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Over the last two decades, an exponentially expanding number of genetic variants

have been identified associated with inherited cardiac conditions. These tremendous

gains also present challenges in deciphering the clinical relevance of unclassified

variants or variants of uncertain significance (VUS). This review provides an overview

of the advancements (and challenges) in functional and computational approaches to

characterize variants and help keep pace with VUS identification related to inherited

heart diseases.
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INTRODUCTION

Genetic mutations can affect the heart’s structure (1) or electrical system (2), which can cause
a variety of life-threatening arrhythmias (Figure 1A). Since the discovery of the first Long QT
Syndrome (LQTS)- associated genes; KCNQ1 encoding Kv7.1 (LQT1) (4), KCNH2 encoding
Kv11.1 (LQT2) (5), SCN5A encoding Nav1.5 (LQT3) (6) and cardiomyopathy-associated MYH7
gene encoding β-myosin heavy chain (7) in the early 1990s, many other ion channels (e.g., KCNJ2
encoding Kir2.1) and functionally diverse proteins have been implicated in a variety of other clinical
phenotypes (see Figure 2A for a list of common ones) (9). Initially, these diseases were collectively
thought to be predominantly LQT-associated and Mendelian in nature. However, recent insights
from large sequencing initiatives (10) and phenotype data from electronic medical records are
challenging this view (8, 11–13) (Figure 2B). This insight is further amplified by a recent study of
the large population-based United Kingdom Biobank (UKBB) (14) and Trans-OMICs for Precision
Medicine (TOPMed) biobank (15) showing LQTS to be a more complex disease with most genetic
factors unaccounted for (3, 16).

Advances in sequencing technology have revolutionized clinical and translational cardiology,
yet enthusiasm wanes in light of the deluge of uncharacterized variants now reported in ClinVar
(17). To give a sense of scale of this problem, titin, the largest human protein has over 7,000
VUS alone, which are linked to at least four cardiac diseases including familial cardiomyopathies
DCM (Dilated Cardiomyopathy, most common), RCM (Restrictive Cardiomyopathy) and HCM
(Hypertrophic Cardiomyopathy) as well as ACM (Arrhythmogenic Cardiomyopathy) (18). Of the
remaining more common arrhythmia-linked genes, ∼50% are classified as VUS or conflicting
interpretation in ClinVar. The magnitude of this problem is highlighted in Figure 2A showing that
the identification of coding variants has far outpaced our ability to correctly classify variants. From
a clinical standpoint, identification of VUS creates substantial barriers as these are not clinically
actionable and misinterpretation has serious ramifications for sudden cardiac death assessment of
the patient and their family (19–23). The importance of physiologic and functional analysis for
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FIGURE 1 | Cardiac disease proteins highlighted in this review. (A) Arrhythmias can result from structurally abnormal hearts (e.g., DCM) or normal hearts with

electrical abnormalities (e.g., LQTS). (B) Simplified cartoon highlighting each protein and their primary functions. (C) Ventricular action potential showing the major

ionic currents. (D) Graph illustrating the range in size for each protein discussed on the x-axis from small calmodulin to the the largest human protein titin comprised of

hundreds of small soluble domains (eg., IgD). The y-axis shows the relative pleiotropy for each gene (i.e., relative number of diseases associated with each). For

example, CaM has only been linked to LQTS while lamin underlies over a dozen diseases. Nav1.5 on the other hand is a good example of pleiotropy among the ion

channels reviewed by Cerrone et al. (3) with lamin being the most pleiotropic. DCM, dilated cardiomyopathy; SR, sarcoplasmic reticulum; RYR2, ryanodine receptor 2;

CaM, calmodulin; CCD, coiled-coil domain; CD, converter domain; IgD, immunoglobulin-like domain; NTD, FN-3, fibronectin type III-like; N-terminal domain; TMD,

transmembrane domain; PASD, PerArntSim domain; CNBD, cyclic nucleotide-binding homology domain. Some figure panels created with BioRender.com.

variant classification has been emphasized, yet contemporary
methods are cumbersome (time and resources) decreasing
efficiency in unraveling the arrhythmic risk associated with
genetic variants.

However, new technologies are primed to help close the gap
in VUS interpretation including higher throughput functional
methods such as automated patch clamp (24), deep mutational
scanning (DMS) (25) and a myriad of in silico tools (26). Such
data is useful for supporting evidence across the 8 categories
utilized for variant pathogenicity by the American College of
Medical Genetics and Genomics (ACMG) standard (27). This
is used to semi-quantitatively designate a variant as benign
(B), likely benign (LB), uncertain significance (VUS), likely
pathogenic (LP) and pathogenic (P) (illustrated in Figure 3).
Ultimately, accurate assessment of VUS requires knowledgeable
professionals conducting a review of these factors from the
literature using these ACMG guidelines for interpretation,
all under the standardized umbrella of ClinGen (28). These
guidelines have continually undergone refinement (29–31) and
further gene or disease specific revision is needed (32) as
big data grows. With many excellent reviews already covering

various aspects of these inherited cardiac conditions (33,
34) and methods (35, 36) this focuses on recent functional
and computational advances to help interpret cardiac disease
missense VUS using several ion channels and structural proteins
as examples (Figure 1B).

HIGH THROUGHPUT FUNCTIONAL
ASSAYS

Well established functional tests are considered strong evidence
for pathogenic classification given they are sufficiently
validated with a proper number of positive and negative
controls (37). Two significant developments in particular,
automated patch (24) and Deep Mutational Scanning [DMS,
also called multiplex assays of variant effects (MAVE)] (25) have
recently made large strides toward large-scale characterization
of ion channelopathy VUS. Briefly, we summarize each
technology below (see Figure 4 for context) and then
highlight how each has been applied for several specific
cardiac proteins.
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FIGURE 2 | Genes associated with inherited cardiac arrhythmias. (A) The total number of variants for each gene in ClinVar and their classifications [conflicting

interpretation (CI), likely benign (LB), benign (B), variant of uncertain significance (VUS), likely pathogenic (LP) and pathogenic (P)] as of June 2022. Inset shows relative

percentages for all genes combined. Disease associations are not comprehensive (e.g., LMNA is linked to many non-cardiac diseases). Genes reviewed here shaded

gray. (B) Graph illustrating the range of effects variants can have toward pathogenicity. Figure adapted from Ingles et al. (8). Disease abbreviations: CPVT,

catecholaminergic polymorphic ventricular tachycardia; HCM, hypertrophic cardiomyopathy; RCM, restrictive cardiomyopathy; ARVC, arrhythmogenic ventricular

cardiomyopathy; BrS, Brugada syndrome; LQTS, long QT syndrome; DCM, dilated cardiomyopathy; CCD, cardiac conduction disease; SIDS, sudden infant death

syndrome; SQTS, short QT syndrome; TS, Timothy syndrome; JLNS, Jeverell and Lange-Nielsen syndrome; ATS, Andersen-Tawil syndrome; LVNC, left ventricular

non-compaction cardiomyopathy.

HTP Electrophysiology
For ion channelopathies and other arrhythmogenic diseases,
changes in cellular action potentials are arguably the best cellular
assessment of pathogenicity and a variety of in vivo models
have been utilized each with advantages and disadvantages
(39) (Figure 4A). Interestingly, zebrafish have shown to be
a promising higher-throughput approach, demonstrating high
accuracy when 49 LQT2-associated variants were benchmarked
against known benign and pathogenic variants (40). However,
these in vivo models lack a native-like environment with
differences in ion channel expression in mice and a two-chamber
heart in zebrafish for example (41). Human induced-pluripotent

stem cell-derived cardiomyocytes (iPS-CMs) have proven very
useful for modeling inherited cardiac diseases (42), even
identifying genetic modifiers that can influence a specific variant’s
effect (43). Throughput of iPS-CM characterization can also
be greatly improved with the use of multi-electrode arrays as
a proxy for measuring action potentials (44). There remain
limitations with iPS-CMs including their electrical and metabolic
maturation (45) as well as generating cells lines in large
quantities. Advanced culturing techniques and co-culturing with
cardiac fibroblasts (46) and other maturation techniques (47)
may help address some of these issues and assist with consistency.
Further, a recent technique was reported to immortalize primary
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FIGURE 3 | AMCG Guidelines for variant interpretation. A brief overview of the eight lines of supporting evidence for evaluating variants of uncertain significance.

Numerous benign and pathogenic supporting computational and functional levels are shown for each approach with functional evidence filled blue. The lines of

evidence described by Richards et al. (27) in the guidelines are as follows: BS3/PS3, not damaging/damaging functional studies; BP1, missense variant in a gene with

primarily truncating variants; BP3, indels in repeat region without known function; BP4/PP3, multiple lines of computational evidence showing no damaging

effects/damaging affects; BP7, non-splicing, silent variant; PP2, variant in gene where pathogenic variants are common and benign variants are few; PM1, variant

hotspot without benign variants; PM4, protein length changing variant; PM5, variant at residue with other pathogenic variants; PS1, amino acid change same as other

pathogenic variant(s); PVS1, null variant in a pathogenic gene with known LOF.

atrial CMs, which could greatly scale iPS-CM production if
transferrable (48).

Measuring ionic currents from overexpression models like
HEK 293 cells is the main workhorse in ion channelopathy
variant characterization. Advancements in automation have
dramatically increased throughput (Figure 4B), with a recent
study analyzing ∼100 variants within 2 months’, making
comprehensive functional analysis of all known VUS within
reach (38). For example, KCNH2 has ∼700 missense VUS or
conflicting interpretations that could all be assessed using this
method in about one year by one dedicated lab (Figure 2A). The
combination of ionic current characterization with automation
using planar patch makes it conceivable that the function of all
reported ion channelopathy VUS can be characterized within the
coming years, and we review recent proof-of-principle studies
toward that goal below.

Deep Mutational Scanning
When a protein’s function is multifactorial or diverse, one
powerful approach for characterizing variants is the development
of deep mutational scanning (DMS). While the signal for
pathogenicity is conceptually simpler for ion channels (current
vs. changes in current), other proteins with diverse functionalities
also have thousands of VUS requiring other HTP approaches
(Figures 1A, 2). Further, variants may impact pathogenicity
through multiple mechanisms, and so assays that target different
mechanisms will also be valuable for personalized medicine.
Targeted correction of trafficking defective LQT2 variants is a
recent example of how this can be used. Since the discovery of
several mechanistic classes of LQT2 variants, first described in
the January Lab 25 years ago (49), feasible correction for class 2
trafficking defective variants has recently been realized in patient
iPS-CM cell lines (50) and validated in two LQT2 patients (51).
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FIGURE 4 | Functional and computational methods of inherited cardiac arrhythmias. (A) Animal and iPS-CM functional models will remain important but are low

throughput. (B) Overexpression systems are higher throughput especially when automated with functional results for ∼100 variants reported in less than two months’

time by Ng et al. (38). (C) Multiple assays of variant effects (MAVEs), while largely proxy assays, are magnitudes higher throughput allowing for comprehensive variant

analyses. (D) Tools to predict a VUS can be simple and rule-based relying on sequence and/or structural data or, more commonly, machine learning methods are

employed. FACS, fluorescence-activated cell sorting; HGMD, Human Gene Mutation Database; UniProt, Universal Protein Resource; genomAD, Genome Aggregation

Database; REVEL, Rare Exome Variant Ensemble Learner; dbNSFP, Database for Functional Predictions of non-synonymous SNPs.

DMS is enabled by expansive parallel mutagenesis technology
(52). These parallel LoF analyses or MAVES allow for truly HTP
analyses of all possible variants of a protein of interest (25, 53).
The power of DMS hinges on suitable multiplexable assays. As
illustrated in Figure 4, using an ion channel as an example, a
comprehensive library of variant plasmids (modified with an
extracellular tag for cell surface detection) is overexpressed in a
suitable cell model (HEK 293 cells) and a phenotype is selected
for (cell surface expression by FACS) (Figure 4C). Cell fractions
are collected and sequenced using next generation sequencing
to determine the frequency of each variant and, ultimately a
functional score reflective of cell surface expression is calculated.
DMS is a proactive approach to variant identification as all
possible variants are simultaneously characterized and can be

publicly available in functional databases (i.e., MaveDB) (54).
Thus, as new variants are identified clinically, the functional
properties will have been characterized and can be referenced
rather than reactively studied. This growing database will serve
as a rich source of functional data providing unprecedented
molecular insights and potential toward interpreting VUS within
ACMG guidelines (55) (Figure 4D).

Finally, these methods are powerful for characterizing coding
variants like missense (the most common type), but other
types such as synonymous and non-coding variants can also
be prevalently associated with cardiac disease (56–58). While
not the focus of this review, HTP functional advances for these
types of variants have also been made such as massively parallel
reporter assays (MRPAs), which can assess potential splice-site
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variants (59) and regulatory regions (36) in HTP. Applying these
techniques should be invaluable toward interpreting potential
cardiac splice-altering variants and improve our understanding
of inherited cardiac arrhythmias.

Specific Gene Examples of HTP Analysis
Genes, associated with arrhythmogenic disease that have a high
number of VUS (Figure 2A) are particularly suited for HTP
characterization. Several genes that encode for Nav1.5, Kv7.1 and
Kv11.1 have recently been functionally studied using automated
patch clamp. Various types of DMS have also been reported
for Nav1.5, Kv11.1, Kir2.1 and calmodulin. We also discuss a
few other protein classes including Ca handling (L-type calcium
channel, ryanodine receptor, calmodulin), as well two filament
proteins involved in numerous cellular processes (titin and lamin
A/C), to highlight some challenges for broad HTP functional
characterization of proteins and suggest potential approaches.

SCN5A/NAV1.5

Nav1.5, the cardiac voltage-gated sodium channel encoded
by SCN5A, is responsible for the cardiac action potential’s
rapid inward sodium current (INa) (Figures 1B,C) and shares
many common structural features with voltage-gated potassium
and calcium channels (i.e., tetrameric with voltage-sensor,
pore, and specialized intracellular domains) (Figure 1D).
However, variants in SCN5A1 are more pleiotropic, causing
several electrical disorders including the loss-of-function (LoF)
Brugada Syndrome (BrS) (most common), and gain-of-function
(GoF) LQTS, as well as cardiomyopathy (60) (Figure 1D).
ClinVar lists over 1100 missense VUS or with conflicting
interpretation with numerous LoF mechanisms (i.e., loss of
sodium conductivity or channel availability) described through
patch clamp analyses (61).

Glazer and co-authors recently demonstrated automated
patch clamp as a reliable higher throughput approach
for assessing Nav1.5 VUS (62). After replicating published
electrophysiological data for 10 variants and showing no false
positives for 10 purported benign controls, they reported a range
of peak current densities for 63 other variants and suggested
pathogenic reclassifications for all except 12. Extrapolating their
patch clamp data has the potential to reduce the total Nav1.5
VUS functional burden by at least 75%. This assay was further
validated in a study of 22 Nav1.5 variants showing patch clamp
data to be an excellent predictor of pathogenicity and lethal
cardiac arrhythmias in Brugada Syndrome (63).

As a complementary approach, Glazer and co-authors also
reported the clever use of a DMS by adapting a three-
drug cytotoxicity assay to assess the function of all possible
GoF and LoF Nav1.5 variants in a small region of the S4
voltage sensor (64). In this assay, the agonists veratridine and
brevetoxin are used to open the channel causing a constant
influx of Na. Concurrent addition of oubain blocks the transport
of Na through the Na/K-ATPase, toxifying the cells and
leaving only LoF variants attached. The LoF variants are then
collected through fluorescence-activated cell sorting (FACS) and
quantified by next-generation sequencing (NGS). This exciting

pilot study identified 40 GoF and 33 LoF variants from a library
of 224 (228 possible non-synonymous changes) variants. Further,
patch clamp analysis validated eight of nine variants helping
establish this approach as a powerful functional tool toward
assessing the remaining SCN5A VUS. These studies should be
considered within the context of the complexity of NaV1.5, β-
subunits and other binding partners. Pathogenicity may stem
from or be modulated by any of these components and even
some of the established “gold standard” techniques should be
interpreted with caution (65).

K+ CHANNELS

Potassium channels play important roles in the cardiac action
potential including the voltage gated Kv7.1 (KCNQ1) and Kv11.1
(KCNH2) channels, responsible for the outward IKs and IKr
currents during repolarization (Figure 1C). While the inward
rectifier Kir2.1, responsible for the outward IK1 current, also
contributes to repolarization, its main function is setting the
resting membrane potential (66) (Figure 1C). Unlike Nav1.5
and Cav1.2, these channels are expressed as smaller monomer
subunits that combine to form tetramers (Figure 1D). Compared
to Nav1.5, LoF variants in Kv7.1 and Kv11.1 are clinically
less complex, causing LQT1 and LQT2 (9) respectively, while
LoF variants in Kir2.1 cause Anderson-Tawil Syndrome (ATS)
and Catecholaminergic Polymorphic Ventricular Tachycardia
(CPVT)-phenocopy syndrome (66) (Figure 1D). GoF variants
for all three channels also cause short QT syndrome (SQTS).
Despite themore straightforward clinical phenotypes and smaller
size of these proteins, an incredible >1500 VUS (or conflicting
interpretations) are reported in ClinVar for these channels.

KCNQ1/Kv7.1
Vanoye and co-authors demonstrated the first relatively large
K+ channel variant study of 78 Kv7.1 variants using CHO-K1
cells. To validate the automated system approach, they measured
current density and activation data for 30 pathogenic and
benign control variants of homomeric channels, which agreed
with manual patch studies (67). With the robustness of the
system established, they evaluated 48 test VUS as homomeric
channels and 22 LoF co-expressed with WT for comparison
(heterozygous-type expression). Of those 22 heteromeric channel
recordings, 17 exhibited similar current densities to the
homomeric channels and 2 were WT-like. Overall, they provide
strong functional data to support reclassification for >65% of
variants tested. While no DMS of Kv7.1 have been reported,
it is potentially a great candidate for assessing trafficking of
each variant in a massively parallel fashion as demonstrated for
Kv11.1 below.

KCNH2/Kv11.1
In a similar automated patch study of heteromeric Kv11.1
channels using HEK 293 cells, Ng and co-authors demonstrated
that current densities and gating characteristics for 17 variants
reported in ClinVar as pathogenic or benign were in perfect
agreement. Of 13 test VUS evaluated, all variants had a
dominant-negative effect when co-expressed with WT (68).
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These relatively small proof-of-principle Kv7.1 and Kv11.1
automated patch studies demonstrate that functional evaluation
for all Kv7.1, Kv11.1 and Nav1.5 VUSs are conceivable in the
near future.

Measuring current densities is the gold standard for
determining ion channel function but proxy assays to investigate
mechanism are also important. A good example of this is LQT2,
where multiple Kv11.1 LoF mechanisms have been described (69,
70). However, the vast majority (∼90%) are trafficking defective,
which was shown for over 160 variants using glycosylation
differences. However, glycosylation assessed by Western blot is
relatively low throughput and a proxy for surface expression
(71). A higher-throughput flow cytometry-based method directly
measuring cell surface expression was reported with comparable
results, but, importantly, some WT-like glycosylation patterns
showed reduced trafficking (72). Another advantage is that this
assay is multiplexable as recently demonstrated by Kozek and
authors, thus can assess surface expression of all possible Kv11.1
variants simultaneously (73). As a pilot study, they targeted 11
residues in the S5 helix, which generated trafficking scores for
220 missense variants. Kv11.1 LoF were then validated for many
of these variants with reduced surface expression using patch
clamp. In another study, the same flow-cytometry-based DMS
analysis targeting 77 residues of the Kv11.1 PAS domain was
performed (74). In combination with automated patch-clamp
studies, they found variable levels of trafficking with ∼40%
causing LoF (< 50% of WT) and most were dominant negative,
also validated by patch clamp analysis.

Finally, loss of protein stability and misfolding is a major
driver of disease (75) and underpins most LoF Kv11.1 variants
(71). Developing HTP methods for assessing protein stability in
the context of VUS could therefore have great utility in providing
pathogenic support (PS3) per ACMG guidelines (Figure 3). A
good example of this is Kv11.1, which contains well-characterized
intracellular Per-Arnt-Sim (PASD) and cyclic nucleotide-binding
homology (CNBD) domains (Figure 1D). We recently reported
on the solubility for over 50 recombinantly expressed PASD
variants as a proxy for stability and found that it correlated with
trafficking data (76). This provides proof-of-principle of DMS to
assess protein domain stability and could play an important role
in VUS assessment. Indeed, a DMS called VAMP was recently
developed like the cell surface DMS described above (Figure 4).
This uses a GFP-fusion to quantify total cellular abundance of
variants by FACS analysis (77), which could be modified with a
GFP folding-reporter system, where GFP fluorescence is linked
to the stability of upstream proteins (78). This type of assay
could have wide ranging applications particularly for complex
multidomain proteins like lamin A/C and titin discussed below.

KCNJ2/Kir2.1
A recent, massively parallel insertional mutagenesis method
was used to determine surface expression for over 300,0000
recombination Kir2.1 variants (79). However, only rarely are
KCNJ2 pathogenic variants associated with trafficking defects
(80) and alternative DMS approaches for measuring Kir2.1
might be better suited. One possible DMS approach is to adapt
yeast-based functional assays that demonstrate normal and LoF

variants based on growth patterns, which have been reported
for ATS-associated Kir2.1 (73) and Barter Syndrome-associated
Kir1.1 (a Kir2.1 paralog that is not arrhythmia related) (81).
Regardless, development of a potassium channel DMS is needed
for this important arrhythmogenic and underrepresented DMS
data group.

Ca2+ HANDLING PROTEINS

Another group of proteins underlying inherited cardiac disease
are calcium handling proteins, which work in conjunction with
the ion currents discussed above to control cardiac contraction
and relaxation. Briefly, calcium handling is initiated with Cav1.2,
the pore forming alpha subunit of a multimeric ion channel
complex, which passes inward L-type calcium current (ICa−L)
(Figure 1C). The increase in intracellular calcium promotes
further release of calcium from the sarcoplasmic reticulum via
ryanodine receptors and both proteins are tightly regulated by
the calcium sensor calmodulin (CaM) and calsequstrin (CASQ2)
(Figure 1B). Various inherited arrhythmia syndromes have been
described due to disturbances in calcium homeostasis (82). For
example, LoF CaM and CASQ2 variants have been linked to
LQTS and CPVT, respectively. LoF and GoF Cav1.2 (CACNA1C)
variants have been associated with Brugada Syndrome and
Timothy Syndrome, respectively. GoF ryanodine receptor 2
(RYR2) variants have been linked to CPVT, while LoF RYR2
variants have been linked to CRDS (Calcium Release Deficiency
Syndrome) (Figure 1B). Combined, ClinVar reports >3400 VUS
or with conflicting interpretations for these calcium handling
proteins (Figure 2A). While HTP functional analysis is lacking
for CASQ2 and Cav1.2, numerous functional assays have been
described for CASQ2 (83) and automated patch clamp has been
reported for pharmacological screening of Cav1.2 using HEK
293 cells. While this latter system should be adaptable for HTP
functional analysis, Cav1.2 is more complex requiring its two
subunits and an inward rectifier for optimization (84). This is
just one example of the challenges in developing HTP functional
analysis for some proteins, which we discuss further below with
RYR2 as well as a yeast-based DMS reported or CaM.

CALM/Calmodulin
Three genes (CALM1-3) encode the exact same, relatively
small Calmodulin (CaM) protein, which contains four EF-
hand calcium sensors motifs (Figure 1B). CaM has immense
versatility, regulating over 300 targets (85), yet variants have
surprisingly low phenotypic complexity showing only cardiac
effects (i.e., LQTS) despite its central role in biology (Figure 1D).
Cardiac conditions are not surprising however since CaM
regulates most cardiac ion channels indirectly or directly
including Kv7.1, Nav1.5, Cav1.2 and RyR (86). Variants are
located throughout the protein (87) and mechanistically change
calcium binding affinity, disrupting critical protein-protein
interactions or both, which have been widely reported using
a variety of methods (88). Recently, dysfunction of CaM
variants has been characterized by exploiting a yeast-based
complementation assay where variants of a human gene (e.g.,
CaM) can be assessed for their ability to rescue a yeast strain
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carrying a temperature-sensitive allele of the yeast ortholog (e.g.,
CMD1) (89). In a tour de force, Weile and co-authors performed
a DMS of four proteins including CaM generating functional
scores for 1813 CaM variants out of 2831 possible (64%) (53).
Their assay was also validated showing good agreement between
their functional scores and ClinVar annotated pathogenic
variants and benign high frequency variants identified from
gnomAD. Finally, the authors surveyed the literature for
functional assays and found that in addition to the 5% of
approximately 4000 human disease genes that already have a
yeast complementation assay, 57% have a potential assay that is
adaptable for DMS.

RYR2/Ryanodine Receptor 2
Three genes (RYR1-3) code for ryanodine receptors RyR1-3,
which are six transmembrane tetramers but contain uniquely
large cytoplasmic regions comprised of many specialized
domains including two EF-handmotifs. Theymake up the largest
human channels (>2-MDa) and RyR2 is primarily expressed in
cardiac muscle (Figure 1D). However, given their intracellular
location and function, they are not amenable for automated
patch clamp studies nor the other HTP measurements discussed
(90). One attempt used HEK 293 cells stably expressing skeletal
muscle RyR1 for time lapse [Ca2+]ER measurements in a 96
well format (91). Another used a FRET-based assay that detects
changes in binding of RyR accessory proteins (e.g., CaM and
FKBP12.6) (92). While these assays are more complex, there is a
lot of room for creativity and should be adaptable for HTP RyR2
variant screening.

Perhaps the biggest advance in assessing RyR2 variants is
the impressive number of high-resolution crystal structures of
individual RyR domains (93, 94) and advances in resolution
of full-length cryoEM structures (95). These have permitted
extraordinary, detailed insights into variants effects on structure
and function for these highly complex proteins (96) and
should help guide domain specific HTP assays for assessing
variant effects (97). With over 2200 VUS reported in ClinVar
(Figure 2A), innovative functional approaches are needed to help
close the VUS burden.

FILAMENTOUS PROTEINS

Filamentous proteins, critical for cellular mechanics and a host
of other functions, have been implicated in a variety of inherited
arrhythmias. Among these is lamin A/C (LMNA), the most
pleiotropic human gene with ∼500 VUS causing over a dozen
distinct clinical phenotypes including dilated cardiomyopathy
(DCM) (98). Additionally, the sarcomeric proteins titin (TTN)
contains over 7,000 VUS implicated in 25% of all inherited DCM
cases and myosin-7 (MYH7) contains ∼1500 VUS associated
with HCM and RCM (Figures 1A, 2A) (99). These proteins
highlight both the challenges as well as prospective solutions for
HTP functional characterization of highly complex multidomain
proteins (Figure 1D).

LMNA/Lamin A/C
The nuclear membrane bilayer is embedded with numerous
integral membrane proteins that interact with the nuclear
lamina composed of intermediate filament protein lamins
A/C, B1 and B2 encoded by LMNA, LMNB1 and LMNB2,
respectively (98) (Figure 1B). Functionally, lamins help
link the nucleus to the cytoplasm, contribute to nuclear
architecture, chromatin organization, regulation of transcription
and others (98). Laminopathic variants, spread across its
structure consisting of four coiled-coil domains (CCD) and
an Ig-like domain (IgD), can cause several different nuclear
envelope abnormalities including honeycomb like shapes,
blebs and lamin A foci or aggregation in the nucleoplasm
(100) (Figure 1D). Given the lamina’s pleiotropic functions, an
all-encompassing functional assay like patch clamp discussed
above for ion channels is not possible and alternative methods
are needed.

Our lab recently used a functional genomics approach
for over 170 lamin A variants and found that the majority
of myopathic variants aggregate, including DCM, using two
overexpression models, and validated in iPS-CMs (104). This
relatively simple and robust assay could be used to support
pathogenicity (PP3) of over half of all DCM linked LMNA
variants per ACMG guidelines (Figure 3). Further, many
different phenotypes can be analyzed by high content imaging
(101) including aggregation, which can also be sorted by FACS
(102) enabling DMS as a possibility for lamin aggregation
and potentially other cardiomyopathy phenotypes. Alternatively,
yeast-based assays have also been developed for DMS of
protein domain aggregation by measuring yeast growth (i.e.,
cytotoxicity) as a correlative proxy of aggregation propensity
(103). The prion domain of TDP-43 associated with amyotrophic
lateral sclerosis (ALS) is one recent example that covered
>50,000 variants, which could be applied to lamin’s CCDs
and other aggregation prone arrhythmogenic targets. Finally,
we applied the same solubility assay described for the Kv11.1
PASD above to over 50 lamin IgD variants and found,
unsurprisingly, that IgD solubility inversely correlated with lamin
aggregation making this domain amenable to DMS approaches
(77, 104).

TTN/Titin
Contractile and stretching motions take place in the sarcomere
of muscles and is the location where titin, the largest human
protein, acts as a molecular spring. It is a multidomain
protein containing ∼300 small Ig-like (IgD) or fibronectin
III-like (FN-3) domains among others (18) (Figure 1D). A
recent study using a simple solubility assay (similar to the
Kv11.1 PASD and lamin IgD studies discussed above) tested
15 TTN-linked missense variants (3 IgD, 11 FN and 1 kinase
domain) and revealed domain destabilization as a common
disease mechanism, which also correlated with more rigorous
biophysical characterizations (105). With these domains making
up ∼90% of titin, HTP assays like those described for small
soluble domains to assess VUS could cover the vast majority of
TTN variants.
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MYH7/β-Cardiac Myosin Heavy Chain and
the Limitations to Functional Assays
Also located in the sarcomere is β-cardiac myosin, a molecular
motor with ATPase activity that is essential for muscle
contraction (Figure 1D). It has several functional domains
including actin and ATP-binding domains, a lever arm and
HCM-enriched converter and myosin head domains (106). We
finish with this multidomain protein as it underscores the
limitations often associated with functional assays in assessing
VUS (107). First, functional assays need to meet a high level
of reliability, as outlined by Brnich and co-authors (37). To
measure β-cardiac myosin function, various methods including
ATPase and motility in vitro assays have been developed with
limited success. A recent literature review by a Variant Curation
Expert Panel (VCEP) reported numerous problems regarding
method standardization, lack of controls, conflicting results, and
poor reproducibility (107). Consequently, none of these in vitro
assays were approved as functional evidence at any level to assess
their clinical significance leaving only knock-in mouse models to
functionally interpret variants. As another example, we reported
that for some lamin A variants, aggregation propensity can vary
greatly between cell models (104).

Second, LOF does not necessarily prove causality. A recent
sequencing study of over 13,000 asymptomatic individuals >70
years old with no history of cardiovascular disease had variants
classified as pathogenic in MYH7 as well as most of the other
genes described here (e.g.,TTN, RYR2, KCNQ1, SCN5A) (108).
This suggests that these variants are either not implicated in
disease, or (more likely) points to the polygenic nature for
these diseases (Figure 2B). Related, the importance of genetic
modifiers is increasingly being recognized toward understanding

inherited cardiac disease. For example, a polymorphism in the
coding region of SCN5A was reported to modify expression of
a LQT3-linked variant (109). Similarly, variants in noncoding

enhancer regions of MYH7 and LMNA were recently identified;
the former of which correlated with increased HCM progression

(110). These examples highlight how genetic background is
important for understanding variant pathogenicity making a

major limitation to functional studies as well as how ACMG
guidelines handle these genetic modifiers.

Finally, variants can exert their effects through other
mechanisms such as β-adrenergic stimulation such as KCNQ1,
KCNJ2 (111) and RYR2-associated CPVT (90). For example,
truncating TTN variants (the most common variants) showed
a reduced response to β-adrenergic stress among other
dysfunctions in an iPS-CM model (112). To conclude, most
of the assays described here rely on overexpression systems in
non-cardiac cells (out of necessity, i.e., yeast-based assay) but
these in turn can limit their utility. iPS-CMs however have been
widely used to characterize inherited cardiac diseases that largely
recapitulate disease cellular phenotypes (42). With advanced
genome editing technologies in place like base editing (113)
and the ability to physically sort a growing number of cellular
phenotypes (114), pooled genetic screening of inherited cardiac
disease variants in iPS-CMs is surely on the horizon to help
overcome some these limitations.

COMPUTATIONAL AND PREDICTIVE DATA

Variant Prediction
Computational methods are a developing predictive assessment
of genetic variants that complement functional data and
fill in where functional data is lacking. A high degree of
accuracy remains lacking and computational approaches are
still considered relatively weak supporting evidence compared
to functional methods per ACMG guidelines (Figure 3) (27).
The number of tools, however, are growing with each claiming
to be superior to the last and covering each is beyond the
scope of this review. There are several excellent reviews of these
approaches (36, 115, 116) and we provide here just a brief
overview of these tools, discuss their advances and shortcomings
and how these integrate with cardiac arrhythmia variants.
While the tools described herein primarily cover variants in
coding-regions, non-coding VUS are also prevalent in cardiac
disease and several in silico tools have been developed to assess
those, notably the neural network-based splice variant predictor
SpliceAI (117). These tools along with reporter assays should
help toward pathogenic assessment of splice variants via ACMG
guidelines (118).

Some of the early and popular prediction tools are relatively
simple and rely on sequence conservation like SIFT (119) or
use one or more structure-based metrics like protein stability
and location like FoldX or combine sequence and structure
metrics like PolyPhen-2 (Figure 4D) (115). For example, changes
in the physicochemical property of a variant associates with
more severe disease in a study comparing 1300 sodium channel
variants to their genetic and clinical characteristics (120). Most of
these tools, including PolyPhen-2, use machine learning methods
trained using numerous metrics such as stability or pathogenic
classification data that can be collected from structure-based
databases like ProTherm (121) and ADDRESS (122) or variant
pathogenicity databases such as HGMD (123) and ClinVar (17).
The results of these programs have been collated in databases
such as dbNSFP v.4, which provides 36 deleterious prediction
scores for the over 84 million possible missense variants in
the human genome (124). This in turn has served as a rich
source of data for generating ensemble or meta predictors
(Figures 4C,D). For example, more integrative approaches have
been developed such as REVEL, which incorporates 18 scores
from 13 different tools into an ensemble score with improved
prediction capabilities (125). There are limitations to these
various methods however including; (1) inflated accuracies
due to data that is used for training overlapping with data
used for benchmarking (126), (2) lower quality pre-genomAD
control data used, (3) the relatively small training set of known
pathogenic and benign variants in databases like ClinVar and
HGMD, (4) annotated data types used for training is subjective
and perhaps unreliable or poor quality, and (5) relatively
small functional benchmarking data lacking in diversity (127).
These make applying current ACMG guidelines problematic,
which requires that “all in silico programs tested agree on the
prediction.” This non-specific requirement is problematic for
the integration of computational data as “PP3/BP4 supporting
evidence” (27) (Figure 3) since concordance can depend on
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which tools are used and howmany (128, 129). Developing better
predictors and more applicable ACMG guidelines would move
this technology closer toward variant interpretation utility.

One measure to improve predictive tools is the use of
improved population control data from genomAD. Many
tools performed poorly when predicting benign variants and
genomAD can help determine frequency cut-offs to filter
out disease-causing variants (130). Further, these minor allele
frequencies (MAFs) are based on a relatively small control
dataset in genomAD and VUS interpretation will continue to
improve as more population sequences are added. ClinPred
integrates normal population variant frequency data from
genomAD with cleaner ClinVar annotations into existing
pathogenicity scores, which performed better than other top
tools across several metrics (131). 3Cnet, uses neural networks
trained using population data (genomAD), conservation data
(UniREF) and clinical data (ClinVar) to outperform most
popular tools including REVEL, SIFT, and PolyPhen previously
discussed (132).

Since annotated variants used for training can be unreliable
and is relatively limited, a few tools have been reported that
circumvent this issue. For example, the popular tool CADD
relies on variants fixed in the population but absent from human
ancestors for training (133). More recently EVE, by relying on
evolutionary sequence variation across organisms as independent
evidence, made predictions comparable to large-scale functional
data from DMS datasets discussed above (134). This is a
promising development since a recent study testing 46 variant
prediction tools against 31 DMS datasets found DMS results
to be generally superior to most other prediction tools with
some exceptions including REVEL (135). In addition to being
useful for benchmarking, DMS will continue to be an important
resource for improving prediction tools such as DeMasK (136)
and Envision (55). For example, the latter was trained using
21,000 variant measurements from nine DMS datasets, which
showed superior predictive performance to other methods when
tested on large-scale functional data, which improved when
incorporating more DMS data.

As with the functional assays, the tools described are largely
designed for variants treated as monogenic disorders, but most
inherited cardiac diseases are more complex. Several methods
such as VarClass have also been developed that incorporate other
factors such as gene networks (137). Ultimately, combining
computational methods together to enhance prediction
performance may be optimal (128). Machine learning tools
that incorporate well curated, disease-specific data have shown
promise and we provide several examples for a variety of cardiac
genes below.

Structure Prediction
Besides pathogenic prediction programs, variant assessment
can be improved by modeling variant effects on protein
structure. These, however, require highly accurate structural
models which are mostly lacking for relevant cardiac proteins
(e.g., ion channels). Proteins also do not function in isolation
and faster, more accurate approaches for modeling protein-
protein interactions and complexes are needed (138). Accurately

predicting protein structure from sequence has been a long-
standing goal with incremental advancements since the first
competition between prediction programs was held by the
Critical assessment of Protein Structure Predictions (CASP)
in 1994. 2020 was the turning point when DeepMind’s
neural network AlphaFold2 predicted protein structures on par
with experimentally determined structures (139). This offers
unprecedented opportunities for accurate modeling of any
protein with significant advances in protein-protein (140) and
protein complex modeling (141) already reported. Structural
and functional insights into variants associated with inherited
arrhythmias will undoubtedly benefit greatly from these tools
in the coming years such as molecular dynamics analyses (142–
144). Going forward, these structural models will need to be
integrated into sets of interacting proteins for the full scope of
structure-function relationships.

In silico Studies of Inherited Cardiac
Disease
Pathogenic prediction tools have been applied toward assessing
arrhythmogenic cardiac VUS and we briefly discuss several
studies that improve upon some of the limitations discussed
above. In general, these approaches take a more gene-specific
approach since tools can be variable across genes. This was
observed from a comparative analysis of 7 tools tested on 312
Kv7.1, Kv11.1 and Nav1.5 variants with in vitro or co-segregation
studies used for P/B annotations (128) as well as a study of RYR1
using three popular prediction programs SIFT, PolyPhen2 and
MutationTaster (145).

One approach is to assess a variety of prediction tools and
choose the best (or composite score) and combine that with
another metric. For example, a composite score from 7 in silico
tools was combined with location-based analysis to generate
separate evidence-based decision trees for Brugada Syndrome
and LQTS variants (146). A similar study combined in silico
analysis with reported functional data, phenotype data and
MAFs to support reclassifying CPVT-linked RYR2 variants (147).
Another metric used to combine with the in-silico tools has been
paralogue annotation shown to have a high positive predictive
value for LQTS genes (148). This method works by transferring
disease variants across paralogues, genes that have evolved by
gene duplication with similar functions, to predict pathogenicity.
This method was applied to CPVT (RYR2) and Brugada
Syndrome (SCN5A) showing that upwards of one-third of
novel-missense variants can be annotated by assessing paralogue
variants (149). More recently, paralogue annotation was reported
for SCN5A andCav1.2 using updated control data to compare the
predictions of ≥ 12 popular in silico tools, identifying MutPred
and ClinPred as the best predictors, respectively (150, 151).
These were then combined with annotations from 20 SCN5A
and Cav1.2 paralogues to support reclassifying 74 SCN5A and 39
Cav1.2 VUS as pathogenic.

Other tools have leveraged large functional datasets toward
gene-specific predictors. For example, a Bayesian method
was conditioned on various Brugada Syndrome variant
attributes curated from over 700 publications to generate
SCN5A penetrance probabilities (152). Clerx and co-authors
combed the literature and applied machine learning on
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INa data for over 200 variants and 20 variant-associated
features (e.g., location, physicochemical properties) to improve
predictions (153). Another approach used functional data for
107 Kv7.1 variants curated from the literature to train the
neural network Q1VarPred, which had superior performance
compared to 8 other general prediction methods (154).
For LMNA variants, an unsupervised machine learning
method was recently reported that overcomes limitations
from inadequate number of benign variants to identify VUS
with a high potential for pathogenicity (155). Cardiboost
is a disease-specific machine learning classifier that relies
on well-curated familial cardiomyopathy and inherited
arrhythmias specific data with improved performance over
state-of-the-art tools (156). Finally, the flood of variant data
being reported needs curation and database developments
such as TITINdb (157) will be important resources for
variant interpretation.

CONCLUSION

The first part of the Genomic Era focused on variant
identification. Now, the challenge for the second part of the

Genomic Era is for the field of functional genomics to design and
implement HTP and DMS assays integrated with computational
modeling. Innovation and creative approaches to assist with
variant characterization are needed to keep pace with the deluge
of identified but clinically unactionable genetic variants.
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