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We performed whole-cell recordings from basal forebrain (BF) cholinergic neurons in
transgenic mice expressing enhanced green fluorescent protein (eGFP) under the control
of the choline acetyltransferase promoter. BF cholinergic neurons can be differentiated into
two electrophysiologically identifiable subtypes: early and late firing neurons. Early firing
neurons (∼70%) are more excitable, show prominent spike frequency adaptation and are
more susceptible to depolarization blockade, a phenomenon characterized by complete
silencing of the neuron following initial action potentials. Late firing neurons (∼30%),
albeit being less excitable, could maintain a tonic discharge at low frequencies. In voltage
clamp analysis, we have shown that early firing neurons have a higher density of low
voltage activated (LVA) calcium currents. These two cholinergic cell populations might be
involved in distinct functions: the early firing group being more suitable for phasic changes
in cortical acetylcholine release associated with attention while the late firing neurons
could support general arousal by maintaining tonic acetylcholine levels.
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INTRODUCTION
Basal forebrain (BF) areas include the medial septum, verti-
cal, and horizontal limbs of the diagonal band, pallidal regions
(ventral pallidum and globus pallidus) and the substantia innom-
inata/extended amygdala. These areas contain a heterogeneous
collection of cholinergic, GABAergic, glutamatergic, peptidergic
projection neurons, and interneurons (Zaborszky and Duque,
2003; Zaborszky et al., 2012). This brain region is involved in
sleep-wake regulation, motivation, learning-memory, and atten-
tion (Buzsaki et al., 1988; Saper et al., 2005; Steriade and
McCarley, 2005; Datta and Maclean, 2007; Parikh and Sarter,
2008; Goard and Dan, 2009). A prominent feature of the region
is the continuous collection of aggregated and non-aggregated,
large, cortically projecting neurons that synthesize acetylcholine
(ACh) that serves as the primary source of cholinergic input
to the cerebral cortex. BF cholinergic neurons are compromised
in several diseases, including Alzheimer’s disease, schizophre-
nia, Parkinson’s disease, Rett’s syndrome, and autism (Bowen,
1976; Perry et al., 1978; Wenk and Mobley, 1996). Anatomically,
cholinergic neurons are heterogeneous inasmuch as they have
been shown to be variously colocalized with galanin (Melander
and Staines, 1986), GABA (Brashear et al., 1986; Kosaka et al.,
1988), N-acetyl-aspartyl-glutamate (Forloni et al., 1987), tyro-
sine hydroxylase (Henderson, 1987), calbindin (Chang and Kuo,
1991), and secretagogin (Gyengesi et al., 2010), among others.
In addition to various neuroactive substances, cholinergic neu-
rons are bestowed with various receptors that show differential
regional distribution and species differences (for references see

Harkany et al., 2003; Zaborszky et al., 2004; Hur et al., 2009;
Zaborszky et al., 2012).

Single unit activity of cholinergic neurons using juxtacellular
labeling in anesthetized (Duque et al., 2000; Manns et al., 2000)
and in head-restrained rats (Lee et al., 2005; Hassani et al., 2009)
along with cortical EEG recordings, lend support to earlier ideas
suggesting an important role of BF cholinergic neurons in cortical
arousal (Detari and Vanderwolf, 1987). However, the heteroge-
neous firing properties of cholinergic neurons (Bengtson and
Osborne, 2000; Duque et al., 2000; Garrido-Sanabria et al., 2007;
Hassani et al., 2009), add further complexity to understanding the
specific role of cholinergic neurons in the various functions and
disease states alluded to above.

Intrinsic membrane properties of cholinergic neurons have
been characterized in previous studies using different approaches
and species (Griffith, 1988; Markram and Segal, 1990; Alonso
et al., 1996; Hedrick and Waters, 2010). To confirm the choliner-
gic phenotype of the recorded neurons, post-hoc histochemistry
for acetylcholine esterase (AChE), the ACh degrading enzyme
(Griffith, 1988), immunostaining for choline-acetyltransferase
(ChAT), the enzyme that synthesizes ACh (Khateb et al., 1992)
and single-cell PCR (Han et al., 2005) have been used. Also, in vivo
pre-labeling before electrophysiology has been applied using an
antibody against the p75 receptor (Wu et al., 2000). The vari-
ous technical challenges in identifying a cholinergic phenotype
in these studies can be circumvented by using mice genetically
engineered to express green fluorescent protein (GFP) under the
promoter of ChAT.
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Using adult mice, we conducted in vitro patch clamp record-
ings from cholinergic cells sampled from the entire extent of the
BF in transgenic ChAT-eGFP mice with the goal of obtaining
a detailed knowledge of the intrinsic physiology of cholinergic
neurons. Cholinergic BF neurons could be subdivided into two
populations based on their firing delays in response to depo-
larizing current injections. Hence, we refer to them as early-
(EF) and late-firing (LF) neurons. EF neurons discharged at
higher frequencies in response to intracellular current injec-
tions but this was accompanied by a prominent spike fre-
quency adaptation. In many instances, these neurons stopped
firing after an initial discharge. On the other hand, LF neu-
rons were less excitable but could maintain a tonic firing pattern
even in response to longer (10 s of seconds) current injec-
tions. Our results suggest that this heterogeneity is achieved
through the intricate interplay among different voltage-gated cal-
cium and potassium conductances. The mechanisms underlying
these differences and their possible functional implications are
discussed.

MATERIALS AND METHODS
ANIMALS
All experiments were performed in accordance with the US
Public Health Service Policy on Humane Care and Use of
Laboratory Animals, the National Institutes of Health Guidelines
for the Care and Use of Animals in Research, and approved
by the Rutgers University Institutional Review Board. Adult
BAC transgenic mice (30–90 days old) expressing enhanced
green fluorescent protein (eGFP) under the promoter of ChAT
[B6.Cg-Tg(RP23-268L19-EGFP)2 Mik/J] were used (Jackson
Laboratories, Bar Harbor Maine). The animals were anes-
thetized with i.p. injections of ketamine/xylazine mixture (150
and 30 mg/kg, respectively) and transcardially perfused with an
ice cold perfusion solution containing (in mM): 248 sucrose,
2.5 KCl, 7 MgCl2, 23 NaHCO3, 1.2 NaHPO4, and 7 glucose.
The brains were removed and a block containing the BF
was secured on a vibratome and 250 μm coronal slices were
obtained.

ELECTROPHYSIOLOGICAL RECORDINGS
The slicing chamber in the vibratome contained the same solu-
tion used for perfusion. The slices were kept at room temperature
(22–25◦C) for at least 1 h in oxygenated artificial cerebrospinal
fluid (ACSF) (95% O2 + 5%CO2) containing (in mM): 124 NaCl,
2.5 KCl, 1.2 NaHPO4, 26 NaHCO3, 1.3 MgCl2, 2 CaCl2, 10 glu-
cose. In a subset of experiments measuring whole-cell Ba2+ cur-
rents, a modified ACSF (in mM) 79.5 NaCl, 2.5 KCl, 1.2 NaHPO4,
26 NaHCO3, 1.3 MgCl2, 2 CaCl2, 10 glucose, 40 TEA, and 5 BaCl2
was used. 1 μM TTX was also present in the solution to block
sodium channels. The slices were visualized with an Olympus
BX51WI (Center Valley, PA) microscope, equipped with infrared
differential contrast optics and epifluorescence setup, and super-
fused with oxygenated ACSF (3–5 ml/min) at room tempera-
ture. Whole-cell patch-clamp recordings were obtained from
GFP+ neurons with glass pipettes (4–8 M� tip resistance with
recording solutions) pulled with a horizontal puller (P-97, Sutter
Instrument, Novato, CA). The intracellular solution (KMeSO4)

contained (in mM): 130 KMeSO4, 10 NaCl, 2 MgCl2, 10 HEPES,
3 Na2ATP, 0.3 GTP, 1 EGTA, pH 7.3. For Ba2+ current measure-
ments, a modified CsMeSO4 intracellular containing (in mM):
125 CsMeSO4, 16 K-gluconate, 2 MgCl2, 10 HEPES, 3 Na2ATP,
0.3 Na3GTP, 1 EGTA, and 0.1 CaCl2, pH 7.3 was used (see below).
The junction potential was experimentally determined to be 10 ±
2 mV for all solution combinations and was not corrected for.
Data acquisition started 10 min after access to the cell to allow
sufficient stabilization of the recording. Specific BF subregions
targeted are described in the Results.

All recordings used had stable access resistances (<10% change
throughout recording) of less than 20 M� and were obtained only
if a G� seal formed before whole-cell access. An Axoclamp 900A
amplifier and Digidata 1440A data acquisition device (Molecular
Devices, Palo Alto, CA) were used for recordings. Voltage clamp
experiments were done in discontinuous mode with a sampling
frequency of 10 kHz and filtered at 2 kHz. Voltage-current (V-I)
relationships were generated for each neuron using 500 ms cur-
rent pulses ranging from −100 to +120 pA in 20 pA increments
at 0.33 Hz in bridge mode. These pulses were delivered from
−70 mV unless otherwise indicated. In some recordings, higher
current amplitudes were used if necessary (see electrophysiologi-
cal parameters tested). Analysis of current clamp recordings was
done for data obtained from −70 mV unless otherwise stated.
In all voltage clamp recordings the voltage monitor was con-
tinuously examined to ascertain sufficient return to baseline
of the membrane potential prior to each voltage measurement
cycle. Current densities were calculated by dividing the maxi-
mal current by whole-cell capacitance. Whole-cell capacitance
was determined by injecting 5 mV hyperpolarizing voltage steps
from −70 mV and integrating the area of the associated tran-
sient. Access resistance was calculated from the linear portion of
membrane hyperpolarization in response to a −20 pA current
pulse from a holding potential of ∼−70 mV in current clamp
mode.

Cells were kept both at −90 and −40 mV and voltage steps of
500 ms duration were applied in 10 mV steps up to +10 mV at
0.33 Hz for the investigation of transient outward currents. In a
subset (n = 6) of neurons, 1 second-long voltage steps were pre-
sented in −10 mV increments at 0.33 Hz from a holding potential
of −40 mV up to −110 mV to study hyperpolarization-activated
currents (Ih).

In order to directly compare the firing properties and low volt-
age activated (LVA) calcium channel function, the neurons were
first examined and identified in current clamp experiments car-
ried out using the KMeSO4 intracellular solution. Following the
identification of the firing properties, the patch pipette was with-
drawn and cells were re-patched using the CsMeSO4 intracellular
solution. Initial re-patching was done while the slice was still
being perfused with the regular ACSF. Subsequently, we switched
to the modified ACSF containing Ba2+. These procedures ensured
the blockade of voltage dependent Na+and K+currents. In these
experiments, the neuron was kept at −80 mV and presented with
2 second-long prepulses ranging from −110 to −50 mV in 10 mV
increments followed by a 500 ms step to −40 mV unless otherwise
indicated. Bridge balance and pipette capacitance neutralization
was done prior to data acquisition.
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DATA ANALYSIS
Statistical analysis was performed using SPSS.19 (Chicago, IL).
Averages are represented as means ± SD and compared with
t-Student tests for independent samples. Pearson product-
moment correlation coefficients (ρ) were calculated to reveal
correlations between different variables. The Kolmogorov–Smir-
nov test was used to determine the normality of distributions.
A repeated measures analysis of variance (RM-ANOVA) was
performed for comparing the transient potassium current ampli-
tudes at different command voltages. Additional analysis involv-
ing paired t-tests were carried out to compare within-neuron
effects. The half-maximal activation of currents was studied by
applying a sigmoidal fit to the current-voltage (I-V) curves where
current responses were normalized to the maximum recorded
current.

See Table 1 for a detailed explanation for some of the physio-
logical parameters being measured.

CHEMICALS
All ingredients in the ACSF and perfusion solution except CaCl2
(Sigma) were purchased from Fisher Scientific. Ih measurements
were done with regular ACSF. Outward currents were measured
in the presence of 1 μM tetrodotoxin (TTX) (Tocris) and 350 μM
CdCl2 (Sigma) to block contamination of responses by voltage
gated sodium and calcium channels, respectively. As alluded to
above, Ba2+ currents were measured using a CsMeSO4 intra-
cellular solution in modified ACSF containing 40 mM tetraethyl
ammonium (TEA). In a subset of experiments, 100 nM Apamin
(Sigma) and 5 μM NiCl2 (Sigma) were used.

MORPHOLOGY
In some recordings, 0.2% biocytin was included in the pipette
for subsequent visualization. Following recordings with biocytin

in the pipette, slices were transferred to 4% paraformaldehyde
for at least 24 h for fixation. For biocytin imaging, slices were
incubated in Cy3-conjugated streptavidin or Texas Red conju-
gated streptavidin (Invitrogen, Carlsbad, CA) for 20–24 h (1:200,
Jackson ImmunoResearch Laboratories, West Grove PA). Slices
were then transferred to a slide and mounted with Vectashield
wet mounting medium (Vector Labs Inc., Burlingame, CA). For
the acquisition of digital images Adobe Photoshop was used with
an AxioCam camera attached to a Zeiss microscope.

For ChAT immunocytochemistry, animals (n = 3) were per-
fused with saline followed by 4% paraformaldehyde. The brain
was removed and placed into the same solution for overnight
fixation. The next day, the brains were placed into sucrose solu-
tion (30%). Three days later, 50 μm thick BF sections were cut
using a freezing microtome. Sections were placed into 0.1 M
phosphate buffer (PB) for ∼24 h. Every third section was taken
for immunocytochemistry in order to obtain a series at 150 μ

intervals. Sections were washed 3X in 0.1 M PB and incubated
with Goat-anti-ChAT (1:500; Millipore, Temecula, CA) antibody
with 1% normal donkey serum and 0.5% Triton-X in 0.1 M PB
for overnight incubation at room temperature under dark. The
next day, sections were washed 3X in 0.1 M PB and transferred
into Donkey-anti-Goat Cy3 IgG (1:100) with 1% normal don-
key serum and 0.5% Triton-X in 0.1 M PB for ∼3 h at incubation
at room temperature under dark. Following incubation, sections
were washed 3X in 0.1 M PB and mounted using Vectashield wet
mounting medium.

The GFP+ and ChAT immunopositive somata in BF
areas were mapped using the Neurolucida® software (Micro-
BrightField, Inc, Williston, VT) from six sections separated 150 μ

apart. The analyzed sections were obtained from a single animal
(1 out of 3) where fiber systems demarcating BF regions were fully
preserved.

Table 1 | Physiological properties examined in this study and their operational definitions.

Rheobase current The current pulse that first elicits an action potential from a holding potential of −70 mV (see V-I measurements
in Materials and Methods section).

RMP Voltage value in the absence of DC injections 10 min after patching.

Rin Calculated from −70 mV in response to a −20 pA current injection.

Membrane time constant Measure obtained by fitting a single exponential to the voltage response from −70 mV to a −20 pA current
injection.

First AP threshold The point where the rising slope first exceeds 10 mV/ms at rheobase current.

First AP amplitude The voltage difference between threshold and peak.

First AP half-width The AP duration at half-maximal amplitude of the first action potential.

First AP delay The time between the onset of rheobase current and the threshold of the first action potential.

AHP amplitude The voltage difference between the first action potential threshold and the most negative voltage associated
with the slower AHP following that action potential.

AHP time to peak The time it takes from the action potential threshold to the most negative potential associated with the AHP.

Adaptation ratio 1(Last ISI/First ISI) in a recording that contains the first trace with 4 action potentials (elicited from −70 mV).

I-F slope The slope of the action potential frequency vs. current injection graph.

Sag ratio Minimum membrane response (around −100 mV for each neuron)/steady state potential. A 10 ms region was
averaged for both time points in order to obtain a more reliable value.

Depolarization block Time between the end of the last AHP (which is marked by the abrupt change in the slope of the rising phase of
the AHP or the onset of ripple oscillations) to the end of a 500 msec, 120 pA current pulse without an action
potential.
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RESULTS
CO-LOCALIZATION OF GFP SIGNAL AND ChAT
IMMUNOCYTOCHEMISTRY IN BF
In the sections processed for ChAT immunocytochemistry we
counted a total of 739 GFP+ neurons, 640 (86%) of which
were also immunopositive for the ChAT antibody (Figure 1). We
did not observe any ChAT-immunopositive neurons that were
negative for GFP. Given the substantial overlap in this prerequi-
site anatomical analysis, the recorded cells will be referred to as
cholinergic cells.

DISTRIBUTION OF RECORDED NEURONS
We recorded GFP+ cholinergic neurons from the entire extent
of the cholinergic BF as exemplified in (Figure 2). Nineteen neu-
rons were located in the horizontal limb of the diagonal band
(HDB). The rest of the neurons were localized in different areas
including the lateral hypothalamus (n = 1), ventral pallidum (VP,
n = 1), medial septum (n = 1), vertical diagonal band (VDB,
n = 1), lateral preoptic area (LPO) (n = 2), substantia innom-
inata (SI, n = 3), and anterior amygdaloid area (n = 1); areas
containing the bulk of cholinergic corticopetal neurons. One neu-
ron was localized in the bed nucleus of the stria terminalis (BNST)
and two neurons were found in the interstitial nucleus of the
anterior commissure, posterior component (IPAC). These latter
three neurons shared similar physiological properties with neu-
rons in the aforementioned BF regions. A subset of neurons was
found at the border of BNST/VP/LPO (n = 1), hDB/VP border
(n = 1), VDB/hDB border (n = 1) hDB/SI border and IPAC/VP
border (n = 1). Figure 2A shows the localization (A1–A3) and
structure (A4) of the neuron recorded from the medial septum.
Figure 2B shows a neuron located in the hDB (B1, B2) and
its morphology (B3). Finally, Figure 2C shows the localization
(C1–C3) and structure (C4) of a neuron in the medial forebrain
bundle (mfb).

GENERAL PHYSIOLOGICAL PROPERTIES OF CHOLINERGIC BF NEURONS
Cells included (n = 103) in the initial analysis satisfied the
following criteria: stable access resistance of less than 20 M�, less
than 10% change in access resistance throughout recording, and
were eGFP+ as visualized online (see Figure 3A). We charac-
terized BF neurons according to several physiological attributes
(definitions for each in Table 1). Because no physiological param-
eter exhibited a significant alteration due to filling with biocytin
(not shown) we pooled all the data together. An additional
number of neurons (n = 24) were recorded in further experi-
ments (see below). In agreement with previous findings (e.g.,
Griffith and Matthews, 1986), most cholinergic cells exhibited
a time independent anomalous rectification and a prominent
after-hyperpolarization (AHP) (Figure 3B), outward rectification
(Figure 3C), and wide spikes (Figure 3D, compare solid vs.
dashed lines). In addition, many BF neurons exhibited a voltage
hump (Figure 3C, arrow) after the onset of a depolarizing pulse.
Because this is observed only if the cell is hyperpolarized (−80 mV
in this case) it suggests the activation of a transient K current.

We found that two groups of BF neurons could clearly be
distinguished based on large and significant differences in firing
delay at rheobase current injections: LF neurons (LF, Figure 4A,

FIGURE 1 | Colocalization of GFP expression and ChAT

immunocytochemistry in the substantia innominata. (A) GFP
expression, (B) ChAT immunostaining, (C) Overlay of (A) and (B) shows
that all GFP expressing cells are stained with an antibody against ChAT.
Bar scale: 50 μ.

blue trace) and EF neurons (EF, Figure 4A, red trace). LF neu-
rons had a mean firing latency of 343 ± 76 ms (n = 33, range:
240–499 ms, ∼32% of total sample) whereas EF neurons had a
mean firing latency of 107 ± 53 ms (n = 70, range: 18–206 ms,
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FIGURE 2 | Recordings were obtained from diverse BF subregions.

(A) Neuron recorded from the medial septum. (A1) Distribution of GFP+ cells
taken at 4× magnification. (A2) Overlay of GFP and Texas Red signal.
(A3) Image taken at 20× where GFP and Texas Red signals are overlaid.
Arrows here and in (A2) point to the recorded neuron that was filled with
biocytin. (A4) Image of the cell taken at 40×. (B) Neurons recorded from
horizontal limb of diagonal band (HDB). (B1) Distribution of GFP+ cells at 4×.
(B2) Overlay of GFP and Texas Red signals. Arrow points to the recorded

neuron. (B3) 40X image of the same cell. (C) Neurons recorded in the vicinity
of medial forebrain bundle (mfb) in the most caudal extent of BF. (C1) 1.25×
image. (C2) Texas Red signal under dark field illumination taken at 4×. The field
corresponds to the box in C1. (C3) Texas red image is overlaid with the intrinsic
GFP signal. Arrows here and in C2 point to the recorded neuron, (C4) Recorded
cell at 40×. Abbreviations: BLA, basolateral amygdala; cc, corpus callosum;
EP, entopeduncular nucleus; fi, fimbria hippocampus; GP, globus pallidus; Hip,
hippocampus; ic, internal capsule; opt, optic tract; Str, striatum.

∼68% of total sample) (Table 2). The AP delay distributions
are shown in Figure 4B in the form of cumulative probabil-
ity plots. Each of the distributions was normally distributed
within itself (Kolmogorov–Smirnov, LF: p = 0.200, n = 32; EF:
p = 0.183, n = 69) while the entire data set differed significantly
from a normal distribution [Kolmogorov–Smirnov, (102) 0.155
p = 0.00].

These neurons could be differentiated further by several
attributes of their activity (statistical comparisons are all listed
in Table 2): the linear slope of the current-frequency relation-
ship of EF cells is steeper than LF cells (Table 2). This is also
reflected by significantly higher firing rates elicited with current
injections with 60 pA or higher from −70 mV [ANOVA, F(5, 96) =
2.762, p < 0.05, Figure 4C). Moreover, EF neurons had lower
AHP amplitudes (Table 2, Figure 4D).

EF and LF neurons also differ in their spike frequency adap-
tation properties with EF cells showing significantly more pro-
nounced spike frequency adaptation (Table 2; Figure 5). The
solid traces in Figures 5A1 and B1 illustrate the difference in
spike frequency adaptation among LF and EF cells when stimu-
lated with a strong depolarizing current pulse, while the dashed
traces illustrate the basic action potential onset that characterizes

the two cell types at rheobase. In line with the differences
in spike frequency adaptation in these neurons, LF neurons
could maintain a precise firing pattern when constant current
was applied (Figure 5A2), while most EF neurons fired irreg-
ularly under similar conditions or became completely silent (4
out of 21) following a train of spikes (Figure 5B2), a phe-
nomenon referred to as depolarization block. Such EF neurons
could, however, fire regularly when hyperpolarizing pulses at
a fixed frequency were superimposed on a constant depolar-
izing current possibly through the de-inactivation of voltage-
gated sodium currents (Figure 5B2). When measured with a
500 ms, 120 pA square pulse from −70 mV (see Table 1), vary-
ing degrees of depolarization block were apparent in many
of the EF neurons within 500 ms, accompanied by signifi-
cant statistical differences between the two populations along
this dimension (Table 2). While EF neurons show a predom-
inance and stronger level of spike frequency adaptation com-
pared to LF neurons, LF neurons predominantly displayed a
feature that is known as spike frequency acceleration charac-
terized by an increase in frequency towards regular steady state
firing after an initial gap (operational definition in Tables 1, 2 and
Figure 5C1).
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FIGURE 3 | Morphological and physiological identification of GFP

expressing neurons in the BF. (A) Morphology of a typical GFP+ neuron.
(A1) Image of the neuron taken with DIC. (A2) Same neuron imaged with
epifluorescence illumination showing GFP fluorescence. (A3) Overlay of
images in A1 and A2. Arrows in A1, A2, and A3 indicate the cell being
patched. (B) A cholinergic neuron at rest responding to negative and
positive square pulses ranging between −100 and 20 pA in 20 pA
increments. Zero pA step not shown. Note the prominent AHP following
the single spike (indicated with arrow), and anomalous inward rectification
at negative voltages. (C) The same neuron recorded in the presence of
1 μM TTX from a membrane potential of −80 mV in response to positive
square current pulses from 20 to 120 pA in 20 pA increments. Note the
voltage hump (indicated by arrow) and the outward rectification in the
positive direction. (D) A representative cholinergic neuron spike (thick
continuous line) and a spike from a non-cholinergic neuron (dashed line).
Note the wide spike of the cholinergic neuron.

Six out of 70 EF neurons expressed a voltage sag, with a sag
ratio higher than 1.05, suggestive of an h-current, whereas only
1 LF neuron expressed a voltage sag of this magnitude. Therefore,
we did not pursue the h-current as an indicator of the EF vs LF
distinction. The largest sag ratio observed was 1.12 and in those
cells we could also measure an h-current in voltage clamp (not
shown).

POSSIBLE MECHANISMS UNDERLYING THE DIFFERENCES IN
CHOLINERGIC NEURONS
In order to determine the possible mechanisms underlying the
differences between EF and LF neurons we first compared the
membrane time constant. EF neurons displayed significantly
shorter time constants than LF neurons (Table 2). However, the
difference is much smaller than the observed firing delay dif-
ferences. On the other hand, action potential threshold for EF
neurons is slightly, but statistically significantly, lower than for
LF neurons (Table 2), which can also only partially explain the
shorter delays. Hence, we measured the transient K+ current
expressed in these neurons, an A-type current, IA. Figure 6A1
shows the protocol and raw currents used to determine IA-like
currents and the net IA-like current obtained after subtraction
of non-inactivating currents from those obtained from a low,
de-inactivating, voltage (−90 mV, Figure 6A2). Both cell types
expressed IA to varying degrees, with LF neurons exhibiting

slightly higher current densities than EF neurons, but this did
not reach significance [ANOVA, F(7, 24) = 0.426, p = 0.43]. At
a voltage of −40 mV, the voltage closest to the spike thresh-
old in these neurons, current densities were 8.9 ± 3.6 pA/pF for
LF neurons and 8.3 ± 5.1 pA/pF for EF, which did not reach
significance [t(31) = −0.3452, p = 0.73, Figure 6B1]. IA decay
time constants measured at −40 mV were 133.9 ± 116 ms for
EF and 137.1 ± 65 ms for LF neurons, which was also not
significantly different between these two populations [t(31) =
0.0796, p = 0.93, Figure 6B2]. Finally, we determined the half-
maximal activation voltages for IA by fitting a sigmoidal func-
tion to the conductance vs. voltage relationships of the two
cell types. Here again we found no statistically significant dif-
ference [−31 ± 7 mV for EF and −28 ± 5 mV for LF neurons;
t(31) = −1.109, p = 0.85]. Although no differences between
mean values of any of these parameters of IA were found,
the delay in action potential firing in individual LF neurons
appears to relate to decay time of the IA they express. We
observed a clear linear relationship between IA decay time
constant (measured as single exponential fits to the decay-
ing portion of IA measured at −40 mV) and action potential
firing delays in LF neurons [after subtracting the membrane
time constant to remove its small contribution, see Table 2,
Figure 6C1, r(9) = 0.77, p = 0.007] but no such relationship for
EF neurons was found [Figure 6C2, r(21) = 0.34, p = 0.090].
The general picture emerging from these correlations did not
change when the absolute spike delay was considered instead of
membrane time constant-subtracted spike delay (not shown).
Figure 6D illustrates two LF neurons with different current densi-
ties and kinetics and the spiking delay differences in the expected
direction.

Given the absence of significant differences in IA but a signifi-
cant relationship between IA decay time constant with spike delay
only in LF neurons, we tested the possibility of calcium currents
contributing to the earlier spiking in these neurons in separate
experiments. For these purposes, we compared LVA mediated
Ba2+ currents (ILVA) in EF and LF neurons (see Materials and
Methods for details, Figure 7A1) with the prediction that ILVA

would be stronger in EF neurons. In line with this hypothe-
sis, ILVA density was significantly higher in EF neurons when
tested with pulses from −70 mV to −40 mV [6.4 ± 3.8 pA/pF
for EF and 2.3 ± 2.4 pA/pF for LF neurons; t(13) = 2.467, p =
0.03, Figure 7A2]. In order to confirm that these effects are
due to the involvement of ILVA we also measured the inward
current at −40 mV obtained with different prepulse voltages
(Figure 7B1) and confirmed a statistically significant difference in
ILVAbetween EF and LF neurons for all prepulse potential values
except −50 mV [ANOVA, F(6, 8) = 2.110, p < 0.05; Figure 7B2].
No statistically significant difference was observed for either
the half-maximal activation [−71 ± 12 mV for LF, −63 ± 10 mV
for EF; t(13) = −1.327, p = 0.207] and decay time constant
[16.7 ± 10.0 ms for LF, 20.9 ± 10.0 ms for EF; t(13) = 0.247,
p = 0.808] between the two populations. HVA mediated currents
were measured with ramp protocols (Murchison et al., 2009) and
yielded no significant differences in EF and LF neurons (data not
shown). To confirm these results independently in pharmacologi-
cal experiments (n = 4 for each group), we investigated potential
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FIGURE 4 | Cholinergic BF neurons can be distinguished based on

their firing properties. (A) A late firing (LF) neuron (blue trace, Top) and an
early firing (EF) neuron (red trace, Bottom). The traces were obtained in
response to a rheobase current injection (+60 pA in both cases).
The scale bar applies to both. Dashed line corresponds to −70 mV.
(B) Cumulative probability plot depicting the distribution of action potential
latencies at rheobase. LF (blue) and EF neurons (red) fall into clearly

distinguishable groups. (C) Scatter plot illustrating the current-frequency
(I-F) curve of LF (blue) and EF neurons (red). Insets are representative
examples of firing behavior in response to 120 pA current injections from
−70 mV. Dashed lines correspond to −70 mV and the scale bar applies to
both insets. (D) AHP amplitude distributions for LF (blue) and EF
neurons (red). Despite some overlap, LF neurons had higher amplitude
AHPs.

Table 2 | Early- (EF) and Late-firing (LF) cell’s physiological properties.

Early-firing Late-firing t p df

Mean ± SD Mean ± SD

First AP delay (ms) 107 ± 53 343 ± 76 −16.094 <0.001 101

(n = 70) (n = 33)

I-F slope (Hz/pA) 0.06 ± 0.04 0.03 ± 0.02 4.287 <0.001 101

Adaptation ratio 2.74 ± 2.57 1.33 ± 0.57 4.126 <0.001 93

Depolarization block (ms) 136 ± 163 34 ± 79 4.234 <0.001 101

AHP (mV) 18 ± 10 24 ± 7 −3.576 <0.001 101

First AP threshold (mV) 42 ± 4 40 ± 3 2.839 0.006 101

Membrane tau (ms) 44 ± 18 52 ± 16 −2.268 0.025 101

RMP (mV) 58.9 ± 9.3 60.6 ± 7.0 −0.929 >0.05 101

Rin (M�) 610 ± 301 641 ± 247 −0.512 >0.05 101

First AP amplitude (mV) 71 ± 9 72 ± 7 −0.395 >0.05 101

First AP half-width (ms) 1.8 ± 0.5 1.8 ± 0.4 0.160 >0.05 101

Ranked in order of highest-to-lowest significant difference. Differences tested using the t-Student test for independent measures.

spike onset changes under control conditions and in the presence
of 5 μM Ni2+, a concentration that is close to IC50 values for the
blockade of Ca(v) 3.2 channels (Kang et al., 2006), which is the
dominant channel isoform in cholinergic BF neurons (Han et al.,
2005). In EF neurons, Ni2+ significantly delayed the spike onset

[72.8 ± 12.1 ms without Ni2+and 139.3 ± 31.8 with Ni2+; t(3) =
3.6584, p < 0.0001, paired t-test] suggesting an important con-
tribution of ILVA to AP delay. Contrary to this, Ni2+application
did not produce a change in action potential delay in LF neu-
rons [315.5 ± 89.3 ms without Ni2+and 315.0 ± 81.9 with Ni2+;
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FIGURE 5 | EF neurons show higher spike frequency adaptation

than LF neurons. (A) LF neurons. (A1) An LF neuron showing almost no
spike frequency adaptation. Apamin application increased the spike
frequency adaptation (Inset). The dashed trace indicates response to a
rheobase current injection. (A2) The same neuron fires regularly when
prolonged background pulse is given. On the right is an expansion of the time
indicated with vertical arrows. (B) EF neurons. (B1 and B2) The same
arrangement as in A1 and A2. In B1 the arrow points out to the first action
potential elicited with a rheobase current injection. The EF neuron fires

transiently in response to a sudden positive shift in the injected current.
This is followed by irregular low frequency firing and complete silencing.
When hyperpolarizing current pulses are superimposed (B2, right side)
on the positive background current, the neuron can sustain firing
due to post inhibitory rebounds (see the vertical dashed lines at the ends of
negative current pulses shown below). (C) Spike frequency acceleration.
(C1) Example of an LF neuron exhibiting spike frequency
acceleration. (C2) Percentage of neurons with spike frequency
acceleration.

t(3) = 0.092, p = 0.932, paired t-test; Figure 7C1]. A representa-
tive effect of Ni2+application on AP delay in EF neurons is shown
in Figure 7C2.

Spike frequency adaptation in LF neurons was increased
when their AHP amplitude was reduced following application
of 100 nM apamin, a selective SK channel inhibitor (n = 3;
Figure 5A1 inset) suggesting the participation of SK channels in
determining the firing adaptation properties of LF neurons.

Finally, we analyzed whether the physiological differences
observed had an anatomical correlate in morphologically well
preserved sections with biocytin filled neurons. Due to the small
number of samples from each area, we made hDB vs. non-hDB
comparisons and none of the physiological parameters tested
revealed any differences (data not shown) suggesting that cholin-
ergic neurons with putatively different functions are intermixed
across different BF regions. No BF area recorded contained burst-
ing cholinergic neurons (see Discussion).

DISCUSSION
Given the significance of the BF cholinergic system in diverse
cognitive and physiological functions, characterizing the physi-
ological properties of its constituent neurons is essential for a
proper understanding of the mechanisms whereby these neurons
exert their effects on cortical processing. Using adult transgenic
mice expressing eGFP in cholinergic neurons, sampling from
the entire BF and applying systematic physiological criteria, we
have obtained evidence for the existence of two electrophysio-
logically distinct cholinergic cell populations in the mature BF,
characterized by more than three-fold difference in spike onset
latencies and two-fold difference in spike frequency adaptation
rates; with EF cells exhibiting a more excitable and adapting
profile. As evidenced by voltage-clamp analysis, the EF neurons
exhibited higher expression of LVA calcium currents compared
to the LF neurons. The variability of action potential delay in
each group seems to be related to different mechanisms: IA-like
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FIGURE 6 | IA properties in BF neurons. (A) Voltage dependence.
(A1) Voltage clamp protocols (top left) used to isolate IA. Currents were
measured in the presence of 1 μM TTX and 350 μM CdCl2. Examples of
current responses to these two protocols are shown below. The currents
shown on the right (Vhold = −40 mV, dashed red line, steps: −60 to + 10 mV)
were subtracted from the currents shown on the left (Vhold = −90 mV,
dashed red line). (A2) The net IA obtained after the subtraction described in
A1. (B) IA density (B1) and IA decay at −40 mV (B2). LF and EF neurons

shown in blue and red, respectively. The box sizes indicate the standard error
of the mean while whiskers indicate standard deviation. Circles indicate
individual data points while the filled square shows the group means.
(C) Spike onset correlations with IA decay time constants and membrane
tau-corrected spike delays in LF (C1) and EF (C2) neurons. (D) Representative
IA recordings from two LF neurons along with their current clamp recording
of spiking activity (inset). The cell indicated by a darker trace has a slower
inactivating IA along with a more pronounced spike delay.
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FIGURE 7 | Low voltage activated calcium current (ILVA) properties in

BF neurons. (A1) LF neuron (top blue traces) and EF neuron (bottom red
traces) in current clamp (top trace in each case) showing the characteristic AP
delay in response to a rheobase current injection (60 pA in this case). Bottom
trace in each case shows ILVA in response to a voltage clamp step from
−70 mV to −40 mV upon re-patching the same cells with Cs-Meth
intracellular solution and in Ba2+-containing ACSF (see Materials and
Methods). Scale bars apply to both neurons. (A2) Box plot for ILVA densities
measured as described in A1. Box size indicates standard error of the mean.
Square and whiskers have been displaced for clarity and indicate mean and

standard deviation, respectively. Empty circles indicate individual data points
(n = 7 LF; n = 8 EF). (B1) ILVAmeasured at −40mV with a de-inactivation
protocol (see inset) for an LF (blue) and EF (red) neuron. Inset shows the
protocol used to elicit the currents (2000 ms long prepulses from −100 to
−50 mV, and 500 ms long test voltage at −40 mV all from a holding voltage of
−80 mV). Scale bars apply to the current traces. (B2) I-V curve for the
protocol in B1. (C1) Bar graph illustrating the selective effect of 5 μM nickel
on firing delay in EF but not in LF neurons (n = 4 for each group). (C2)

demonstrates the effect of Ni++ application (light red trace) on firing delay in
an EF neuron.
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potassium currents, which have been shown to have impor-
tant roles in determining spike onset latency in diverse systems
(Tierney and Harris-Warrick, 1992; Gerber and Jakobsson, 1993;
Tell and Bradley, 1994; Magarinos-Ascone et al., 1999; MacLean
et al., 2005), seem to be related to spike delay only in LF neu-
rons. On the other hand, the contribution of IA is masked by LVA
calcium current effects in EF neurons.

Previous results on cholinergic cell physiology in different
BF subregions [e.g., (Momiyama and Zaborszky, 2006; Hedrick
and Waters, 2010)] converge with our observations on some
basic principles. In short, cholinergic BF neurons fire at lower
frequencies compared to non-cholinergic BF neurons and there-
fore, they are usually referred to as slow firing BF neurons
(Griffith and Matthews, 1986). Moreover, their action potentials
are wider and commonly followed by prominent SK channel
mediated medium afterhyperpolarizations (mAHPs) (Williams
et al., 1997). In addition, anomalous rectification and outward
rectification are among the other defining properties of choliner-
gic BF neurons (Bengtson and Osborne, 2000). However, we were
unable to observe burst firing in any of the BF cholinergic neurons
in our study compared with reports of bursting in cholinergic
neurons of the substantia innominata (Khateb et al., 1992, 1995;
Alonso et al., 1996). These discrepancies may arise from differ-
ences in the protocols used to record from these cells. Studies
reporting bursting behavior were carried out with ACSF contain-
ing higher Ca2+concentration than our study (2.5 mM vs. 2 mM).
In our conditions, calcium entry might not have been sufficient to
counteract outward currents and generate bursting, a notion sug-
gested before (Gorelova and Reiner, 1996; Sim and Allen, 1998).
Finally, in some experiments we observed GFP negative neurons
firing spike doublets similar to those reported as bursts in cholin-
ergic neurons [e.g., (Khateb et al., 1992)]. Thus, bursting does not
seem to be a universal property of cholinergic neurons in any BF
region and cannot be used as an electrophysiological criterion to
identify cholinergic neurons in vitro. However, these results do
not negate the possibility of burst firing of cholinergic neurons
in vivo [e.g., (Nunez, 1996; Manns et al., 2000)] and in vitro under
specific experimental conditions or species differences (guinea
pig vs. rat/mouse) (Khateb et al., 1997, 1998). For instance, EF
neurons, with their strong calcium currents (see below) may cor-
respond to burst firing cholinergic neurons recorded in vivo in the
full presence of ascending neuromodulatory influences.

In summary, using direct comparison of current and voltage
clamp data in the same cells and sampling from the entire BF,
our study suggests the existence of two distinct types of cholin-
ergic neurons. Ectopic expression of GFP might be a potential
source of error in studies using transgenic animals. Likewise,
we observed a slightly higher number of GFP+ neurons than
the number of ChAT-immunoreactive (86% of the neurons were
both GFP and immunopositive). However, immunocytochem-
istry likely has lower sensitivity than GFP expression, which
could explain some of these differences. Further, the expres-
sion of general electrophysiological characteristics of cholinergic
neurons in both EF and LF populations, mitigate against a sig-
nificant contamination of our analysis by the small percentage
of non-cholinergic neurons expressing GFP in a non-specific
manner.

MECHANISMS UNDERLYING THE DIFFERENCES
BETWEEN EF AND LF NEURONS
TRANSIENT POTASSIUM CURRENTS
Transient potassium currents activate when neurons are depo-
larized from hyperpolarized potentials (Coetzee et al., 1999;
Birnbaum et al., 2004) and have been shown to delay firing
and regulate firing frequency (Storm, 1988; Tierney and Harris-
Warrick, 1992; Gerber and Jakobsson, 1993; Tell and Bradley,
1994; Del Negro and Chandler, 1997; Kanold and Manis, 1999;
Magarinos-Ascone et al., 1999; MacLean et al., 2005). Previous
studies have reported the existence of transient potassium cur-
rents in cholinergic neurons in BF cultures but without reference
to firing delay and other functional properties (Sim and Allen,
1998; Tkatch et al., 2000) while Eggermann et al. (2001) reported
the presence of this current in voltage recordings and defines it
as a set criterion for cholinergic BF neurons. The decay time con-
stants of the current we identified resemble the slowly inactivating
IA current which is also referred to as the ID current. However,
in dissociated culture, IA currents identified in cholinergic neu-
rons had faster inactivation kinetics (Sim and Allen, 1998; Tkatch
et al., 2000). A recent study (Garrido-Sanabria et al., 2011) in
slices also reported fast inactivating IA currents in slow firing
putative cholinergic neurons in BF slices. The differences in the
decay kinetics of this current might reflect differences in prepa-
ration and/or the age of animals used. Indeed, various potassium
channels have been shown to be developmentally regulated in dif-
ferent cell types like cortical parvalbumin neurons (Okaty et al.,
2009). Whether such alterations also occur in BF cholinergic neu-
rons and their functional implications remain to be tested. Finally,
the preponderance of cholinergic neurons with spike frequency
acceleration along with the long decay time constant of the mea-
sured currents is suggestive for the presence of a Kv1 mediated ID

current (Miller et al., 2008).
To our surprise, EF and LF neurons did not differ with respect

to the average transient potassium current density or decay time
constant. Interestingly, we observed a decay time constant to
spike onset latency correlation, which can help to explain the
spike delay variability of LF neurons, but clearly not that of EF
neurons. This led us to consider other possibilities. While the
shorter membrane time constant of EF neurons could explain
the differences in spike latency to some extent, it is likely not
an important factor since the transient potassium current decay
time constant’s relationship to spike onset latency in both groups
remained unchanged after the membrane time constant was sub-
tracted from the spike onset delay. Also, the slight but significant
differences in spike thresholds between EF and LF neurons con-
stitute another source for spike onset delay. These differences,
although potentially important, are however, unlikely to explain
differences measured in the order of tens of milliseconds.

LOW VOLTAGE ACTIVATED CALCIUM CURRENTS
Voltage-gated ion channels are expressed in different neurons
in different proportions, and the interplay between them has
been shown to be critical in determining a neuron’s behavior.
Indeed, compensatory actions of different ion channels have been
demonstrated in other systems (Linsdell and Moody, 1994; Pape
et al., 1994; Del Negro et al., 2002; MacLean et al., 2003, 2005;
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Molineux et al., 2005; Hudson and Prinz, 2010). Given these pos-
sibilities, we predicted the presence of an inward current in EF
neurons that counteract transient potassium currents. Due to
their reliable expression profile in these neurons the most plau-
sible candidate in cholinergic BF neurons is the Ca2+ channels
that mediate LVA currents (Allen et al., 1993). Indeed, it has been
reported that different cholinergic neurons can be distinguished
based on their LVA current density (Han et al., 2005). Moreover,
interplay between transient potassium currents and LVA currents
has been demonstrated to play an important role in determining
spike latency in cerebellar stellate neurons (Molineux et al., 2005).
Consistent with our predictions, EF neurons exhibited higher
LVA current densities than LF neurons and blockade of chan-
nels mediating LVA currents in cholinergic neurons with nickel
delayed spike onset latency in these neurons. Thus, it appears
that the differences in firing delay between EF and LF neurons
are probably due to interplay between membrane currents with
different polarities. These findings might also explain the lower
spike thresholds observed in EF neurons. Unfortunately, accu-
rately measuring Ca2+ and K+ currents in the same neurons
to determine their possible functional interactions is not pos-
sible given the combinations of blocking agents required and
thus, establishing a definitive relationship between these currents
remains a challenge.

Various types of voltage-gated ion channels can have differ-
ent functions depending on their cellular localization (Brew and
Forsythe, 1995; Hoffman et al., 1997; Magee, 1998; Migliore et al.,
1999; Johnston et al., 2000; Gu et al., 2005; Burkhalter et al.,
2006; Kollo et al., 2006, 2008). Our study is limited to the somatic
current measurements due to problems associated with voltage
clamping dendrites and therefore does not address the degree
of involvements of these currents in the electrotonically distal
portions of the neurons.

MECHANISMS UNDERLYING DIFFERENCES IN SPIKE
FREQUENCY ADAPTATION
SK channels mediated AHPs have been shown to enhance the
uniformity of the inter-spike interval in cholinergic BF neurons
(Gorelova and Reiner, 1996) and in other systems, such as the
non-cholinergic neurons of the globus pallidus (Deister et al.,
2009). Our data are in line with this suggestion where LF neurons
are shown to have higher AHP amplitudes and minimal spike
frequency adaptation. Thus, SK channel-mediated AHPs may
be important in recruiting Na+ channels (via de-inactivation)
for action potential generation and contribute to the determi-
nation of the electrophysiological properties that distinguish BF
neuron cell types. The IA current is also known to facilitate Na+
channel recovery from inactivation (Hess and El Manira, 2001).
Therefore, in LF neurons mAHP and IA may in concert help
sustain the repetitive firing.

The calcium channel that provides the calcium source for
the activation of medium duration AHPs following single
spikes show neuronal type-specific differences in many sys-
tems. In BF cholinergic neurons, calcium entry through the
LVA channels have been shown to determine AHP ampli-
tude (Williams et al., 1997). Curiously, our data show a

higher LVA density in EF neurons, which we have shown
to exhibit smaller AHP amplitudes. It is possible that EF
neurons have lower levels of SK channel expression and/or
different localization of this channels compared to LF neu-
rons where they might serve other functions [e.g. (Gu et al.,
2005)].

FUNCTIONAL IMPLICATIONS
This study provides evidence for the existence of two subtypes
of BF cholinergic neurons based on spike onset latency in the
mature BF. EF neurons with their initial high frequency discharge
followed by pronounced spike frequency adaptation could lead
to a different acetylcholine release profile than that of LF neu-
rons, which show little spike frequency adaptation when depo-
larized. Recent amperometric studies suggest that acetylcholine
release can be tonic (measured in minutes) or phasic (measured
in seconds) depending on attentional demands (Parikh et al.,
2007; Parikh and Sarter, 2008; Hasselmo and Sarter, 2011), an
observation that may relate to the existence of two functionally
distinct cholinergic neuronal populations described in our study.
Moreover, the delay to spiking, the main feature distinguishing
cholinergic BF neurons, may be involved in different aspects of
synaptic plasticity given the novel finding regarding the tempo-
ral requirements of cholinergic activation for different forms of
hippocampal plasticity (Gu and Yakel, 2011).

Another interesting possibility relates to the complex archi-
tecture of cholinergic space in the BF. Statistical analysis of
anatomical data based on nearest neighbor density determined
that cholinergic neurons in rats are either found in dense clus-
ters or diffusely located in the background (Nadasdy et al., 2010).
Since the projection target of the clusters and the low density
locations are different (Zaborszky et al., unpublished observa-
tions) it would be functionally important to test in future studies
to what extent EF/LF neurons in mice fit into this anatomical
scheme.

Further studies combining circuitry analysis, membrane phys-
iology, and behavior will be instrumental in establishing of how
this in vitro functional distinction relates to anatomical subtypes
or in vivo behavior of cholinergic BF neurons.
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