subset 
of NK Cells Enriched in the Ability to Respond to Autologous EBV+ LCL

	Discussion
	Ethics Statement
	Author Contributions
	Acknowledgments
	Funding
	Supplementary Material
	References


