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ABSTRACT

Sequence heterogeneity is a common characteris-
tic of RNA viruses that is often referred to as sub-
populations or quasispecies. Traditional techniques
used for assembly of short sequence reads pro-
duced by deep sequencing, such as de-novo assem-
blers, ignore the underlying diversity. Here, we in-
troduce a novel algorithm that simultaneously as-
sembles discrete sequences of multiple genomes
present in populations. Using in silico data we were
able to detect populations at as low as 0.1% fre-
quency with complete global genome reconstruc-
tion and in a single sample detected 16 resolved se-
quences with no mismatches. We also applied the
algorithm to high throughput sequencing data ob-
tained for viruses present in sewage samples and
successfully detected multiple sub-populations and
recombination events in these diverse mixtures. High
sensitivity of the algorithm also enables genomic
analysis of heterogeneous pathogen genomes from
patient samples and accurate detection of intra-host
diversity, enabling not just basic research in person-
alized medicine but also accurate diagnostics and
monitoring drug therapies, which are critical in clini-
cal and regulatory decision-making process.

INTRODUCTION

Genetic diversity of populations resulting from high mu-
tation rates plays a key role in viral evolution. In extreme
cases, mutation rate can be as high as 4 × 10–4 errors (1)
per nucleotide per round of replication (RNA viruses such
as poliovirus, mumps etc.). Therefore, natural virus popula-
tions consist of an extremely high number of micro-variants,
often referred to as sub-populations or quasispecies (2).
It is well known that such genetic diversity resulting from

both point mutations and recombination events is critical
for maintaining fitness of the virus (3). Evolution of viruses
is driven by selection from the pre-existing universe of these
variants, in response to changing replication conditions and
various pressures such as the immune system, drug treat-
ment, switching to another host, etc. Therefore, identifica-
tion of population heterogeneity is of critical importance
for treatment design (4,5) and pathogen surveillance (6).

Traditional approaches, such as Sanger sequencing (7),
are not capable of addressing the sub-population issue be-
cause they are geared towards sequencing DNA from ho-
mogenous and pure samples. High-throughput (deep) se-
quencing technologies (HTS) (8,9) that produce highly re-
dundant (massively parallel) sequencing information are al-
ready used in clinical diagnostics (10) and can provide the
necessary level of detail for sub-population genome delin-
eation. However, specialized analysis is required to inter-
pret properly the genetic diversity. In recent years, few al-
gorithms have been designed to use HTS information, but
accurate population reconstruction and frequency estima-
tion is still somewhat intangible (11–15).

Available tools address the problem using statistical ap-
proaches, applying error correction filters to the reads, de-
veloping de novo assembles for diverse samples (16), build-
ing graphs from overlapping reads, or utilizing expecta-
tion maximization algorithms to reconstruct either local or
global sequences (17–22). The accuracy of reconstruction is
affected by the heterogeneity of intra-host viral population.
Abundance of conserved genomic regions that extend sig-
nificantly beyond the maximal read length restricts the full-
genome assembly of highly heterogeneous populations (11).
Nevertheless, none of the current algorithms can efficiently
process current HTS data produced in deep-sequencing ex-
periments. More specifically, ShoRAH (22) performs mul-
tiple sequencing alignment and clustering of limited num-
ber of reads (up to tens of thousands) and calls haplotypes
based on the centers of the clusters. ViSpA (21) and QuRe
(18) were designed for reads generated by pyrosequencing
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technologies with techniques to address insertions, dele-
tions and errors in homopolymeric regions and therefore
cannot adequately handle current HTS data. Finally, Pre-
dictHaplo (19) and HaploClique (17) have been tested with
technologies other than pyrosequencing, including MiSeq
paired end reads but still like ShoRAH have limitations on
the number of reads it can analyze.

Here, we describe a novel deterministic algorithm, called
Hexahedron, based on HTS data that can reconstruct local
and global sequences and determine their relative frequency
at a much larger scale than what was manageable before. We
also offer a novel visualization technique that comprehen-
sively represents the dynamic nature of the results with a
simple interactive interface. The graph contains, per posi-
tion depth of coverage, information for each reconstructed
sequence and the first (bifurcation) and last (merging) po-
sition that differentiates a sequence and its closest sequence
from which it has been derived. Annotations of the provided
references, if included in the input set, will also be plotted in
the same coordinate system as the reconstructed sequences.
Finally, the interface allows sequences to be combined with
each other following the paths that connect different bifur-
cation and merging positions as well as their consensuses
and path compositions to be extracted. The source code
of Hexahedron is publicly available at https://github.com/
kkaragiannis/hexahedron and a web-based implementation
at https://hive.biochemistry.gwu.edu/hexahedron/.

MATERIALS AND METHODS

Algorithm

The algorithm starts by constructing a frame (window) with
a dynamic size (Additional File 1). The frame is placed
in the ‘leftmost’ position of the reference (5′-end) and its
size is set at twice the length of the first alignment. Then,
all the alignments starting within this frame are scanned
and a SNV profile is constructed. The profile extends be-
yond the original frame and occupies twice the size of the
longest alignment considered so far. At the end of this step,
the frame is scanned for mutations above the given thresh-
old and a new sub-population genome profile is bifurcated
based on the first mutation. The alignments are then re-
assigned to the appropriate branches based on the mutation
that triggered this bifurcation event. This process continues
recursively until all frames are clean of mutations exceeding
the threshold. In the next step, the extended profile of the
frame serves as an overlap region with the next step, which
is used to determine to which frame each alignment belongs.
During the reconstruction, the information about the align-
ments and contribution of each reference in any given po-
sition for any given frame is maintained. This leads to re-
solved profiles, where each one also represents a similarity
plot based on the reference selected during the alignment
step. The complexity of the algorithm is O(nk), where n is
the number of short reads and k the number of mutations
that trigger bifurcations.

Let R denote the reference sequences we used and M the
mutual alignment between these sequences. Let Ri, j be the
jth position of the ith reference so m j be the jth position of
the mutual alignment. Similarly, let Si, j be the jth short read
aligned to Ri reference sequence and Si, j (p) be the reference

coordinate that the pth position of the Si, j short read was
aligned to. Let also S j be the jth short read mapped to M.
Finally, let Ci be the ith contig, Ci, j the jth position of Ci
and B(p) the basecall for any position.

Initially, we map all reads aligned against all references to
the mutual alignment coordinates, so that:

Sj (p) = M
(
Si, j (p)

) = M
(
Ri j

)

where M(Ri, j ) is a fixed look up table of the specific M that
returns the coordinate of the mutual alignment that corre-
sponds to Ri, j .

Then all short reads are sorted based on their aligned
position on increasing order so that Si (p) ≥ Sj (p) ∀ i ≥ j .
The sorting method used is quicksort. Let Wi
be the matrix where the ith contig will be con-
structed into and Wi, j the jth position of Wi .
Hence, B(Wi, j )[b] (∀ b ∈ {0, 1, 2, 3, 4, 5}) is the
total number of Adenines, Cytosines, Guanines and
Thymines; insertions and deletions are mapped in
Wi, j (0 → A, 1 → C, 2 → G, 3 → T, 4 → insertion,
5 → deletion). As a result, during the first step of the
algorithm:

B (W0,l ) [b] = B (W0,l ) [b] + B
(
Sj (p)

) ∀ j : 0 < Sj (0) < L

where l = Sj (p) mod 2L and L = Length(W0). However,
the length of W0 is dynamically allocated during this step,
and self-adjusted to the maximum length of the short reads
that have been scanned so far.

Length (W0 ) = max (Length (Si )) ∀i : 0 < j < i

After all Sj that fall under the range of the first step have
been scanned and the initial contig has been constructed,
we check for mutations that exceed the frequency threshold
( f t). So:

Fl [b] = B (W0,l ) [b]
max (B (W0,l ) [b])

∀ j : 0 < l < L and p :∈ N0 and p : 0 ≤ p ≤ 5

Therefore, we consider the bifurcation position I (or l in
the context of the Wi ) where:

I = min (l) ∀l : Fl [b] ≥ f t

After a bifurcation position has been detected, we con-
struct a new matrix Wi+1 and iterate the contig construc-
tion process using a subset of all reads mapped through the
position p and containing the bifurcating mutation. Now j
is in the range where 0 < Sj (0) < L. Another difference is
that now we have to decide the matrix the Sj will contribute
to. The bifurcation and construction steps are iterated until
no bifurcation position is found.

With the exception of the first step of the algorithm,
where there is only one contig, a decision is made before
assignation of a short read to a contig. There are differ-
ent points in the algorithm where contig voting is applied.
The first is after bifurcation; the decision is between contig
i where the bifurcation position was detected and contig n
the newly created one. The decision is made based on the
base of the bifurcated position. So,

B
(
Wi,l

)
[b] = B

(
Wi,l

)
[b] + B

(
Sj (p)

) ∀ j : 0 < Sj (0) < I and B
(
Sj (p = I)

) = B (ci , I)

B
(
Wn,l

)
[b] = B

(
Wn,l

)
[b] + B

(
Sj (p)

) ∀ j : 0 < Sj (0) < I and B
(
Sj (p = I)

) = B (cn , I)

The second scenario is after the end of the first step of
algorithm, where there are an arbitrary number of frames.
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In this case:

B (Wc,l ) [b] = B (Wc,l ) [b] + B
(
Sj (p)

) ∀ j : mi < Sj (0) < mi + L

where mi = si zestep ∗ step and c =
min(Dist(S j , Ck)) ∀ k ∈ N0. Where Dist(S j , Ck) is
the Hamming distance between the S j read and the Ck
contig.

Before each step, all contigs are scanned to ensure that
they are well supported by mutated positions against all
other contigs. As the algorithm proceeds, all contigs un-
supported for a region greater than the size of the step are
merged together. Similarly, contigs that drop the coverage
inside the current frame to zero - are excluded from partic-
ipation in the construction process. So,

B
(
Wi,l

)
[b] = B

(
Wi,l

)
[b] + B

(
Wj,l

)
[b] ∀ l : mi < Sj (0) < mi + L and ∀i, j ∈ N0

where Dist (Ci,l , Cj,l ) = 0 and Dist(Ci,l , Cj,l ) is the Ham-
ming distance between the Ci read and the Ci contig for
position l.

The algorithm iterates until the last alignment is con-
sidered on the rightmost frame. The result is a collec-
tion of arrays, each representing a contig Ci . Position
j of the ith contig is an array P = Ci , j where P =
[P0, P1, . . . , Pr . . . , Pk] and Pr is the number of alignments
that support the contig Ci and have been aligned to refer-
ence Rr .

Validation

In order to test the algorithm, we generated in silico short
reads using Sabin2 as a template sequence (Supplemen-
tary Table S1). Although Sabin1, Sabin2 and Sabin3 (Gen-
Bank (23) accession numbers AY184219, AY184220 and
AY184221 respectively) are three strains that could be used
to produce a heterogeneous sample of three sequences the
goal was to generate samples of arbitrary number of popu-
lation. As a result, a sequence was used to generate ten mu-
tant strains, each with a genetic distance described in the
second column of Supplementary Table S1. From these se-
quences, we randomly generated different number of short
reads creating different relative frequencies for each haplo-
type. The length of the reads and the random noise intro-
duced in each group of short reads is also described in the
table. All short reads were merged into one file. After creat-
ing the in silico heterogeneous sample, we aligned and pro-
filed them against the original Sabin2 sequence. The profile
revealed a large number of mutations and the two distinct
relative frequencies created two baselines of mutations at
the level of 10% and the second at the 30% (Supplementary
Figure S1a). After applying our algorithm with 1% muta-
tion threshold we were able to reconstruct ten sequences
with no mutations (Supplementary Figure S1B)

Contigs <2000 bp were ignored during all validation pro-
cesses. For each experiment reconstructed sequences were
extracted and aligned against all original sequences using
hexagon (24). Correct hits are reported as true positives
(TP). False positives (FP) are the excess hits to the original
sequences (anything that overlaps with the longest contig).
False negatives (FN) are considered the original sequences
with no hits. Furthermore, for true positives, the number
of mismatches is reported as an additional measurement of

accuracy. True and false positives were used to calculate the
precision and recall of each test.

Precision = T P
T P + F P

Recall = T P
T P + F P

Another measurement that was used is the harmonic
mean of precision and recall, called F-score or F1.

F1 = 2 ∗ 1
1

Recall + 1
Precision

= 2 ∗ T P
2 ∗ T P + F P + F N

The algorithm returns the depth of coverage per position
and the frequency of each sequence was calculated based on
the average depth of coverage of each haplotype. In order
to measure the accuracy of the predicted relative frequen-
cies, we use the Kullback–Leibler divergence between the
predicted (P) frequency distribution and the true (T) dis-
tribution. Zero data points, which have resulted from false
positives predictions, were disregarded.

DK L(T ||P) =
∑

i∈l

T (i ) log
T (i )
P (i )

We validated using a sample of trivalent poliovirus vac-
cine made from a mixture of three serotypes of attenu-
ated Sabin strains of poliovirus (25). Sabin1, Sabin2 and
Sabin3 sequences (GenBank accession numbers AY184219,
AY184220 and AY184221 respectively) were used for
Hexagon alignment with default parameters. This produced
a total of 60 million alignments, which were then analyzed
by the algorithm using 1% as mutation threshold. The three
sequences were fully reconstructed and four more contigs of
<150 bp were also reported (Supplementary Figure S2A).
We predicted Sabin1 with relative frequency 93.58% and 17
mismatches, which correspond to 0.22% of the positions.
Sabin2 was reconstructed with 0 mismatches despite the
low frequency of 1.2%. Finally, the identified Sabin3 se-
quence had only 3hree mismatched positions, an equivalent
of 0.04% of the total length and 5.14% frequency (Supple-
mentary Figure S2B and Additional File 6). Very deep se-
quencing further supports the results because even for the
lowest frequency Sabin2 virus the depth of coverage exceeds
an 8000x. What appears as decrease in the depth of cover-
age in Figure 2C is due to the gaps introduced by the mu-
tual alignment. The normalized representation of the graph
highlights this effect, where relative frequency of a sequence
increases locally to 100% in regions where these gaps occur.

Datasets

The data sets supporting the results of this article and an
implementation of the algorithm are available in HIVE
at: https://hive.biochemistry.gwu.edu/review/Hexahedron%
20publication

Artificial datasets were generated using a native HTS sim-
ulator. Sequence Sabin2 was used as a template to generate
10 more sequences, each representing a different population
in the heterogeneous sample. Mutations were introduced
at every 50 positions with a starting position such that no

https://hive.biochemistry.gwu.edu/review/Hexahedron%20publication


10992 Nucleic Acids Research, 2017, Vol. 45, No. 19

mutation was overlapping with another on a different se-
quence. Each of these sequences was used as a template
to generate NGS reads with the characteristics included in
Supplementary Table S1. Artificially generated reads were
merged into a single fastq file and aligned against the origi-
nal Sabin2 sequence. Quality scores were all set to 30.

For the sensitivity analysis, six datasets were generated
using Sabin2 as a template, consisting of 1 million short
reads each. Initially two new sequences were created by in-
troducing random mutations to Sabin2. Each sequence had
5% mutated position from the original sequence and ∼9%
differences from each other (Supplementary Table S3). The
two sequences were used to create these six samples by gen-
erating short reads of 250bp at different ratios with relative
frequency ranging from 50% to 0.1% (Supplementary Table
S2).

In order to produce different levels of genetic distance, a
set of 100 sequences were generate by randomly mutating
Sabin2. The greater genetic distant was set to 50% and the
space between the two most distant sequences was divided
into steps of 0.5% genetic distance. The relative abundance
of each of the 100 points was calculated using the power
distribution.

f (x) = λ e−λx, 0 < x < 10, λ = 0.5

Six datasets were generated each using an increasing
number of sequences as templates chosen in such a way that
each consecutive pair of references is equidistant with the
previous one (Supplementary Table S4). Distances between
sequences for each sample are described in Supplementary
Tables S5–S10.

Comparative analysis

The tools included in the comparison were QuRe v0.99971,
ShoRAH, ViSpA and PredictHaplo1.0. Additionally, Vi-
QuaS1.3 and HaploClique were included in the compar-
isons but failed to run successfully in our environment and
no results are reported. All tools were executed sequen-
tially against all samples, with a specific time limit described
in Table 3 and Supplementary Table S12. All results were
validated for the accuracy of the sequence reconstruction
and abundance estimation. Trees were created from the se-
quences each tool predicted for each sample. Reconstructed
sequences from each computation were aligned together
with the original sequences of the corresponding sample
using MUSCLE from MEGA7 (26) with the default argu-
ments. Trees were generated in MEGA7 using the neighbor-
joining method (27) with default arguments. In order to as-
sociate the predicted sequences with the original ones, each
tree was traversed using the B* algorithm starting from one
original sequence, looking for the first predicted sequence
and removing the latter from the available leaves. The oper-
ation was repeated until all leaves of original sequences were
matched to a leaf of predicted sequence or until no other
leaves were available. False positives were considered either
sequences that were not matched with original ones or that
had mismatches to the associated original more than a given
threshold. The trees were drawn using the ETE toolkit. In
order to measure the accuracy of the predicted abundances,
we used Jensen–Shannon divergence between the predicted

(P) frequency distribution and the true (T) distribution.

DJSD(T ||P) = DK L(T||M)
2

+ DK L(P||M)
2

where M = (T + P)/2
The tools that successfully produced results for the sam-

ples SCL1–4 were validated by aligning the reconstructed
sequences back to the original ones (Additional File 7). For
those results where no predicted sequence aligned against
any original, we performed a more thorough analysis using
the genome comparator available in HIVE. 100 000 random
reads were generated from the predicted sequences of each
run and mixed with 100 000 random reads generated by the
original sequences. The reads were mapped against both
predicted and original sequences and chord graphs were
generated. Reads aligned to two different sequences were
used as evidence of the similarity between the regions of
these sequences (Supplementary Figure S3). Only Hexahe-
dron was able to predict sequences associated to original se-
quences. Further validation was performed using the same
techniques applied on the specificity analysis. Recall, pre-
cision, % of mismatches and Kullback–Leibler divergence
were identical to the SP4 sample of the specificity analysis.

Hexahedron workflow

The implementation of the algorithm is part of HIVE
platform that can be publicly accessed through this URL
(https://hive.biochemistry.gwu.edu/review/Hexahedron%
20publication). After logging in, using guest’s credential,
the user may start by uploading the HTS reads through
HIVE’s web interface. Necessary input for the algorithm
is an alignment of the sample against a number of refer-
ences. Tutorial on performing alignment computations
is also available through the same portal (see Additional
File 8). Should multiple reference sequences have been
selected for the alignment, an additional mutual alignment
of the reference sequence is required before executing
Hexahedron. A link to Hexahedron is available through
the web page of the HTS sample alignment as an op-
tion of subsequent computations (‘what’s next’ section).
Hexahedron webpage will display the alignment that
will be used as an input and will request for the ID of
multiple alignment process. Additional arguments include
the mutation threshold, above which bifurcations are
triggered, and a flag that will mark the HTS sample as
pair-end reads. The source code is also publicly avail-
able at https://github.com/kkaragiannis/hexahedron
and a web-based implementation can be found at
https://hive.biochemistry.gwu.edu/hexahedron/.

Architecture and computational environment

All data displayed on the website as well as any data
or references used in the analysis are stored in the
High-performance Integrated Virtual Environment (HIVE)
server (http://hive.biochemistry.gwu.edu). The results are
accessible online and available for downloading. Users can
use the algorithm as a next step after the alignment or
browse the publicly available pre-existing results. HIVE pro-
vided computational infrastructure for storage and analy-
sis for this project. Comparison of Hexahedron with other
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tools and performance tests were done on CentOS installed
on an Intel 2 Quad core 2.26 GHz with 24GB of RAM sys-
tem.

RESULTS

Hexahedron is a deterministic algorithm that extensively
explores all mutations above a given threshold in all avail-
able genomes in a sample. Each position is treated individ-
ually so that multiple nucleotide variations are processed
as a series of single nucleotide variations (SNVs). An SNV
is defined within the context of comparing a particular se-
quence read with the consensus sequence of multiple refer-
ences; thus, sub-populations that have consistent groups of
mutated nucleotides will be detected as correlated groups
of SNV patterns in that specific sub-population or quasis-
pecies genome. The input of the algorithm is the result of the
alignment of the sequencing reads against a group of related
references. Although the algorithm can accept a single ref-
erence, it is beneficial to use a multiple sequence alignment
of related genomes to avoid the bias of reference selection.
A comprehensive set of multiple references covering the en-
tire range of sequence variations provides a better scaffold
for reference assisted de novo assembly of the heterogeneous
genomes in the sample. Allowing multiple references also
provides the advantage of aligning more reads that would,
otherwise, be too distant to match a single sequence and
therefore be omitted from analysis (Table 1, Supplementary
Figures S4–S12). Each read is aligned with the highest scor-
ing reference sequence and then the result is re-mapped to
a common frame generated by a multiple alignment of the
reference sequences to each other. This provides the best
scoring alignment to the frame of the common coordinate
system. The algorithm proceeds in a step-wise manner fol-
lowing a 5′ to 3′ directionality of the references. In every
step the variant calling profile along the reference frame is
constructed and mutations trigger branching of the variant
calling profile and re-allocation of the alignments. Besides
requiring a collection of alignments, there are two addi-
tional user defined parameters: the frequency of occurrence
threshold, above which a mutation is considered valid, and
optionally the mutual alignment of reference sequences in
case of alignment against multiple references (Figure 1).

Validation using in silico reads

The algorithm’s performance was validated using simulated
in-silico data and determined the sensitivity and specificity
boundaries. In addition, we have applied the algorithm to
real samples and analyzed the results using the novel inter-
active visualization, similar to Sankey diagrams but devel-
oped specifically for this purpose. Each band represents a
separate reconstructed sequence and the width of the flow is
represents the depth of the coverage for each position along
the x-axis. It comprehensively represents where a genomic
contig is detected relative to the common coordinate sys-
tem, the coverage of that contig and finally where and how
the contig ends. Bifurcation and merging events are repre-
sented by grey line. Additionally, different colors inside each
contig describe the similarity at a given position based on
the references to which the reads, considered for the posi-

tion, have been aligned. In the Sankey diagram, all trajec-
tories following the bifurcation and merging events are pos-
sible assemblies in the variant spectrum.

First, the validity of the concept was tested by generat-
ing a mixture of reads derived from ten sequences. Each
sequence was created from the same 7800 bp template se-
quence by introducing mutations randomly at a 10% rate.
We generated 10 000 short reads of 150 bp length for eight
of the sequences individually and 60 000 for each of the
remaining two. Compared to a variant detection analysis,
which identifies two populations one at frequency 5% and
one at 30%, the assembler identified all of them (Supple-
mentary Figure S1). In all experiments, reads were aligned
using the Hexagon aligner (24). The quality of the results
was measured based on precision, recall and Kullback–
Leibler (28) divergence.

Sensitivity. To determine the sensitivity of the algorithm,
two sequences 20% different from each other were pro-
duced, split into short reads of 250 bp and combined to-
gether in six different proportions (Supplementary Tables
S2 and S3). The six samples, named SN1–6, were aligned
against the reference sequences used to generate the two
original sequences, and processed by the algorithm. One
percent mutation threshold was selected for the first 3 sam-
ples, 0.3% for the next 2 and 0.07% for the last. Threshold
was set so that it lies above the expected 0.3% noise level,
unless we specifically wanted to detect populations below
the noise level. The assembled sequences were then aligned
back to the original references and those that were aligned
only against their original sequence were reported as true
positives (TP).

Filtering short contigs also decreased false positives gen-
erated by phased noise. All datasets resulted in fully re-
constructed sequences with 100% recall (Table 2 and Sup-
plementary Figure S13). After filtering all contigs shorter
than 2000 bp, precision was also 100% for all samples. It re-
mained 100% even when contigs greater than 1000 bp were
allowed with the exception of the 0.1% dataset, where 24
false positives (FP) were reported having a great impact in
the precision. It is understandable that the noise, which in
this case is three times higher than the bifurcation threshold,
was phased allowing contigs to extend up to 1500 bp. No
mismatches were detected between the true positives and
the original sequences confirming sequence reconstruction
accuracy. The distribution of the predicted sequences was
identical to the actual distribution with divergence at the
level of 10−5 (Table 2).

Specificity. To determine the specificity, the closest genetic
distance the algorithm can separate sequences, six more
datasets, named SP1–6, were generated (Supplementary Ta-
ble S4) with an increasing number of sequences (2, 4, 8, 16,
32 and 64) derived from Sabin 2 poliovirus (29) (GenBank
accession: AY184220.1). Each sample exhibited the same
diversity, such that the two marginal sequences of each sam-
ple had almost the same distance across datasets, resulting
in sequences that were genetically very close to each other
(Supplementary Tables S5–S10). Furthermore, the relative
frequency of each sequence was calculated based on the ex-
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Figure 1. Hexahedron algorithm overview. The algorithm creates bifurcations in every point mutation that exceeds a user specified threshold and maintains
the contig as long as possible. It takes advantage of the existing alignment data and correlates distant mutations, reported by an alignment algorithm possibly
because of the selection of a distant reference genome. Hexahedron makes no statistical assumption; it rather extracts the information from the overlapping
alignments in a step wise, contig assembly, fashion, using coordinates of the aligned reads mapped to the mutual alignment of the references.

Table 1. Impact of increased number of references on sequence assembly

# of References Mismatches allowed (%) Unaligned reads (%) Precision (%) Recall (%)

1 5 79.5 100 37.5
1 15 25 100 87.5
3 5 24.8 100 87.5
3 15 0.1 100 100
10 5 0 100 100
500 15 0 100 100

ponential distribution resulting in sub-populations of fre-
quency as low as 0.05% (see Methods).

Analysis of the samples with 2, 4, 8 and 16 sequences
(with frequencies as low as 0.25%) led to global reconstruc-
tion of all sequences (Table 2). The recall and the preci-
sion for these samples was 100% with no FP contigs de-
tected longer than 300bp (Supplementary Figures S14A–
D and S15A–D). All globally reconstructed sequences were
aligned against the original sequence and found to have
<0.5% mismatches (Additional File 5). This occurred in
low-coverage regions such as the 5′ and 3′ ends. After trim-
ming these regions out of the predicted sequences, the num-
ber of mismatched position decreased to <0.04% for these
samples (data not shown). The distribution of frequencies

of the predicted sequences for these samples was identical to
the true distribution with KL divergence 10−5. Recall and
precision decreased for samples with 32 and 64 sequences
(Table 2). Twenty-seven fully resolved sequences were gen-
erated for the mixture of 27 sequences and 39 for the mix-
ture of 64 (Supplementary Figures S14E–F and S15E–F).
Prediction of relative frequencies was also affected in these
dense and highly heterogeneous samples. This was observed
mainly for the low frequency haplotypes, while those with
higher frequency resulted in a more accurate prediction
(Additional File 5). This may be because a large number of
the generated sequences were present below the noise level.
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Table 2. Sequence reconstruction accuracy and Kullback-Leibler divergence between known and predicted frequency distribution

Sample Recall (%) Precision (%) Av. Mismatches (%) KL-Divergence

Sensitivity
SN1 100 100 0.0067 6.8 10−6

SN2 100 100 0.0067 0.00043
SN3 100 100 0.0067 0.00024
SN4 100 100 0.0067 5.6 10−5

SN5 100 100 0.0067 3.2 10−5

SN6 100 100 0.0067 5.7 10−5

Specificity
SP1 100 100 0.0605 4.5 10−06

SP2 100 100 0 3.4 10−06

SP3 100 100 0.1519 4.8 10−05

SP4 100 100 0.0439 2.5 10−5

SP5 84.375 84.375 0.6934 0.00786
SP6 60.9375 50.64935 1.4272 0.03951

Figure 2. Populations assembly results of real sample. (A) A mixture of mumps was resolved into exactly two sequence with a frequencies of 94% and
6% (B). (C) Sample isolated from concentrated sewage water in RD cell culture. Only two sequences longer than 1000 bp were reconstructed. The two
sequences were identical in the 3′ end indicated by the shorter reconstructed merged to the dominant one at position 4325. (D) Relative frequency of the
two sequences at 88.67% and 11.23%. (E) Another sample isolated from sewage concentrate using RD cell culture was analyzed using our software. A
more complex picture reveals three fully reconstructed sequence and a number of smaller contigs that depict the dynamic nature of the virus. (F) Frequency
distribution of identified populations in the environmental sample.
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Speed performance. To measure the speed performance of
the algorithm (Supplementary Figure S16), we constructed
different sets of samples changing all pairs of the following
characteristics: the noise, the number of sequences and the
distance between sequences. Noise was set to 0.3%, number
of sequences to 4, distance between them to 2%, number
of short reads to 100 000 and the read length to 200 as de-
faults and the mutation threshold to 1%. The algorithm was
shown to perform well even on deep sequencing data and
most of the computations finished within seconds (Supple-
mentary Figure S16). The slowest computations, finishing
within 1 h, were the ones with the greatest number of aligned
reads and when sensitivity was set below the noise baseline.

Validation using experimental data for viral samples with sub-
populations

In addition to the above simulation study, the algorithm was
applied to real HTS datasets obtained for a live attenuated
vaccine strain and for an environmental (sewage) sample.
All samples were aligned using hexagon; when necessary,
multiple alignment of selected references was performed us-
ing MAFFT (30).

Mumps virus. Mumps is an RNA virus with a 15 000 bp
genome that encodes nine proteins. Jeryl Lynn strain used
in live Mumps virus vaccine was shown by conventional se-
quencing of plaque-purified clones to contain two distinct
virus sequences (31). After aligning the paired end reads
to a comprehensive database of genomic sequences of 54
strains of mumps, using hexagon with default parameters,
688 000 hits were recorded and used for analysis. Two glob-
ally reconstructed sequences were detected using 1% mu-
tation threshold (Figure 2A). The predicted frequencies of
the reconstructed sequences were 93.18% and 6.82% (Fig-
ure 2B), consistent with previous estimate based on quan-
titative PCR (31). Consensus sequences of these two sub-
strains were identical to those determined by conventional
sequencing of plaque-purified clones.

Environmental isolate of poliovirus (example 1). The same
analysis was applied to a sewage sample that was previ-
ously found by conventional virological analysis to con-
tain vaccine poliovirus along with another non-polio en-
terovirus. The 55 million paired end reads were aligned
against Sabin1, Sabin2, and Sabin3 sequences (GenBank
accession numbers AY184219, AY184220 and AY184221
respectively) resulting in 48.26 million alignments. The
reads produced hits to all of the references and the align-
ments were used as input for our algorithm with a 1% mu-
tation threshold. Two sequences were reconstructed, one
globally and another of 5948 nucleotides long (Figure 2C
and Additional File 6). The globally reconstructed sequence
was also the dominant one and had a predicted frequency
of 54.75%; the shorter sequence had a predicted frequency
of 45.25% (Figure 2D and Additional File 6). The shorter
sequence bifurcates from the dominant sequence at position
53 and merges back at position 5981 of the common coor-
dinate system. Hence, the sample contains a mixture of two
recombinant viruses that differ only in this range by 2513
mutations (Additional File 6). Comparison of the recon-
structed consensus sequences showed that one component

of the mixture was a Sabin 2–Sabin 3 recombinant, while
another was close to Echovirus 11.

Environmental isolate of poliovirus (example 2). The same
analysis was applied to another virus isolated from sewage.
The 2 million paired end reads were aligned against a com-
prehensive set of 500 enteroviruses resulting in 3 million
alignments. The reads aligned produced hits to 315 of the
references and used as an input for our algorithm with a
1% mutation threshold. The large number of references did
not affect the efficiency of the algorithm; it did, however,
affect the mutual alignment frame, where we observed an
increased number of gaps (Figure 2E). The algorithm iden-
tified two major fully reconstructed variants, and several mi-
nor variants that represented recombinants of the first two
with different inserts with length between 1000 and 5000
bp. The two fully reconstructed sequences have predicted
frequencies of 64% and 26%, and are identified as recombi-
nant vaccine-derived polioviruses of serotypes 1 and 3. (Fig-
ure 2D and Additional File 6). In the set of minor variants,
frequencies below the 1% mutation threshold were detected
(0.98%), demonstrating the flexibility of the algorithm.

Comparative studies

Hexahedron was also compared against the current state-
of-the-art sequence reconstruction algorithms compatible
with the available computational environment (see Ma-
terials and Methods): QuRe (18), ViSpA (21) ShoRAH
(32) and PredictHaplo (33,34). Initially, 20 samples, name
SCS1–20, were generated varying in sequence length of the
populations with 500, 1000, 2000 and 5000 base pairs and
the number of the in silico generated short reads with 1000,
5000, 10 000, 50 000 and 100 000 short reads. All samples
were simulated to consist of four populations each one at
25% prevalence. The sequences were derived from Sabin 2
poliovirus (see Materials and Methods) with an increasing
distance from the original template of 1% positions on av-
erage (Table 3).

Reconstruction performance. The reconstructed haplo-
types were compared to the original sequences and were
called True Positive (TP) or False Positive (FP) depend-
ing on whether the percentage of mismatches exceeds one
of the following thresholds: 0%, 0.01%, 0.05%, 0.1%, 0.5%,
1% and 5%. Hexahedron produced the least amount of FP
and False Negative (FN) with few exceptions, only against
PredictHaplo (Supplementary Figures S17 and S18). All
tools failed to reconstruct any haplotype with less than
0.5% mismatches for samples with average depth of cover-
age less than 5x per population (Table 3). ShoRAH, QuRe
and ViSpA failed to reconstruct any haplotype with less
than 1% mismatches for any of the samples with the only
exception of PredictHaplo that successfully reconstructed
two sequences for the sample of the 1000 short reads and
500 bp long sequences. In contrast, for samples with more
than 10 000 reads and considering a 0.1% mutation thresh-
old Hexahedron produced consistently the least amount of
FP and FN and as a result it performed better against all al-
gorithms in terms of precision (Supplementary Figure S19),
recall (Supplementary Figure S20) and F-score (Figure 3).
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Figure 3. Comparison studies results. Hexahedron, PredictHaplo, QuRe, ShoRah and ViSpA were compared using 20 in silico samples of four populations,
each one of 25% abundance. (A) F-scores. Each column of charts represents a different number of short reads in the samples and each row a different
sequence length of the populations. For each computation True Positive (TP) are called based on the number of mismatches between the reconstructed
and the original sequences. Vertical axes with the label F1 represent the F-score and horizontal axes represent the mismatch threshold below which the
sequences are declared TP. F-scores are reported based on mismatch thresholds 0%, 0.01%, 0.05%, 0.1%, 0.5%, 1% and 5%.Missing data points are due to
the failure to obtain results within the period specified for each sample. (B) Jensen–Shannon divergence between the predicted and the original frequencies.
(C) Speed performance of the tools reported in minutes. The results indicate an time increases exponential as the number of short reads increases for
PredictHaplo, QuRe, ShoRah and ViSpA.
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Table 3. Summary of in silico samples generated for comparison studies

Name Length (bp) # of short reads Av. Depth/haplotype WC limit (h) # of haplotypes

SCS1 500 1000 125 1 4
SCS2 500 5000 625 2 4
SCS3 500 10000 1250 3 4
SCS4 500 50000 6250 6 4
SCS5 500 100000 12500 12 4
SCS6 1000 1000 62.5 1 4
SCS7 1000 5000 312.5 2 4
SCS8 1000 10000 625 3 4
SCS9 1000 50000 3125 6 4
SCS10 1000 100000 6250 12 4
SCS11 2000 1000 31.25 1 4
SCS12 2000 5000 156.25 2 4
SCS13 2000 10000 312.5 3 4
SCS14 2000 50000 1562.5 6 4
SCS15 2000 100000 3125 12 4
SCS16 5000 1000 12.5 1 4
SCS17 5000 5000 62.5 2 4
SCS18 5000 10000 125 3 4
SCS19 5000 50000 625 6 4
SCS20 5000 100000 1250 12 4
SCL1 ∼7200 100000 2417–926 937 12 16
SCL2 ∼7200 500000 483.5–185 387.5 24 16
SCL3 ∼7200 1000000 241.7–92 693.7 48 16
SCL4 ∼7200 5000000 48.3–18 538.8 96 16

Samples with the SCS prefix have four haplotypes with uniform abundance distribution and samples with SCL prefix have 16 haplotypes with power
distribution. Column ‘WC limit’ describes the Wall Clock time, in hours, given to tools to run each sample.

Using the F-score to compare the algorithms, PredictHaplo
performed better in samples SCS7, SCS8 and SCS19 only
when considering 0.05% as mismatch threshold, in sam-
ples SCS13 and SCS20 with 0.05% and 0.1% mismatches
and in SCS12 for thresholds between 0.01% and 1. Further-
more, PredictHaplo did not reconstruct perfectly any se-
quence, while Hexahedron produced all sequences without
mismatches in sample SCS1, SCS2, SCS3, SCS5, SCS9 and
SCS10 and perfectly reconstructed at least one sequence in
samples SCS4, SCS14 and SCS15.

Phylogeny of reconstructed sequences. In addition to diag-
nostic testing, neighbor-joining relatedness trees were con-
structed for each sample including the original and all se-
quences predicted by all tools (Figure 4 and Supplemen-
tary Figure S21). The tree of sample SCS5 is represented
in Figure 4A and is in concordance with the F-scores re-
ported in Figure 3A. Hexahedron predicted exactly four se-
quences while PredictHaplo reconstructed one more than
expected with 1% abundance, possibly due to noise and
high depth of coverage (12500 per sequence). Despite simi-
lar F-scores in sample SCS11, Figure 4B shows that, Predic-
tHaplo predicted only two sequences, each one with almost
50% abundance, while Hexahedron predicted exactly four
with ∼25% abundance each. Consequently, this difference
was also highlighted when we measured the accuracy of the
detected abundances of the reconstructed sequences. For
this purpose, we measured the Jensen-Shannon divergence
between the predicted and the original distribution. Each
original sequence was paired with the closest reconstructed
one without considering any mismatch threshold. Predic-
tHaplo predicted more accurately the frequency distribu-
tion than Hexahedron only in samples SCS16 and SCS17
while the latter outperformed all the tools in samples with

100000 reads with the only exception of sample SCS20,
where PredictHaplo achieved the same accuracy. In sam-
ple SCS16, Hexahedron reconstructed seven sequences and
PredictHaplo reconstructed one instead of four, while in
SCS17 Hexahedron reconstructed five sequences and Pre-
dictHaplo four resulting in more accurate frequency distri-
bution prediction.

Speed performance. In terms of speed, Hexahedron was
found to be the fastest for all samples (Figure 3c). In fact,
all other tools displayed a polynomial time complexity with
respect to the number of short reads with the only excep-
tion of samples SCS17 and SCS18, where QuRe spent more
time to process the sample with smaller number of reads
(SCS17). Notably, QuRe predicted one sequence for SCS17
and two for SCS18. Perhaps the depth of coverage in SCS17
forced QuRe to consider more reconstructed sequences per
sliding window, but this was not sufficient to expand them
into global sequences providing the worst-case scenario for
the algorithm. Conversely, SCS18 with sufficient depth of
coverage allowed QuRe to reconstruct two sequences, re-
moving a number of variants from the single pool of the
four populations and reducing the computational load.

Large datasets. In order to further compare the perfor-
mance of the tools on datasets more representative of cur-
rent HTS technologies, we generated four more datasets,
named SCL1–4, with 16 populations and abundance fol-
lowing a power distribution, similar to sample SP4 (Table
3 and Supplementary Table S12). The number of reads of
the samples is ranging from 100,000 to 5,000,000. Each tool
was given up to 4 days of wall clock time to conclude the
computations (Table 3). Within this timeframe, only Hexa-
hedron processed successfully all samples and PredictHaplo
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Figure 4. Neighbor-joining trees of original and reconstructed sequences from all tools. ShoRah leaves are colored red, PredictHaplo green, Hexahe-
dron blue, QuRe yellow, ViSpa light blue and original sequences are colored black. Blue circles next to leaves represent the abundance predicted for the
corresponding sequence. (A) Tree of sequences generated from sample SCS5. Two of the PredictHaplo reconstructed sequences are assigned to nodes
closer to their original sequences compared to Hexahedron but PredictHaplo has reconstructed 5 sequences instead of five. ShoRah did not conclude the
computation within the given time frame. (B) Sample SCS11. QuRe did not produce results.
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successfully finished only samples SCL1, SCL2 and SCL3.
None of the sequences reconstructed by PredictHaplo was
identified as a TP even considering mismatch threshold as
high as 20% (Supplementary Table S13, Figure S3 and Ad-
ditional File 3). Hence, the results were not analyzed fur-
ther. Hexahedron was able to reconstruct successfully all
haplotypes (Additional File 7). We also used the sample
described in the ‘Mumps virus’ section as a semi-empirical
dataset to compare the tools. Hexahedron, was the only tool
to successfully resolve the sequences. PredictHaplo partially
reconstructed 22 sequences, each 5400 bp, instead of the two
15 000 bp sequences. The rest of the tools did not produce
any results within 24 h.

Recombination dataset. Finally, we compared the tools on
datasets with recombinants of the original sequences. Two
paired-end samples, name SCR1 and SCR2 were generated
with 40 000 reads each and a 0.3% noise. Both samples
consist of three in silico progenitor sequences derived from
Sabin 2. Sample SCR1 consists of additionally one recom-
binant between the first two progenitor sequences. Sample
SCR2 consists of the same sequences as in SCR1 with two
more recombinants, also between the first two progenitor
sequences but with recombination events in different po-
sitions (Supplementary Tables S14–S16). As described in
the first example of the environmental samples (Figure 2C),
Hexahedron detects recombination events by providing the
merging and bifurcation positions. As a result, recombi-
nants of resolved sequences are represented as contigs of
a single position, serving as links, which bifurcate from one
sequence and merge to a different one (Supplementary Fig-
ure S22). The global sequences can be obtained by follow-
ing the path starting from the link and continuing on both
sides. Hexahedron resolved all three progenitor sequences
in both samples and detected one link in SCR1 and three
links in SCR2. QuRe did not produce any results. ViSpA
predicted more sequences than the original ones but none
with <0.5% mismatches. ShoRAH predicted 32 sequences
in SCR1 where three of them were <0.5% distant from the
original sequences and two in sample SCR2 but none suc-
cessfully matched the original ones. PredictHaplo recon-
structed four sequences for sample SCR1 but one did not
match any of the original sequences; it also reconstructed
four sequences for SCR2 without any of them being a suc-
cessful prediction. On the other hand, Hexahedron pre-
dicted successfully all sequences in both samples (Table 4,
Supplementary Figure S23). Similarly, Hexahedron outper-
formed all the tools in terms of frequency prediction based
on Jensen-Shannon divergence between the predicted fre-
quencies of all reconstructed sequences and the frequencies
of the original sequences. It is also worth mentioning that
we run the rest of the tools against the sample described in
the section ‘Environmental isolate of poliovirus (sample 2)’,
which also contains a recombinant and Hexahedron was the
only tool to successfully produce results in <24 h.

DISCUSSION

Deep sequencing is a powerful tool for the analysis of het-
erogeneous populations that are present in most specimens
derived from natural sources (environment, clinical isolates)

and those that emerge during treatment of viral diseases
and cancer. Creation of new experimental and mathemat-
ical techniques, as well as optimization of the existing pro-
tocols will play a crucial role in discovering and interpreting
the biological impact of the sequence heterogeneity. It could
be used for the surveillance for viral pathogens as well as
monitoring the emergence of drug-resistant variants during
the treatment of infectious diseases and cancer. This study
presents a new algorithm that identifies discrete populations
in heterogeneous samples based on mutation patterns in
the genetic profile. Due to the nature of the algorithm, the
only limiting factor is the size of the step, which is defined
by the length of the alignments. Thus, the performance of
the algorithm improves as the sequencing technologies ad-
vance and are able to produce longer reads with greater ac-
curacy. In silico experiments with longer reads (Additional
File2 S1-S4) demonstrated an increase in the accuracy of the
sequence reconstruction; however short reads produced by
current technologies appear to be already sufficient to sepa-
rate sub-populations. Inaccurately reconstructed sequences
and mismatched nucleotides were mostly observed in short
contigs. One explanation is that the noise was partially
phased with the mutation patterns that identified the se-
quence. This might cause the noise to be included in recon-
structed sequences (particularly in the low frequency pop-
ulations) or trigger the bifurcation of the contigs, which in
turn accumulates the defining mutations of the sequence.

It is true that the noise will always constitute a limitation
and similarly to any technology defines the level of sensitiv-
ity and accuracy of this algorithm. Recent high-throughput
sequencers can reduce the noise to as low as 0.1% (35) en-
abling the detection of sequences of very low abundance.
Another defining limitation of this algorithm is the repre-
sentation of sequence space from the selected reference. The
algorithm accepts alignments as an input, thus it inherits
limitations introduced by the alignment methods. It is evi-
dent that sections of the sequence space that have not been
represented sufficiently by the selected reference (s) will have
a major impact on the accuracy of the reconstructed se-
quences and the predicted frequencies. For instance, a large
insertion, longer that the read length, which is not included
in the provided reference (s) will be missed by the alignment
step. As a result, the algorithm will not accurately recon-
struct the sequence. Furthermore, insertions of sequences
that exhibit homology with other regions of the reference
(s) can produce false positives. Insertions longer than the
read length might cause reads to be assigned to the homol-
ogy region represented by the reference. These alignments
in combination with the alignments of the reads that are
correctly assigned to this region can produce mutations and
subsequently trigger a bifurcation event. The user must be
aware of both the intrinsic and the parametric limitations
of the algorithm. The noise and the length of the reads are
considered intrinsic limitations and there is little the user
can do to overcome them. The insufficiently represented se-
quence space is a limitation that is imposed by the input or
the parameters provided to the algorithm. Hexahedron pro-
vides the option to use multiple references to represent the
sample as comprehensively as possible in order to alleviate
this problem. It is true that in case of absence of good ref-
erence sequence, de novo assembly tools are indispensable
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Table 4. Summary of results from Hexahedron, PredictHaplo, QuRe, ViSpa and ShoRah against samples SCR1 and SCR2

Sample # of haplotypes ShoRAH ViSpA QuRe PredictHaplo Hexahedron

Number of reconstructed sequences
SCR1 4 34 8 NA 4 4
SCR2 6 2 14 NA 4 6

Number of successfully predicted sequences (<0.01% mismatches)
SCR1 4 0 0 NA 0 0
SCR2 6 0 0 NA 0 0

Number of successfully predicted sequences (<0.05% mismatches)
SCR1 4 0 0 NA 0 3
SCR2 6 0 0 NA 0 5

Number of successfully predicted sequences (<0.1% mismatches)
SCR1 4 0 0 NA 3 4
SCR2 6 0 0 NA 1 5

Number of successfully predicted sequences (<0.5% mismatches)
SCR1 4 3 0 NA 3 4
SCR2 6 0 0 NA 1 6

JS Divergence
SCR1 4 0.341 0.125 NA 0.0927 0.061
SCR2 6 0.411 0.312 NA 0.25 0.078

The Jensen-Shannon divergence is calculated based on all predicted sequences.

and can be used to create the reference sequence that will
be used to re analyze the sample using Hexahedron. Alter-
natively, longer reads produced by HTS technologies such
as PacBio can also be used as reference sequences to guide
the assembly step of the algorithm.

Notably, the number of the selected references does not
necessarily affect the sensitivity of the analysis. A large set
of homologous references, such as the comprehensive list
of enteroviruses used for the environmental samples, ver-
sus a small set of references that sufficiently maps all short
reads will produce the same results even if the original se-
quences are absent in the reference set (Table 1). The den-
sity, with which the genetic space needs to be covered, is
specified by the parameters of the alignment. In fact, com-
prehensive reference sets allow for identification of more
distant and diverse populations without increasing the am-
biguity with flexible alignments. Importantly, the informa-
tion of the aligned reference is maintained and displayed for
each reconstructed contig at the end of the process. At this
point, the density with which this space has been covered
by the selected references is indicated by the number of ref-
erences contributing at every position. This is not a recom-
bination analysis, where the identified references are part
of recombination events. The graph is offering an overview
of the closest similarities with references across the recon-
structed sequences and serves as an indicator for a further,
more detailed, recombination analysis. It is true though that
careful selection of references can lead to robust results in
terms of recombination events. This recombination analy-
sis refers to detection of recombination events of the ref-
erence sequences that produced each of the reconstructed
sequences in the sample. A different type is the recombina-
tion of two or more resolved sequences from the same sam-
ple. An important consideration is the fact that Hexahedron
is not resolving these recombination events of the recon-
structed sequences through a statistical model. Discovery
of such events is achieved by detecting alignments with ends
assigned on different already resolved contigs. Such align-
ments support the bifurcation and merging events that can
be used to identify recombinants. As described in the ‘Re-

combination dataset’ section, Hexahedron identifies the re-
combination positions and does not globally infer the re-
combinant sequence. As a result, recombinant sequences
that resulted from more than one recombination events are
not easy to be reconstructed. The algorithm provides the
option to extract the sequences following all permutations
of the Sankey paths but this can increase type 1 errors. It is
in our future plans to introduce a post-computational step
for statistical inference of such recombinants.

The algorithm combined with the Sankey diagram of
the reconstructed contigs gives a comprehensive represen-
tation of the genotypic cloud that describes highly diverse,
viral populations. This study proposes a novel approach
that can capture the mutant spectrum of evolving diverse
populations in an exceptional accuracy and an unparalleled
speed. Both characteristics will eventually be vital in clini-
cal research where antiviral efficacy and recent combinato-
rial treatments have already proved (36,37) to be affected by
escape mutants. Recent studies on vertically HIV infected
children after failed nevirapine prophylaxis (NVP) revealed
the existence of linked multiclass drug resistant mutations
using single genome sequencing (38). Hence, our approach
is of critical significance and can help to address the chal-
lenge of discovering broad quasispecies spectrum that single
genome sequencing is unable to do due to its low through-
put. From a broad basic research perspective, it will enhance
the arsenal of supersensitive genotyping methods allowing
the evaluation of superinfection, major variants and minor
variants. Finally, we anticipate that this approach could be
extremely useful for virological surveillance that is vitally
important for timely identification of emerging pathogens
and development of rational countermeasures.
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