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Abstract

The present study aimed to identify molecules associated with lymphovascular invasion

(LVI) and perineural invasion (PNI) and to examine their biological behavior in colorectal

cancer (CRC). LVI- and PNI-associated molecules were identified and verified using

sequential processes including (1) identification of 117 recurrence-associated genes differ-

entially expressed on RNA-seq analysis using primary cancer tissues from 130 CRC

patients with and without systemic recurrence; (2) analysis of molecules associated with LVI

and PNI; (3) assessment of biological properties by measuring proliferation, anoikis, inva-

sion/migration, epithelial-mesenchymal transition and autophagy flux; and (4) verification of

disease-free survival using public datasets. Gelsolin (GSN) and 2’-5’-oligoadenylate synthe-

tase 2 (OAS2) were associated with PNI and LVI, respectively. Invasion potential was >2-

fold greater in GSN-overexpressing LoVo cells than in control cells (p<0.001–0.005),

whereas OAS2-overexpressing RKO cells showed reduced invasion (p<0.001–0.005).

GSN downregulated E-cadherin, β-catenin, claudin-1 and snail, and upregulated N-cadherin

and ZEB1, whereas OAS2 overexpression had the opposite effects. Several autophagy-

related proteins including ATG5-12, ATG6/BECN1, ATG7 and ATG101 were downregu-

lated in GSN-overexpressing LoVo cells, whereas the opposite pattern was observed in

OAS2-overexpressing RKO cells. Patients with low GSN expression had significantly higher

5-year recurrence-free survival (RFS) rates than those with GSN overexpression (73.6% vs.

64.7%, p = 0.038), whereas RFS was longer in patients with OAS2 overexpression than in

those with underexpression (73.4% vs. 63.7%, p = 0.01). In conclusion, GSN and OAS2

were positively and negatively associated with recurrence, respectively, suggesting their

potential value as predictors of recurrence or therapeutic targets in CRC patients.
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Introduction

Approximately 25% of patients with colorectal cancer (CRC) have metastatic disease at

the time of diagnosis, and 30–50% of CRC patients undergoing curative resection develop

metastasis or recurrence during the follow-up period [1]. Three principal channels of meta-

stasis, namely, hematogenous, lymphatic and peritoneal routes of dissemination, have been

established. Metastatic routes of spread are frequently associated with histological traces of

lymphovascular invasion (LVI), perineural invasion (PNI), extramural vascular invasion

and tumor budding. Among these parameters, LVI and PNI are recognised as category

I prognostic factors representing aggressive CRC (AJCC cancer staging, 8th ed, https://

cancerstaging.org/).

LVI is defined as the invasion of tumor cells into thin-walled small vessels including

capillaries, post-capillary venules and lymphatics. A systematic analysis including 9881 CRC

patients and 19 relevant studies showed that LVI is significantly associated with poor survival

outcomes [2]. The incidence of LVI reported in that study ranged from 5.2% to 30.3%. Several

molecular markers were introduced to help identify key genes and pathways driving LVI.

Among these markers, CDKN2A hypermethylation was identified in a meta-analysis as signifi-

cantly associated with LVI in addition to lymph node metastasis and proximal tumor location

[3].

PNI is another clear route of metastatic spread, although the role of nerves in cancer pro-

gression remains relatively unknown [4]. PNI includes tumor cells within the three layers of

the peripheral nerve sheath or in close proximity to a nerve and involving at least 1/3 of its cir-

cumference. The incidence of PNI is 18.2% overall in CRC cohorts, and it is more frequent in

rectal cancer than in colon cancer; it is an independent prognostic factor for survival in multi-

variate analysis [5]. The infiltration of the tumor microenvironment by nerves suggests that

tumor neoneurogenesis is an active process facilitating cancer progression [6]. Synuclein-γ
overexpression is observed in 61% of patients with pancreatic cancer and correlates with

major invasive parameters, including PNI and lymph node metastasis [7].

The molecular mechanism underlying the association between metastasis and the main

routes of cancer progression remains unclear [4]. The primary aim of this study was to identify

molecules associated with LVI and PNI as major channels of CRC metastasis and to examine

their biological behavior. In addition, the prognostic significance of these molecules for the

prediction of recurrence in CRC patients with LVI and PNI on histological analysis and their

value for the early detection of CRC were examined.

Materials and methods

Patient enrolment, sample acquisition, and main scheme

Primary tumor samples were obtained from 130 patients with colorectal adenocarcinomas and

used for RNA extraction. The clinicopathological features of the patients are summarized in S1

Table. All samples were collected at Asan Medical Center (Seoul, Korea) after obtaining writ-

ten consent from patients and stored in a -210˚C liquid nitrogen tank. Patients with hereditary

CRC (familial adenomatous polyposis and hereditary non-polyposis CRC) and those with can-

cers arising from inflammatory bowel disease were excluded. The patients were divided into

two groups as follows: patients without systemic recurrence for more than 5 years (n = 72) and

patients with systemic recurrence (n = 58). Systemic recurrence was defined as synchronous

or metachronous metastasis excluding locoregional relapse. A summary of the procedure used

to identify surrogate genes is shown in Fig 1. The study protocol was approved by the Institu-

tional Review Board of Asan Medical Center (registration numbers: 2018–0087).
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Transcriptome profiling

The sequencing library was prepared using the TruSeq RNA sample preparation kit v2 (Illu-

mina, CA, USA) according to the manufacturer’s instructions after total RNA isolation. The

mRNA was purified from total RNA using poly-T oligo-attached magnetic beads, fragmented

and converted into cDNA. Sequencing was performed in paired-end reads (2 × 150 bp) using

a Hiseq-4000 (Illumina). The reference genome index was built using SAMtools (ver. 0.1.18),

and RNA-seq samples were quantified using Kallisto (ver. 0.43.0). To estimate the significance

of differences in gene expression between sample subgroups, an EdgeR package with a negative

binomial model was applied to detect differentially expressed genes from the count data [8].

Genes were selected using a generalized linear model (GLM) likelihood ratio test that specifies

probability distributions according to the mean-variance relationship. Expression differences

in genes were considered statistically significant if the p-value was<0.001 and the fold differ-

ence in expression between two sample groups was�2. A total of 963 genes were differentially

expressed between patients with and without systemic recurrence (S2 Table). These genes

were further narrowed down using a strict false discovery rate (FDR) as<0.1% and differential

values of log2 transcripts per million (TPM) as>1-fold differences, leaving 117 genes. Then,

the log2 TPM values of the 117 genes were compared between the two groups according to

LVI and PNI.

Fig 1. Summary of the algorithm used for the three-step process to identify surrogate genes of CRC recurrence via LVI and PNI with

sequential outcome. TPM, transcripts per kilobase million.

https://doi.org/10.1371/journal.pone.0202856.g001
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Real-time reverse transcription-PCR, transfection, and cloning

The procedures for RNA extraction and quantitative real-time reverse transcription-PCR

(RT-PCR) were described previously using the respective primers (S3 Table) [9]. Ten CRC cell

lines (ATCC, Manassas, VA, USA) and two control epithelial cell lines (kindly provided by

Yonsei University, Seoul, Korea) used were free of mycoplasma and authenticated using puri-

fied DNAs on a 3130x1 Genetic analyzer and GeneMapper software 5 (Cosmo Genetech,

Seoul, Republic of Korea). They were cultured in RPMI-1640 supplemented with 10% (v/v)

fetal bovine serum and 1% (w/v) penicillin and streptomycin following the provider’s recom-

mendations. CRC cell lines with minimal mRNA expression for specific molecules were

selected for gene transfection or knockdown (S1 Fig). The cDNAs of six genes [gelsolin (GSN),

2’-5’-oligoadenylate synthetase 2 (OAS2), UDP glucuronosyltransferase family 1 member A6

(UGT1A6), palmdelphin (PALMD), synuclein gamma (SNCG) and heat shock protein family

B member 6 (HSPB6); cDNA: OriGene, Rockville, MD, USA] were amplified by PCR and sub-

cloned into DDK-tagged pCMV6-entry for stable transfection (OriGene). Cells transfected

with pCMV6-entry vector were used as the control group. Transient transfection was per-

formed in cancer cells using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA), and stably

expressing cells were generated by G418 selection for 10 days, with at least two clones selected

for each cell line. For target gene knockdown, the corresponding human-specific siRNAs

(Dharmacon/Seoulin Bioscience, Hwaseong-si, Korea; Invitrogen) were transfected into cells

using RNAiMax transfection reagent (Invitrogen). Cells transfected with negative control

siRNA (siNC: BIONEER, Daejeon, Korea) was used as controls. The protein expression of the

six genes was confirmed by western blot analysis (S2 Fig).

Immunoassays

Protein extracts from tumor tissues and cultured cells (approximately 50 μg) were quantified

by using Bradford solution (BioRad, Hercules, CA, USA). The samples were resolved by SDS/

10% polyacrylamide gel electrophoresis, and transferred to polyvinylidene difluoride (Milli-

pore, Billerica, MA, USA) membrane for western blot analysis. Membranes were consecutively

incubated with primary antibodies. The specific complexes were detected using SuperSignal

west pico kit (Thermo Scientific, Rockford, IL, USA). Deparaffinized tissues were subjected to

immunohistochemistry (IHC, concentrations: 1:40000 for GSN and 1:50 for OAS2) based on

the labeled streptavidin–biotin method using a DAKO LSAB1 kit (DAKO, Carpinteria, CA,

USA). The immunoreactivity was classified into three categories according to intensity (0, neg-

ative; 1, weak; 2, moderate; 3, strong) and proportion (0,�5%; 1, 6–30%; 2, 31–60%; 3, >60%).

For immunoprecipitation and indirect immunofluorescence, cells were washed three times

with ice-cold PBS and lysed with RIPA buffer and phosphatase inhibitor single-use cocktail

(ThermoFisher Scientific, Rockford, IL, USA). The cell lysate was centrifuged at 15,000 g for

15 min at 4˚C and supernatant was incubated with anti-GSN mouse monoclonal antibody

(Abnova, Taipei, Taiwan). Normal mouse IgG (Santa Cruz, Dallas, Texas) was used as a nega-

tive control. After overnight incubation at 4˚C with gentle rotation, a protein A/G plus agarose

was added (Santa Cruz) and incubated at 4˚C for 4 h with gentle rotation. The remained beads

were resuspended with 1× SDS sample buffer and boiled for 5 min. The supernatant was fur-

ther analyzed by western blotting. For indirect immunofluorescence, cells were plated in an

8-well Nunc Lab-Tek II chamber slides (ThermoFisher Scientific) and grown for 48 h. Cells

were fixed with buffered 2% formaldehyde for 15 min at room temperature, and permeating in

0.2% Triton X-100 in PBS containing 1% BSA for 10 min at room temperature. Cells were

incubated with both mouse anti-NME1 antibody (Abnova) and rabbit anti-Gelsolin antibody

(Abcam) diluted in washing buffer at room temperature for 1 h, followed by incubation with
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goat anti-mouse antibody and goat anti-rabbit antibody (BioActs, Inchon, Korea). Nuclei were

visualized by using 4’,6-diamidimo-2-phenylindole (DAPI: Sigma). Fluorescence imaging was

acquired using a laser scanning confocal microscope (Zeiss LSM 780: Goettingen, Germany).

Antibodies used including western blotting, IHC, immunoprecipitation, and indirect immu-

nofluorescence are summarized in S4 Table.

Cell proliferation and anoikis assays

Control and treated CRC cells were seeded onto 96-well plates to assess proliferation. Fold-

changes in the number of cells were measured every day for 5 days using a cell proliferation

assay kit (CCK-8; Dojindo, Kumamoto, Japan) on a microtiter plate reader adjusted to mea-

sure absorbance at 450 nm (Tecan, Melbourne, Australia). For the anoikis assay, 1 × 106 cells

were cultured on 6-well ultra-low attachment plates and normal culture plastic plates (Corning

#3471 and #3516, Tewksbury, MA, USA) for 24 h. Suspended and adherent cells were har-

vested to measure apoptosis on a flow cytometer (Becton Dickinson, Franklin Lakes, NJ, USA)

using Annexin V.

Invasion assay and gelatin zymography

The transwell cell invasion assay measures both chemotaxis and invasion of cells through

extracellular matrix [9]. Control and treated CRC cells (2 × 105 cells each) were seeded onto

the upper chamber of 24-well culture plates using a Biocoat™ Matrigel invasion chamber (BD

Biosciences, San Jose, CA, USA). The 3T3-fibroblast-conditioned medium was placed in the

lower chamber as a chemoattractant. After incubation at 37˚C for 24 h, adherent cells were

counted in three different fields under a light microscope (×100), and all assays were per-

formed in triplicate. Matrix metalloprotease (MMP)-2 and MMP-9 activities in the culture

media were examined by gelatine zymography as previously described [10].

Statistical analysis

The demographic and biological features of patients with and without systemic recurrence

were compared using Fisher’s exact test or an unpaired Student’s t-test. Differential mRNA

expression and cellular activity were compared between the two groups using the Mann-Whit-

ney u-test. An adequate survival analysis could not be performed in our training cohorts

according to disproportionate tumor stages and treatment modality; therefore, the public data-

base of the French Ligue Nationale Contre le Cancer (CIT cohort, GSE39582, n = 566) was

used (S5 Table). To calculate the best cutoff for the expression of each gene, a receiver operat-

ing characteristics analysis was performed in which the optimal cutoff value was determined as

the expression with the highest sensitivity and specificity. Recurrence-free survival (RFS) was

compared using the Kaplan-Meier method with the log-rank test. Statistical significance was

assigned when the p-values were<0.05. All calculations were performed using SPSS software

(ver. 21, SPSS Inc., Chicago, IL, USA).

Results

Identification of six genes associated with LVI and PNI

The 117 recurrence-associated genes identified based on the cutoff of log2 TPM of mean values

were compared according to LVI and PNI status in the initial 130 patients. LVI was closely

associated with the expression of OAS2 (p = 0.009), whereas PNI correlated with GSN (p =

0.029), UDP1A6 (p = 0.004), PALMD (p = 0.003), SNCG (p = 0.004) and HSPB6 (p = 0.002)

(Table 1).
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GSN and OAS2 are implicated in CRC cell proliferation, anoikis, and

invasion

The proliferative activities of the six molecules identified were measured in the two clones of

CRC cells overexpressing GSN or OAS2 (Fig 2). The proliferation of GSN-overexpressing

LoVo cells increased significantly in a time-dependent manner between days 4 and 5

(p< 0.001) compared with that of control cells, whereas OAS2-overexpressing RKO cells and

Table 1. Six selected genes associated with lymphovascular invasion or perineural invasion.

Genes LVI, no of >mean mRNA expression PNI, no of >mean mRNA expression

– vs. + OR 95% CI p-valuea – vs. + OR 95% CI p-valuea

UDP1A6 34/85 vs. 17/45 0.911 0.433–1.914 0.852 45/96 vs. 6/34 0.243 0.092–0.64 0.004

PALMD 28/85 vs. 17/45 0.236 0.582–2.626 0.699 26/96 vs. 19/34 3.41 1.516–7.689 0.003

SNCG 31/85 vs. 18/45 1.161 0.553–2.439 0.708 29/96 vs. 20/34 3.3 1.468–7.42 0.004

HSPB6 30/85 vs. 16/45 1.011 0.475–2.153 1 26/96 vs. 20/34 3.846 1.697–8.715 0.002

GSN 39/85 vs. 20/45 0.944 0.456–1.951 1 38/96 vs. 21/34 2.466 1.104–5.507 0.029

OAS2 43/85 vs. 12/45 0.355 0.162–0.779 0.009 40/96 vs. 15/34 1.105 0.502–2.434 0.842

LVI, Lymphovascular invasion; PNI, perineural invasion; OR, odds ratio; CI, confidence interval.
aAll parameters were compared using Fisher’s exact test with two-sided verification.

https://doi.org/10.1371/journal.pone.0202856.t001

Fig 2. Proliferative activities of six molecules in overexpressing (left) and underexpressing (right) cells. SiNC, negative control siRNA. �p< 0.01–

0.05; ��p< 0.001.

https://doi.org/10.1371/journal.pone.0202856.g002
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UGT1A6-overexpressing HCT116 cells showed reduced proliferation rates during the same

period (p< 0.001–0.005). The opposite proliferation pattern was observed in GSN- and

OAS2-underexpressing CRC cells. Anoikis resistance, which mediates the survival of cancer

cells when they detach from the extracellular matrix and disseminate into the circulation, was

examined next (S3 Fig). The relative apoptosis of suspended GSN-overexpressing cells

decreased significantly by 40% at 0–24 h in GSN-overexpressing cells compared with that in

control cells (p� 0.001). The relative apoptosis rates did not differ between OAS2-overexpres-

sing RKO cells and control cells. In invasion assays, GSN-overexpressing LoVo cells showed

>2-fold greater invasiveness than control cells (p< 0.001–0.005), whereas OAS2-overexpres-

sing RKO cells showed significantly reduced invasiveness (p< 0.001–0.005) (Fig 3). The oppo-

site pattern was observed in GSN- and OAS2-underexpressing CRC cells. The remaining four

molecules did not show significant differences in invasiveness between the corresponding

overexpressing and control cells.

Invasive nature of CRC cells mediated by GSN and OAS2

Invasive property of GSN and OAS2 was further assessed by gelatine zymography using

MMP2 and MMP9 (Fig 4). GSN-overexpressing cells showed a marked increase of the active

form of MMP9 (>80-fold, p< 0.001) and the active form of MMP2 (p< 0.05), whereas a

reduced expression of active MMP2 was identified in GSN-underexpressing cells (p< 0.001).

Fig 3. Invasive activities of six molecules in overexpressing (left) and underexpressing (right) cells. SiNC, negative control siRNA. �p< 0.01–0.05;
��p< 0.001.

https://doi.org/10.1371/journal.pone.0202856.g003
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OAS2-underexpressing cells showed a significant increase in pro-MMP2 activity concurrent

with an inversely proportional increase in the active form of MMP2 (p = 0.007 and 0.002,

respectively). IHC analysis of a separate set of tumor tissues from 20 patients (10 patients each

with and without recurrence) detected cytoplasmic expression of GSN and OAS2 (S6 Table).

The invasive front (arrow) showed stronger GSN immunoreactivity than the central tumor in

seven patients (35%; 4 patients with recurrence and 3 patients without recurrence), whereas

OAS2 immunoreactivity was not different between invasive front and central tumor regardless

of recurrence (S4 Fig).

Colocalization of GSN and Nm23-H1

The regulation of GSN activity was further examined using the Nm23-H1 gene by immuno-

blotting, immunoprecipitation and indirect immunofluorescence. An anti-GSN monoclonal

antibody was used to pull down endogenous and overexpressed GSN. The Nm23-H1–GSN

complex was detected in GSN-overexpressing cells and control cells by immunoprecipitation

(Fig 5A). Immunofluorescence analysis confirmed the colocalization of the two proteins in the

perinuclear and cytoplasmic compartments of GSN-overexpressing cells, whereas colocaliza-

tion was minimal in control cells (Fig 5B).

Fig 4. Invasive activities of GSN- and OAS2-overexpressing (left) and -underexpressing (right) cells measured by gelatine zymography. SiNC,

negative control siRNA. �p< 0.01–0.05; ��p< 0.001.

https://doi.org/10.1371/journal.pone.0202856.g004
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GSN and OAS2 are associated with epithelial-mesenchymal transition

(EMT)

The expression of EMT molecules was examined in GSN- and OAS2-overexpressing and

-underexpressing CRC cells in comparison with vector-treated cells (Fig 6A). The expression

of E-cadherin, β-catenin, claudin-1 and snail was lower, whereas that of N-cadherin and ZEB1

was higher, in GSN-overexpressing LoVo cells than in control cells. Phospho-Akt was concur-

rently increased in GSN-overexpressing LoVo cells compared with control cells. E-cadherin,

β-catenin, Zo-1 and snail levels were higher in OAS2-overexpressing RKO cells than in control

cells, whereas those of N-cadherin and ZEB1 were decreased. VEGFD expression was lower in

OAS2-overexpressing RKO cells than in control cells. A reverse pattern was observed in GSN-

and OAS2-underexpressing cells.

GSN and OAS2 regulate expression of ATG molecules

Downregulation of BECN1 and LC3 is associated with metastasis of CRC cells [11]. To further

elucidate the role of GSN and OAS2 in CRC metastasis, we examined the expression changes

of autophagy-related genes that could be involved in the regulation of metastasis in GSN- and

OAS2-overexpressing cells (Fig 6B). Several autophagy-related proteins including ATG5-12,

ATG6/BECN1, ATG7 and ATG101 were downregulated in GSN-overexpressing LoVo cells.

In addition, the accumulation of p62, a substrate of autophagic degradation [12], suggested

that autophagic flux was reduced in GSN-overexpressing LoVo cells. In contrast to the pattern

in GSN-overexpressing cells, the levels of ATG5-12, ATG6, ATG7 and LC3II accumulation

Fig 5. GSN immunoreactivity with Nm23-H1 was examined by immunoblotting/ immunoprecipitation (A) and indirect immunofluorescence (B).

An anti-GSN monoclonal antibody was used to pull down the endogenous and overexpressed GSN. As GSN is exclusively observed in the

cytoplasm, the GSN in this study indicates isoform 2.

https://doi.org/10.1371/journal.pone.0202856.g005
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were increased in OAS2-overexpressing RKO cells, indicating that ectopic expression of OAS2

promoted autophagy activation in CRC cells.

GSN and OAS2 mRNA expressions predict disease-free survival

The value of GSN and OAS2 mRNA expression for predicting recurrence was determined

by examining RFS rates in the CIT cohort (Fig 7). The CRC samples were divided into two

groups according to the cutoff values representing the maximal level of sensitivity multiplied

by specificity (GSN = 4.5182 and OAS2 = 3.3402). The 5-year RFS rates were significantly

greater in the GSN underexpression group than in the overexpression group (73.6% vs. 64.7%,

p = 0.038), whereas patients with OAS2 overexpression had a greater RFS rate than those with

Fig 6. A. Immunoblotting of epithelial-mesenchymal transition (EMT) and pathway-related molecules in GSN- and OAS2-overexpressing (left

columns) and -underexpressing (right columns) cells. B. Immunoblotting of autophagy-related molecules in GSN- and OAS2-overexpressing

cells. SiNC, negative control siRNA.

https://doi.org/10.1371/journal.pone.0202856.g006
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underexpression (73.4% vs. 63.7%, p = 0.01). Survival outcomes according to tumor stage con-

firmed significant differences between the two groups of GSN expression (p = 0.021 for stage

II patients; p = 0.027 for stage III patients), and showed a trend toward better survival rates in

the OAS2 overexpression group than in the underexpression group.

Discussion

A total of 117 genes differentially expressed between CRC patients with and without systemic

recurrence were initially selected, minimising false discovery. These gene sets were further nar-

rowed down to six genes according to the criteria of their correlations with LVI and PNI. The

findings of proliferation and invasion assays led to the selection of GSN and OAS2 as potential

molecules related with systemic recurrence of CRC via PNI and LVI, respectively.

In the present study, GSN strongly promoted cellular proliferation and invasion in GSN-

overexpressing cells, whereas the opposite pattern was observed in underexpressing cells. GSN

is an actin-modulating protein with diverse biological functions associated with tumorigenesis

and progression, including differentiation, apoptosis, proliferation, invasion and migration

[13]. However, GSN has a dual function as tumor suppressor or promoter [14,15]. Gelatine

zymography is used to measure MMP activity, particularly that of the active forms of MMP2

Fig 7. Recurrence-free survival (RFS) was compared between GSN and OAS2 mRNA-overexpressing and–underexpressing tumors in the

CIT cohorts (GSE39582, n = 566).

https://doi.org/10.1371/journal.pone.0202856.g007
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and MMP9, which play a crucial role in the degradation of the basement membrane and extra-

cellular matrix [16,17]. We consistently found a marked upregulation of active MMP9 and a

partial increase of active MMP2. GSN immunoreactivity was more prominent at the invasive

front than in the central tumor in approximately 1/3 of tissue samples, indicating individual

susceptibility to GSN-mediated invasion.

We further examined the regulatory molecules involved in GSN activation. Nm23 inhibits

molecules and signalling pathways associated with tumor invasion such as MMP-2 and the

MAPK and TGF-β pathways [17,18]; however, the protein interactions involved remain

unclear. A recent study demonstrated that Nm23-H1 inhibits the motility-promoting effects of

GSN, consistent with its abrogation of actin-severing abilities [15]. We found a strong colocali-

zation of the two proteins in the perinuclear and cytoplasmic compartments of GSN-overex-

pressing cells, whereas minimal colocalization was detected in control cells. Taken together,

these findings suggest that PNI-associated GSN may promote chemotactic invasion by inter-

acting with Nm23-H1, maintaining anoikis resistance.

OAS2 overexpression is reported in patients with inflammatory, autoimmune and malig-

nant diseases, although many of its biological functions remain to be clarified [19,20]. In the

present study, OAS2-overexpressing cells consistently showed reduced proliferation and inva-

sion compared with those in control cells, whereas OAS2 underexpressing cells showed the

opposite pattern. A previous study using murine pancreatic β-cells reported that OAS2 overex-

pression inhibited cell proliferation [21].

Epithelial cancer cells undergoing EMT have an invasive or metastatic phenotype [22]. Loss

of E-cadherin expression is a key event during EMT in contrast with proteasome-mediated

degradation of β-catenin [23,24]. In the present study, GSN downregulated E-cadherin, β-cate-

nin, claudin-1 and snail, whereas it upregulated N-cadherin and ZEB1, and OAS2 had the

opposite effects. Tumor cells showing a cadherin switch (loss of E-cadherin and gain of N-cad-

herin expression) exhibit aggressive metastatic phenotypes [25]. Loss of the tight-junction pro-

tein claudin-1 is associated with aggressive cancer behavior, deeper tumor invasion, advanced

tumor grade, lymph node metastasis, PNI, LVI and recurrence [26]. E-cadherin underexpres-

sion and ZEB1 overexpression are correlated with poor survival in CRC patients [23]. Addi-

tionally, we found that phospho-Akt was upregulated in GSN-overexpressing cells compared

with control cells. Activation of PI3K/Akt signalling represses E-cadherin transcription by sta-

bilising transcriptional repressors including snail and slug, promoting growth and progression

of CRC [27]. In the lymphangiogenic pathway, the VEGFC–VEGFR3 and VEGFD–VEGFR3

axes are required for the dissemination of cancer cells to systemic lymph nodes and distant

organs [28]. VEGFD expression was significantly reduced in OAS2-overexpressing cells, and

VEGFD is an independent poor prognostic indicator in CRC patients [29].

Accumulating evidence indicates that autophagy defects are closely correlated with malig-

nant phenotypes such as metastasis and poor prognosis in various cancer cells [30,31]. Con-

sistent with these results, we found that overexpression of GSN downregulated several

autophagy-related proteins and suppressed autophagy activation. A recent study showed that

overexpression of GSN increases the levels of reactive oxygen species (ROS) by inhibiting Cu/

Zn-superoxide dismutase activity [32]. In addition, downregulation of autophagy-related

genes promotes metastasis by inducing ROS production and HIF-1α expression [31,33]. In the

present study, overexpression of OAS2 promoted autophagy, as demonstrated by the upregu-

lation of a subset of autophagy genes. Extensive evidence supports the role of autophagy in the

regulation of immune responses and cancer immunotherapy [34], whereas the role of OAS2 in

autophagy remains unknown. Taken together, the present findings suggest that GSN and

OAS2 repress and promote autophagy, respectively, and partly contribute to CRC progression

and metastasis.
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The 5-year DFS rates in the CIT cohort were significantly greater in the GSN-underexpres-

sing and OAS2-overexpressing groups than in the opposite groups. A better survival outcome

was also confirmed in the GSN-underexpressing group, as demonstrated by the respective

stages (II and III). There are few reports on survival outcomes associated with GSN overex-

pression, although poor survival was reported in non-small cell lung cancer and osteosarcoma

[35,36].

In conclusion, we showed that PNI-associated GSN induces cell proliferation and migration

by promoting invasion into the extracellular matrix, whereas LVI-associated OAS2 suppresses

these biological activities. The opposite functions of these two molecules may be mediated by

EMT and autophagy flux. GSN and OAS2 were poor and favorable prognostic factors, respec-

tively, in CRC patients. Although these findings were derived from strict criteria in terms of

gene selection and functional validation, the present study had limitations that may affect the

conclusions reached. Four genes that may be associated with recurrence were not included

because they did not possess sufficient proliferative and invasive properties. In addition, sur-

vival outcome could not be analyzed in our cohort because of the heterogeneous population in

terms of recurrence and treatment. Nevertheless, the present results suggest the potential value

of GSN and OAS2 as predictors of recurrence or therapeutic targets, and these findings should

be validated in the future in clinical studies.
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