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ABSTRACT The gut microbiome is spatially heterogeneous, with environmental
niches contributing to the distribution and composition of microbial populations. A
recently developed mapping technology, MaPS-seq, aims to characterize the spatial
organization of the gut microbiome by providing data about local microbial popula-
tions. However, information about the global arrangement of these populations is
lost by MaPS-seq. To address this, we propose a class of Gaussian mixture models
(GMM) with spatial dependencies between mixture components in order to compu-
tationally recover the relative spatial arrangement of microbial communities. We
demonstrate on synthetic data that our spatial models can identify global spatial dy-
namics, accurately cluster data, and improve parameter inference over a naive GMM.
We applied our model to three MaPS-seq data sets taken from various regions of
the mouse intestine. On cecal and distal colon data sets, we find our model accu-
rately recapitulates known spatial behaviors of the gut microbiome, including com-
positional differences between mucus and lumen-associated populations. Our model
also seems to capture the role of a pH gradient on microbial populations in the
mouse ileum and proposes new behaviors as well.

IMPORTANCE The spatial arrangement of the microbes in the gut microbiome is a
defining characteristic of its behavior. Various experimental studies have attempted
to provide glimpses into the mechanisms that contribute to microbial arrangements.
However, many of these descriptions are qualitative. We developed a computational
method that takes microbial spatial data and learns many of the experimentally vali-
dated spatial factors. We can then use our model to propose previously unknown
spatial behaviors. Our results demonstrate that the gut microbiome, while exception-
ally large, has predictable spatial patterns that can be used to help us understand its
role in health and disease.

KEYWORDS Gaussian process, MaPS-seq, computational biology, machine learning,
mathematical modeling, microbiome, probabilistic models, spatial structure

Adefining characteristic of the gut microbiome community is its spatial structure.
Nutrients and chemical conditions differ along the gastrointestinal (GI) tract,

impacting the distribution of taxa that reside there (1, 2). This spatial arrangement of
microbes within the gut microbiome likely contributes to major aspects of its dynamic
behavior, including community stability and host-microbe interactions (3, 4).

Recently, a novel DNA technology, metagenomic plot sampling by sequencing
(MaPS-seq), was developed to offer insights into the spatial organization of the gut micro-
biome (5). In MaPS-seq, high-resolution segments (;20-mm squares) are extracted
directly from along the gut. Segments are encapsulated in droplets with barcoded 16S
rRNA amplification primers, such that sequencing reads with the same barcode originate
from the same segment. Hence, MaPS-seq preserves localized information about the
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spatial structure of the microbiome and is a valuable tool for investigating the biogeogra-
phy of the gut microbiome. However, the assignment of barcodes to droplets is a random
process; MaPS-seq does not preserve the global arrangement of droplets along the gut.

Known characteristics of the biogeography of the gut microbiome suggest it may
be possible to reconstruct the global arrangement of MaPS-seq droplets. For exam-
ple, antimicrobial peptides, oxygen levels, and acidity vary along the length of the
small intestine. Consequently, bacterial loads increase along the longitudinal axis of
the small intestine and lead to a more microbe-rich ileum (2). In the colon, the den-
sity of the mucus layer increases along its longitudinal and cross-sectional axes—
creating environmental niches favored by different species (1). In principle, it should
be possible to reconstruct some of these global patterns from the high-resolution
sampling of MaPS-seq.

Our contribution. We developed a class of computational models to recover known
characteristics of the biogeography of the gut microbiome from MaPS-seq data. Our
models build upon the classical Gaussian mixture model (GMM; Fig. 1). In a GMM, obser-
vations are mixtures of latent clusters, each of which is modeled as a multidimensional
Gaussian random variable, independent of the others and with its own mean. We expand
this framework by introducing spatial dependence between latent clusters. Specifically,
clusters are arranged as a line (one-dimensional model) or grid (two-dimensional model)
to investigate directional changes along the longitudinal axis only or, respectively, both
the longitudinal and radial axes of the gut.

A key question is whether our model can differentiate longitudinal from radial
changes in the gut. We demonstrate on synthetic data that our model is capable of dis-
criminating between one-dimensional and two-dimensional models. We apply our
model to MaPS-seq mouse ileum, cecal, and distal colon data sets. We provide strong
evidence for the presence of spatial structures across all data sets, with distinct re-
gional characteristics. We show that our proposed model recovers known biological
behaviors of microbes within the GI tract while also providing new insights into the
spatial structure of the gut microbiome.

FIG 1 Schematic overview of the directional Gaussian mixture model. Given observed compositions from each
barcode, the model simultaneously learns the community composition of each latent cluster (m i) and the
assignment of each barcode to a latent cluster.
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RESULTS
Simulation results. We first evaluated whether our model can differentiate between

one- and two-dimensional dynamics using simulated data. We simulated data under the
one- and two-dimensional models (“Simulation Analysis,” below) and asked if we could
infer the number of latent clusters and their spatial arrangement. One-dimensional mod-
els use a D vector to describe changes between latent clusters arranged in a line. Two-
dimensional models have latent clusters arranged in a grid and use an additional D\ vec-
tor to describe orthogonal changes (D � D\ = 0). Using the Akaike information criterion
(AIC), we found that our directional GMM is able to correctly determine the correct num-
ber and arrangement of clusters (Fig. 2A and B). Furthermore, the introduction of a de-
pendence between latent clusters in the model also improved parameter inference com-
pared to a naive GMM with no spatial structure (Fig. 2C). For all data set forms, the
Wilcoxon signed-rank test P value was less than 0.001.

Spatial structure of MaPS-seq data.We applied our directional GMM to three real
MaPS-seq data sets from Sheth et al. (5; “MaPS-seq data analysis,” below). The provided
MaPS-seq data contain samples from 3 regions of a single mouse’s GI tract, the cecum
(n = 4.5 barcodes), the ileum (n = 386 barcodes), and the distal colon (n = 259 barco-
des). On the cecum and distal colon data sets, the best-supported models were two-
dimensional (4 � 2 and 3 � 2, respectively). On the ileum data set, the best-supported
model was a one-dimensional model with 5 clusters (5 � 1). Using the model parameters
from the best-supported model on each data set, we created one- and two-dimensional
visualizations depicting the directions learned by our model (Fig. 3). Qualitatively, our
model appeared to segregate barcodes into distinct clusters along the gut.

We also compared the support of the selected directional model GMM to a naive
GMM with no spatial structure. To compare models, we computed the AIC scores of
our directional models to a naive GMM with the same number of latent clusters
(Table 1). The naive GMMs have much larger AIC scores than the directional GMMs.
Conventionally, models with scores that are larger by 10 or more are considered to
have little support (6).

FIG 2 Directional GMMs accurately select the number of latent clusters and infer model parameters. (A) Heatmap showing the accuracy of the selected
model on various simulated data sets with jDj = jD\j = 5 and a within-cluster standard deviation of 1. (B) jDj = jD\j = 1, keeping the same standard
deviation. (C) RMSE of learned cluster means on data sets with correct model selection. On all data sets, the directional GMMs are significantly improving
parameter inference.
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Recovery of GI tract biogeography. We also investigated learned model parame-
ters for correspondence to some of the known spatial dynamics of the gut microbiome.
Our mixture models identify latent clusters, each of which describes a community
state. We can analyze the average composition of these latent clusters to identify varia-
tions in microbial compositions between locations of the GI tract.

Figure 4 illustrates the recovered dynamics on the distal colon data set. Under the
partition presented in Fig. 4, we observe large differences in the average compositions
of Firmicutes and Bacteroidetes between lumen- and mucus-associated clusters.

On the cecum data set, we observed compositional differences along both axes.
Figure 5A to C shows a cecal tip and base partition that has a noticeable compositional
difference in the abundances of Actinobacteria and Bacteroidetes. The clusters on the

FIG 3 Projections of MaPS-seq data. (A) Distal colon data set. The selected model and MaPS-seq data projected
along the unit D and D\ axes. Colors correspond to samples belonging to a latent cluster. Ellipse radii
represent the eigenvectors of the covariance matrix. (B) Cecum data set. (C) Ileum data set. Selected model and
MaPS-seq data are projected along the unit D axis. Normal distribution represents the density of covariance
matrices around each cluster mean.

TABLE 1 AIC shows strong evidence for spatial structure across the GI tracta

AIC selections

Dataset

One-dimensional Two-dimensional
AICnaive-AICstructure

(score difference)Score Mixture model Score Mixture model
Ileum 237,493 53 1 237,340 33 2 954
Cecum 32,714 83 1 31,930 43 2 3,832
Distal colon 6,636 63 1 5,588 33 2 1,168
aBest directional mixture model and its corresponding AIC score. Scores in bold indicate the selected model. The
comparison of directional GMMs to naive GMM by AIC metrics shows that the introduction of dependence
between latent clusters significantly improves the model fit.
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two ends of the model have differences in the abundances of Firmicutes that corre-
spond to the cecal crypt and lumen (Fig. 5D to F).

On the ileum data set, we compared microbial population relative abundances across
each latent cluster. Along the length of the ileum, we observed a general decreasing trend
in Lactobacillaceae and increases in both Ruminococcaceae and Lachnospiraceae (Fig. 6B).
Our model’s choice of D seems to capture some of these dynamics. Moving along the D

axis shows decreases in Lactobacillaceae and increases in Lachnospiraceae (Fig. 6A). Some
discrepancy is observed, most noticeably with the behavior of Actinobacteria.

We evaluate if the proposed latent cluster compositions still accurately describe the
data. Specifically, we compare the log-likelihood of the MaPS-seq droplets in their
assigned clusters against the best log-likelihood from the other clusters. These likeli-
hoods are determined using the proposed compositions. Using a paired one-sided t
test to evaluate the difference, we obtain P = 0.053.

We also calculate the Kullback-Leibler (KL) divergence between projected and observed
operational taxonomic unit (OTU) abundances on each ileal segment. The divergences are

FIG 4 Directional GMM recovers spatial dynamics in the distal colon. (A) Selected model and corresponding locations of clusters
in the distal colon. (B) Scatterplot of projected MaPS-seq samples assigned to lumen-associated clusters (red) and mucus-
associated clusters (blue). (C) Clusters associated with the mucus are enriched in Firmicutes, and those associated with the lumen
display larger levels of Bacteroidetes.

FIG 5 Directional GMM recovers spatial dynamics in the cecum. (A) Selected model and corresponding locations of latent clusters
in the cecum. (B) Scatterplot of projected MaPS-seq samples assigned to cecal tip-associated clusters (blue) and cecal base-
associated clusters (red). (C) Clusters associated with the cecal tip have lower relative abundances of Bacteroidetes and higher
relative abundances of Actinobacteria than the cecal base. (D) Selected model and corresponding locations of mixtures in the
cecum. (E) Scatterplot of projected MaPS-seq samples assigned to cecal crypt-associated clusters (brown) and cecal lumen-
associated clusters (pink). (F) Firmicutes are enriched in the lumen clusters compared to the crypt clusters.

Directional GMMs for Spatial Gut Microbiome Analysis

November/December 2021 Volume 6 Issue 6 e00817-21 msystems.asm.org 5

https://msystems.asm.org


0.11, 0.74, 0.96, 1.08, and 0.65 for segments 1 to 5, respectively. On all segments, P values
in permutation tests were,0.001.

DISCUSSION

Novel experimental methods focused on the gut microbiome’s spatial organization
have provided new data sets for computational analysis. Here, we developed direc-
tional GMMs with dependent mixtures to infer spatial behaviors of phyla within the
gut microbiome. We demonstrated the accuracy of the proposed directional GMMs on
simulated data in terms of ability to infer model parameters and to differentiate one-
dimensional from two-dimensional spatial structures. On MaPS-seq data, we demon-
strated the presence of spatial structure in distinct regions of the mouse GI tract.
Encouragingly, our model recapitulated well-known spatial phenomena on the distal
colon and cecum data sets.

In the distal colon, it has been shown that Bacteroidetes are enriched in the lumen,
while Firmicutes are enriched in the mucus layer and crypts (1, 2). We observed these
compositional differences suggesting that our model is recovering the radial dynamics
of the distal colon. The presence of four distinct clusters representing the mucus layer
is not surprising, because mucosal communities vary significantly over lengths as small
as 1 cm (7).

In the cecum data set, correspondence with other in vivo experiments suggests that
we recover dynamics in both the radial and longitudinal directions (Fig. 5A). Zaborin et al.
(8) suggested that in the mouse cecum, Bacteroidetes increase in relative abundance from
the cecal tip to the base. It should be noted that in their experiment, this trend did not
reach statistical significance. Our model seems to identify this compositional difference,
in addition to a distinction in the relative abundances of Actinobacteria (Fig. 5A). Zaborin
et al. (8) did find a statistically significant difference between the levels of Firmicutes in
the lumen compared to cecal crypts. We observe a similar difference at the two ends of
our model (Fig. 5D).

FIG 6 Projected and observed ileum dynamics. (A) Projected compositions moving along the D axis. (B) Observed compositions in
learned model clusters. Green bars correspond to observed families in the Firmicutes phylum, and gray bars correspond to other
observed phyla.
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Within the ileum, we select a model with only a single direction of change. There is
evidence that our choice of model is biologically accurate: unlike in the cecum and dis-
tal colon, the small intestine mucus layer is largely uninhabited due to the presence of
antimicrobial peptides (9). However, along the length of the small intestine, oxygen
concentrations and pH gradients vary (2). Among the learned clusters, we observe a
stark decrease in the relative abundance of Lactobacillaceae (Fig. 6). Along the flow of
the digesta, the ileum becomes more alkaline. Because Lactobacillaceae are known to
contribute to highly acidic environments, it is unsurprising that we observe these com-
positional differences along the length of the ileum. The pH gradient seems to be em-
bedded in the D our model learns; cluster means along the D axis show a decrease in
Lactobacillaceae similar to the observed compositions. The presence of discrepancies
on phyla such as Actinobacteria suggest that there potentially exist other sources of mi-
crobial dynamics in the ileum as well. We test the scale of these divergences using two
methods. First, we compare the likelihood of data based on their assigned clusters and
the proposed ileum compositions against their likelihood on other clusters. A t test
obtains a P value close to the threshold of statistical significance, even though this is a
conservative test; we are comparing against an optimal other assignment as opposed
to a random one. Second, we calculate the KL divergence between observed and pro-
posed cluster compositions. The divergences are small, and a permutation test yields
statistical significance of the divergences (P , 0.001). To our knowledge, there are not
any experimental studies that describe the microbiome’s spatial dynamics within the il-
eum. This demonstrates the utility of our model; not only can we computationally con-
firm known aspects of the gut biogeography, but we can also propose new microbial
spatial behaviors.

A limitation of the present approach is the resolution of the resulting clusters. Our
directional GMM was able to capture global spatial patterns in the gut microbiome.

Specifically, given that MaPS-seq samples are approximately 20 mm apart, the clus-
ters from the best-supported models on the ileum, distal colon, and cecum data sets
correspond to approximately 1-cm regions. It would be interesting to investigate if a
finer resolution change can be achieved. Future work should focus on investigating
this possibility of high-resolution mapping of MaPS-seq samples.

A trend in understanding microbial dynamics is uncovering microbe-microbe inter-
actions from coabundance patterns (10). We believe that we can create more accurate
interaction networks using our proposed labels of spatial locations. As certain microbe-
microbe interactions may be more pronounced within certain regions of the GI tract
(5), localized interaction networks can potentially uncover new microbial behaviors.

A valuable next step would be designing MaPS-seq experiments with ground
truth labels denoting spatial locations. With coarse-grained labels from various adja-
cent segments of the GI tract, we could better confirm our model’s ability to identify
the microbiome’s spatial structure, and also the spatial scale recovered by the
model. Nonetheless, the present work provides strong evidence that global spatial
patterns can be reconstructed from MaPS-seq data that will only be improved with
more detailed collection.

MATERIALS ANDMETHODS
Directional Gaussian mixture models. Our approach uses a Bayesian network to describe the rela-

tionship of spatially arranged clusters in the gut (Fig. 7A). In detail, given a spatial configuration, the
goal is to simultaneously learn community states for each latent cluster and assign barcoded MaPS-seq
droplets to a cluster (Fig. 1). The nodes of the Bayesian network, {msjs [ S}, represent composition vectors
of archetypal communities in respective clusters.

In the present work, we are interested in changes along one or two dimensions. Studies suggest the
presence of two natural directions in the gut microbiome (1). One dimension moves along the flow of
the digesta, while the other moves orthogonally along the radial axis (inward out).

This motivates the following definition for our model.
We define a one-dimensional model where S = {ij1# i# K} for K latent clusters (Fig. 7A). Let D represent

directional changes between adjacent community compositions and let Q represent a spatial covariance ma-
trix for deviations from the directional changes. m 0 and Q0 serve as a starting multivariate cluster that we
draw the first latent cluster from.
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We can define

f m1ð Þ ¼ N m1jm 0;Q0
� �

f mijm i21

� � ¼ N mijmi21 1D;Q
� �

for i ¼ 2::K

We also define a two-dimensional model where S = {(i, j)j1 # i # K, 1# j # 2 for 2 K latent clusters
(Fig. 7B). Let D\ represent the direction along the second dimension, such that D � D\ = 0. We define

f m11ð Þ ¼ N m11jm 0;Q0
� �

f m1ijm1ði21Þ
� � ¼ N m1ijm1ði21Þ 1D;Q

� �
for i ¼ 2::K

f m21ð Þ ¼ N m21jm11 1D?;Qð Þ

f m2ijm1i;m2ði21Þ
� � ¼ N m2ij

1
2

m1i 1m2ði21Þ 1D1D?
� �

;Q

� �
for i ¼ 2::K

MaPS-seq outputs read counts for each of the operational taxonomic units (OTUs) in each barcoded
droplet. However, the total number of reads is independent of overall community size. Therefore, the
sequencing counts only provide information about the proportions of each OTU in the community.
Recent work has advocated using such compositional data transformations to model microbiome data
(11). We transformed read counts to relative abundances and then applied the PhILR transformation, an
isometric log-transform (ILR) with a phylogenetically derived basis (12). Each coordinate for the PhILR-
transformed data measures the relative proportions of two clades in a phylogeny. Phylogenetic trees
were generated using QIIME (13) and provided as input to the PhILR R package. Given $D$taxa, the
latent community states are D – 1 dimensional vectors, ms [ RD–1. Zeros are handled using multiplicative
replacement with d = 1/D2 for D-taxa (14).

The reads in a particular barcoded droplet provide noisy observations from a latent cluster (Fig. 7C).
Thus, we can think of the data generation process as first selecting a latent community state per barcode
and then generating a noisy observation from that community state. Let b index the set of barcodes, xb [
RD–1 for b [ b be PhILR computed from the observed sequencing reads for that barcode, and p S = (p s)s[S
be the probability that a barcode originated from each cluster s [ S. Let r s be the set of direct ancestors of
ms. Defining zb as the cluster from which barcode b originated, we have

p zbð Þ ¼ Categorical zbjpSð Þ

p xbjzb;mzb

� � ¼ N xbjmzbRzb

� � ¼ Y
s2S

N xbjms;Rs
� �� �1 zb¼sð Þ

Altogether, the complete likelihood of the model can be written

p mS ; zB ; xBð Þ ¼
Y
s2S

f msjmr s

� �Y
b2B

p xbjzb;mzb

� �
p zbð Þ

¼
Y
s2S

f msjmr s

� �Y
b2R

Y
s2S

½pðxbjzb ¼ s;msÞp zb ¼ sð Þ�1 zb¼sð Þ

Parameter inference. In both models, we seek to optimize p(mS,zb, xbju ), where u = (p S,
P

S, D*, Q,
Q0, m0). This optimization is performed through an expectation-maximization (EM) algorithm. Under this
algorithm, parameters are inferred by alternating between two steps:

FIG 7 A directional Gaussian mixture model. (A) Graphical depiction of relationships between latent
clusters in a one-dimensional model. (B) Relationships in a two-dimensional model, where changes
from left-to-right are described by D, and perpendicular changes are described by D\. (C) GMM used
to model sampling noise of observed samples xn. m i represents latent clusters with relationships
given in panels A and B.
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� E step: Given the current estimates of community states mt
S , model parameters, u t, compute the

posterior expectation of each cluster assignment, 1 zb ¼ sð Þjmt
S ; u

t
� �

.
� M step:Maximize the expected complete log-likelihood log p(mS, zb, xb):

mt11
S ; u t11

� � ¼ argmax mS ;uð Þ
X
s2S

logf msjmr s

� �

1
X
b2B

X
s2S

1 zb ¼ sð Þjmt
S ; u

t
� �½logpðxbjzb ¼ s;msÞ1 logpðzb ¼ sÞ�

Thus, we take maximum a posteriori estimates of mS and maximum likelihood estimates of the remaining
parameters. Model parameters are initialized using a basic GMM with independent clusters trained on the
same data. On both simulated and real data, 200 initializations are used. Inference terminates following 5
consecutive steps, where the expected complete log-likelihood increases relatively by ,1024 of the previ-
ous step. An initialization is restarted if it does not converge within 500 iterations.

Model selection. The Akaike information criterion (AIC) was used to evaluate models.

AICðkÞ ¼ 22lnðL̂Þ1 2pk

where L̂ denotes the likelihood of the data under the fitted model and pk is the number of parameters for
the model k. We used the complete log likelihood as a surrogate for the log likelihood of the data since it is
a lower bound. When comparing models with different numbers of latent clusters, we choose the model
with the minimum AIC score (6).

In the case of models with the same number of latent clusters (i.e., 4 clusters arranged in a line versus
clusters arranged in a 2 by 2 grid), we can directly compare the complete likelihoods p(mS, zb, xb) of either
model.

On both simulated and real data, we test up to 8 clusters for the one- and two-dimensional models,
or until the average community state size is 50 samples, whichever comes first. For the one-dimensional
model, clusters were arranged in a line from a 2 � 1 model up to an 8 � 1 model. For the two-dimen-
sional model, clusters were arranged in a grid from a 2 � 2 model up to a 4 � 2 model.

Simulation analysis. This is an unsupervised learning problem, so we first evaluated our model on
simulated data. To this end, we create simulated data sets under the two proposed models. First, we
sample two clusters’ means from a Pareto distribution with a = 1, normalize to the relative abundance
space with D = 47 taxa, sort taxa in decreasing order, and then transform to the ILR space. The difference
in the ILR space between these two means is defined to be D. The D parameter is then scaled to our
desired magnitude. Our method for sampling D allows for larger dynamics to be observed on more
abundant taxa. For two-dimensional models, we sample D\ from a standard multivariate normal distri-
bution and then orthogonalize relative to D. The remaining cluster means are arranged around one of
the two original cluster means as per the two models (arranged in the ILR space in a line or in a grid).

Then, we randomly sample cluster covariance matrices
P

from an inverse-Wishart distribution with

� = D 1 1 and W ¼ ID21

D21
(15). Finally, a total of 360 artificial MaPS-seq samples are drawn evenly and in-

dependently from each cluster.
We analyzed two aspects of model performance on simulated data: (i) selection of the correct number

of latent clusters and (ii) parameter estimation accuracy. In order to evaluate our model selection frame-
work, we train both the one- and two-directional models with various amounts of latent clusters on simu-
lated data. We used the aforementioned model selection criteria to determine the optimal model.

Next, the accuracy of our parameter inference is determined by calculating the average root of the
mean square error (RMSE) of the learned cluster means. Although our proposed model assigns labels to
clusters to reflect their spatial arrangements, other unsupervised clustering algorithms assign arbitrary
labels. Therefore, to compare RMSE of model parameters, we look at our proposed model’s RMSE and
the best RMSE of all label permutations of a naive GMM.

MaPS-seq data analysis.We used the publicly available data from Sheth et al. (5). The cecum, ileum,
and distal colon data sets were each extracted from 3-cm segments of their respective regions. MaPS-
seq clusters are the same size in all data sets (20 mm). Each sample is a vector of the relative abundances
of all OTUs. We focused on the most abundant taxa that constitute 95% of all relative abundance across
the three data sets. This corresponded to 47 taxa. Relative abundances were then renormalized. Using
the provided fasta files, we generated phylogenetic trees in QIIME (13). Data were then transformed
using the PhILR R package.

To determine how well proposed regions in the ileum describe the data, we compared the log-likeli-
hood of PhILR-transformed data in their assigned cluster against the highest log-likelihood of other pro-
posed region compositions. We used the same

P
covariance matrices. A paired one-sided t test was used

to calculate P value.
To quantify divergence between proposed and observed regions in the ileum, we used KL diver-

gence. For each region of the ileum, we calculated the relative entropy from the observed and proposed
compositions. In order to determine the significance of the calculated KL divergences, we used a permu-
tation test with 10,000 permutations of each observed composition vector.

Data availability. MaPS-seq data are publicly available at https://github.com/ravisheth/mapsseq.
EM algorithms and analysis of MaPS-seq data are available at https://github.com/amepas/Spatial
_Mbiome.
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