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Abstract

The rate of supernovae (SNe) in our local galactic neighborhood within a distance of ~100 parsec
from Earth (1 parsec (pc)=3.26 light years) is estimated at 1 SN every 2-4 million years (Myr),
based on the total SN-rate in the Milky Way (2.0+0.7 per centuryl:2). Recent massive-star and SN
activity in Earth’s vicinity may be evidenced by traces of radionuclides with half-lives t;;, <100
Myr3-6, if trapped in interstellar dust grains that penetrate the Solar System (SS). One such
radionuclide is 6%Fe (t;,=2.6 Myr)":8 which is ejected in supernova explosions and winds from
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massive stars29, Here we report that the 0Fe signal observed previously in deep-sea crustsl0-11,
is global, extended in time and of interstellar origin from multiple events. Deep-sea archives from
all major oceans were analyzed for 60Fe deposition via accretion of interstellar dust particles. Our
results, based on 80Fe atom-counting at state-of-the-art sensitivity®, reveal %0Fe interstellar
influxes onto Earth 1.7-3.2 Myr and 6.5-8.7 Myr ago. The measured signal implies that a few
percent of fresh 0Fe was captured in dust and deposited on Earth. Our findings indicate multiple
supernova and massive-star events during the last ~10 Myr at nearby distances <100 pc.

The density and temperature distribution of the interstellar medium (ISM) is highly variable,
with typical substructures of ~50-150 pc (superbubbles) having life-times of some 10 Myr.
Several SN explosions over the last ~14 Myr shaped the present structure of the local
superbubble (LB)12-14. The SS, now embedded in the LB, is expected to have faced fronts of
SN ejecta and accumulated material from massive stars. To enter the SS, any material from
the ISM must be condensed into larger dust grains to avoid being deflected away by the solar
wind and interplanetary magnetic field319.11, |SM dust particles were indeed identified at
Earth orbit!® and may accumulate on Earth in archives such as deep-sea sediments and
ferromanganese (FeMn) crusts and nodules which retain time information over millions of
years. 50Fe as well as 28Al (t/,=0.71 Myr) are observed?? in the ISM as a result of many
SNe and emission from massive stars. Direct detection of ‘live’ radionuclides3->10.11 on
Earth would provide insight into recent and nearby nucleosynthesis in massive stars4.16.17,
dust formation and transport into the SS. Extraterrestrial 80Fe was in fact already observed in
FeMn crusts in pioneering studies at TU Munich1911, and interpreted as being of SN10.11.18
or (micro)meteoritic origin1920,

In the present work, the 89Fe contents of three different deep-sea archives (four sediment
cores, two FeMn-crusts and two FeMn-nodules) recovered from the Indian, Pacific and
Atlantic Oceans respectively (Supplementary Figure S1) were determined. All were dated
via their 10Be (t1,=1.39 Myr) content, complemented by 26Al for the sediments2L. All
radionuclides (6%Fe, 26Al and 10Be) were counted using accelerator mass spectrometry
(AMS) (Supplementary Information). The sediment cores provided a record from 1.7-3.2
Myr BP (before present) with a time resolution of <30 kyr, bracketed by recent and ~5-7
Myr old samples. Pacific ‘Crust-1" extends from present to 10.9 Myr with ~2.2 Myr time
resolution and ‘Crust-2" from 1.2—7 Myr BP (~100 kyr resolution). Two nodules covered 5.4
Myr BP (~2 Myr resolution).

In the sediment, 288 60Fe-events were registered for the time period 1.71-3.18 Myr (45
individual samples) with a mean isotopic ratio 50Fe/Fe=(1.79+0.10)x10715, a factor of ~40
above the measurement background of (0.042+0.015)x10~15. None of the recent or old
sediment samples show evidence for 60Fe above background (3 %0Fe-events). The first two
layers in Crust-1 gave 50Fe-signals 40 and 7o above background; layers 3 and 5 are close to
the measurement background, but layer 4, which spans the period 6.5-8.7 Myr, has a
significantly higher ratio (~4o above background, Table 2). For Crust-2 a clear 60Fe-signal
was also found at <3.5 Myr. The nodules support this finding (Table 3, Supplementary
Tables S3-S5).
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In summary, two clear 0Fe signals with a total of 538 $0Fe-events were observed. In the
sediments, the signal covers the time period 1.7-3.2 Myr. In the crusts, 89Fe is found up to
3.5 and ~4 Myr, with a second influx between 6.5 and 8.7 Myr. The nodules confirm the
presence of %0Fe at <3.3 Myr. No 80Fe signal is found in recent (<0.2 Myr) or older (=5
Myr) sediments and nodules, or in crusts between 4.4-6.5 and 8.7-10.9 Myr.

Between 1.7 and 3.1 Myr, the 0Fe deposition rate into the sediments was ~11-35 80Fe
atoms-cm~2yr~1 (300-kyr averages), whereas incorporation rates into crust material were
significantly lower at 1-2 atoms-cm=2-yr~ (Figure 1, all data are decay-corrected). This
suggests an incorporation-efficiency into Crust-1 and Crust-2 of 17% and 7%, respectively.
The deposition in the 1.5-Myr interval covered by the signal in the sediment is (35+2)x106
atoms-cm™2. For the second 6%Fe signal (6.5-8.7 Myr, Crust-1, 17% incorporation) it is
(21+6)x108 atoms-cm~2 (Tables 2-3).

Although the 1.5 Myr time-spread of 80Fe influx measured in the present work exceeds the
~0.8 Myr previously reported for crust 237KD1118_ the two time profiles are not inconsistent
given the lower counting statistics and signal-to-background in Ref. 11. Furthermore, the
marginally positive result for the same time period for an Atlantic sediment!8 is consistent
with our data, considering their higher sedimentation rates and stable Fe-contents. 6°Fe has
also been reported in lunar material, though without time information22 and recently in
Pacific sediments?3,

Clearly, our data are incompatible with a constant 89Fe production or deposition. A
terrestrial origin can be ruled out, because there is no suitable target for cosmic-ray induced
production and anthropogenic input would be concentrated in the surface layer. Since 80Fe
was found in each of the major oceans, it is reasonable to assume a uniform global
distribution. A micro-meteoritic or meteoritic origin can be excluded, since the measured
cosmic-dust flux is 400 times lower than would be required (Supplementary Information and
Figure S6). Similarly a hypothetical break-up of a single object, comparable to the asteroid
invoked in relation to the K/T event 65 Myr ago, would have delivered 4,500 times less 0Fe.

We assume that the extraterrestrial 59Fe flux through Earth’s cross-section is homogenously
distributed over Earth’s surface. Thus, the measured mean deposition of ~24.5
atoms-cm™2yr~1 (1.7-3.2 Myr signal) corresponds to a 80Fe-flux of 98 atoms-cm™2yr~1 into
the inner SS or integrated over 1.5 Myr to an 8%Fe-fluence of (1.460.15)x108 atoms.cm™2 at
Earth orbit; the fluence for the older event is (1.2+0.4)x108 atoms-cm~2. Interstellar grains,
filtered by the SS in size to an average of ~0.5 um, were detected by space missions®,
suggesting that (63)% (gqust) in mass of ISM dust reaches the inner SS. These grains
follow the flow velocity of the ISM. Assuming the 89Fe-loaded grains follow the same mass-
distribution as determined for ISM grains at Earth orbit, we deduce an interstellar $0Fe-
concentration in dust of (2.8+1.4)x1011 60Fe atoms-cm™3 for 1.7-3.2 Myr and integrated
over the full period of 11 Myr an average concentration of ~(5-15)x10712 atoms-cm™=3.
Observations of ®%Fe-decay!? and nucleosynthesis models? suggest an average Galaxy
concentration of ~6x10~12 60Fe atoms.cm=2 (Supplementary Information), in agreement
with the 11-Myr local-data reported here.
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60Fe is produced in massive stars:24-27 in their late phases, predominantly just before SN-
explosions, and then ejected into space. (Super)AGB stars also produce and eject 60Fe
through their stellar winds during ~50 kyr, leading to a time profile similar to SNe; however,
their contribution to the galactic ®%Fe inventory is small28.

Models suggest a travel time of ~200 kyr with a time spread of ~100-400 kyr® for ejecta
from a single SN at ~100pc distance. Our measured spread of ~1.5-Myr is inconsistent with
the interpretation in terms of ejecta from a single SN (or AGB-star) moving across the SS
(Supplementary Figure S6). It suggests multiple SN- and massive-star activities within the
last ~10 Myr in Earth’s vicinity and two distinct periods 1.7-3.2 and ~6.5-8.7 Myr BP. The
recent time profile would be compatible with movement across the SS of ejecta in a series of
SN-fronts in short succession within 1.5 Myr. This would, however, require a high SN-
frequency (~2-3 SNe/Myr) since large fluctuations were not observed in the time profile.
Alternatively, the ejecta containing the 89Fe-bearing grains could have come to rest in the
ambient ISM and diffused into volumes or clouds, that were then traversed by the SS18.

The SS is currently embedded in a flow of ISM-material with interstellar grains moving
parallel to the flow of neutral interstellar gas in local ISM clouds arguing for a common
history or driver2®. Such clouds were suggested as part of an expanding superbubble-shell
driven by SNe and winds from massive stars2?-12-14 Assuming the ejecta originate from a
distance 70-100 pc (~limit of the LB) and ®Fe is equally distributed into the outer shell of
size 30 pc (distance representing 1.5 Myr travel), i.e. a spherical shell of mean radius 70-100
pc with a thickness of 30 pc, we deduce a total °Fe mass trapped in ISM dust of (5-11)
x107° solar masses (M) in the shell volume. This number represents a lower limit as it
reflects the fraction of 6%Fe condensed into dust without correction for radioactive decay and
neglects the granularity of clumpy ejecta. Models predict core-collapse and electron-capture
SN-nucleosynthesis yields for 6Fe to be (0.5-14)x1075 M, for 8-25 M-stars24-272,
depending on the progenitor mass with large uncertainties in the nuclear-physics input.
(Super)AGB stars produce (0.003-1)x107° M, 8%Fe28. Our observed signals therefore favor
SN events. The fraction of ®Fe in dust can be roughly estimated by a comparison of our
measured %9Fe deposition with nucleosynthesis yields. Under these assumptions and
assuming reasonable distances (20-100pc) ~0.4-9% of 6°Fe would be trapped in dust
(Supplementary Information, Figures S7 and S8).

Comparing our data with a similar work for ISM-244Py in sediments and crust samples®
yields a 244Pu/60Fe atom-ratio of ~3x107° or less during periods of elevated %%Fe deposition
over the last 10 Myr which agrees with the recently reported low 244Pu SN-yields®
(Supplementary Information).

Our broad and global 8%Fe-influx on Earth demonstrates recent (<10Myr) and wide-spread
massive-star ejections in our near galactic neighborhood (<100pc), most likely from SN-
explosions. Interestingly, the older event coincides with a strong increase in 3He and
temperature change ~8 Myr BP30, while the more recent activity starting ~3 Myr BP
occurred at the same time as Earth’s temperature started to decrease during the Plio-
Pleistocene transition.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Deposition rates for sediment (150 kyr averaged data) and incorporation rates for two
crust samples

60Fe concentrations (89Fe/g) for the sediment are given in the inset; they were on average
6.7x10% atoms/g between 1.7 and 3.2 Myr, but 260x10* atoms/g crust and 95x10% atoms/g
nodule, reflecting the difference in growth rate and incorporation efficiency (see
Supplement). The error bars (10) include all uncertainties and scale with decay correction,
thus upper limits are becoming larger for older samples. The absolute ages for the sediment
are uncertain by 0.1 Myr, but for the 5.5-Myr sediments ~1 Myr. Ages of Crust-1 are 0.3 and
of Crust-2 0.5 Myr uncertain.
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Table 3

Page 11

Summary of 89Fe-deposition into various archives as obtained in this work and given in the literature10.11.22
(no correction for incorporation efficiency). Uncertainties are 1o.

Deep-sea archive | cores location time period (Myr) | %°Fe detector events | 60Fe deposition (106 at.cm-2)2
Sediment | 4 | Indian Ocean 1.71-3.18 288 35.4+2.6
FeMn Crust 1 2 Pacific Ocean 0-4.35 97 5.9+0.8
FeMn Crust 1 6.52-8.70 26 3.5¢1.0
FeMn Crust 2 12-31 94 2.240.2

. 1.8-33 13 0.6£0.2
FeMn nodules 2 Atlantic Ocean 0-33 20 14405
FeMn Mona Pihoa'? 1 Pacific ocean 0-59 21 P
FeMn 237KD!! 1 Pacific ocean 1742617 69 154047
Lunar material?2 1 Moon integral _c ~10

a, . . - . .
for Crust-1 and Crust-2 an incorporation efficiency of 17 and 7% respectively, has to be taken into account to calculate the 60Fe fluence from the

deposition values; similarly 2 and 4% for the nodules.

badjusted for a revised 80Fe and 10Be half-live values’-8

cnot listed in Ref. 22.
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