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Traumatic brain injury (TBI) is the largest cause of death and disability of persons under

45 years old, worldwide. Independent of the distribution, outcomes such as disability

are associated with huge societal costs. The heterogeneity of TBI and its complicated

biological response have helped clarify the limitations of current pharmacological

approaches to TBI management. Five decades of effort have made some strides in

reducing TBI mortality but little progress has beenmade tomitigate TBI-induced disability.

Lessons learned from the failure of numerous randomized clinical trials and the inability

to scale up results from single center clinical trials with neuroprotective agents led to the

formation of organizations such as the Neurological Emergencies Treatment Trials (NETT)

Network, and international collaborative comparative effectiveness research (CER) to

re-orient TBI clinical research. With initiatives such as TRACK-TBI, generating rich

and comprehensive human datasets with demographic, clinical, genomic, proteomic,

imaging, and detailed outcome data across multiple time points has become the focus

of the field in the United States (US). In addition, government institutions such as the

US Department of Defense are investing in groups such as Operation Brain Trauma

Therapy (OBTT), a multicenter, pre-clinical drug-screening consortium to address the

barriers in translation. The consensus from such efforts including “The Lancet Neurology

Commission” and current literature is that unmitigated cell death processes, incomplete

debris clearance, aberrant neurotoxic immune, and glia cell response induce progressive

tissue loss and spatiotemporal magnification of primary TBI. Our analysis suggests that

the focus of neuroprotection research needs to shift from protecting dying and injured

neurons at acute time points to modulating the aberrant glial response in sub-acute

and chronic time points. One unexpected agent with neuroprotective properties that

shows promise is transplantation of neural stem cells. In this review we present
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(i) a short survey of TBI epidemiology and summary of current care, (ii) findings

of past neuroprotective clinical trials and possible reasons for failure based upon

insights from human and preclinical TBI pathophysiology studies, including our group’s

inflammation-centered approach, (iii) the unmet need of TBI and unproven treatments

and lastly, (iv) present evidence to support the rationale for sub-acute neural stem cell

therapy to mediate enduring neuroprotection.

Keywords: traumatic brain injury, inflammasome, pyroptosis, neural stem cell, cell transplantation

INTRODUCTION

TBI is a critical public health problem and one of the leading
causes of death and disability around the globe (1–5). The
World Health Organization (WHO) and the World Bank
estimate that 69 million (95% CI 64–74 million) individuals
suffer from TBI every year, with Southeast Asian and Western
Pacific regions experiencing the greatest overall burden (6). A

recent estimate of the Global Incidence of TBI puts it at ∼939

cases per 100,000 people each year with 79% being mild TBI.
The calculated incidence of TBI in the Americas (including
United States (US) /Canada) is 1,299 cases per 100,000 people
each year. The calculated incidence for Latin America is about
909 per 100,000 people each year (7). Worldwide about 90%
of all TBI-related deaths occur in developing countries (8).
In 2016, road traffic injuries were among the three leading
causes of death from injuries independent of gender. The
economic status (a surrogate for investment in health care,
trauma centers, and road safety) of the country rather than
its global location appear to influence trauma outcomes. For
example, in the poorest country in the Western Hemisphere,
road traffic accidents accounted for >40% of TBI incidence (9).
Similarly, African and Eastern Mediterranean regions are above
the global average while the rest are on par or below (6, 10).
Within the US, road traffic accidents have been on the decline

and apart from age related vulnerability to falls, firearm injury
has become an increasingly serious problem (11, 12). Overall,

TBI affects 1.7 million people in the US with ∼50,000 fatalities

annually. Timely and aggressive management of acute trauma
patients has lowered the fatality rate but does not eliminate the
socioeconomic consequences of TBI (13–17). The annual cost
of TBI in the US is estimated to be between $168 billion in
medical spending and $223 billion in work losses (18). Globally
it is estimated at $400 billion (19). Despite the outpouring of
resources for TBI management and research, 5.3 million TBI
patients in the US continue to live with disabilities, a consequence
that is independent of injury severity (20). Improved clinical
care has led to increased post injury survival, while return-
to-work has remained static for the past five decades (21–
24). The current clinical management of severe TBI exploits
the limits of physiological interventions and addresses issues
mainly at the systemic level and sometimes at the cellular
and biochemical levels but rarely at the subcellular organelle
dysfunction level. As an example, TBI induced mitochondrial
dysfunction has remained intractable (25). Consequently, TBI
survivors experience the full wrath of secondary mechanisms

(26–30). This “secondarymechanism fueled” histopathology seen
in human TBI is recapitulated with preclinical TBI models (31–
36) and offers an opportunity to test interventions.

CURRENT TBI TREATMENT

The Brain Trauma Foundation (BTF), a non-profit group
of TBI expert clinicians, has dictated the management of
severe TBI since its establishment in 1996 (37, 38). Since that
time, there has not been much change in the treatment of
TBI despite a better understanding of the destructive events
inherent to the disease process. Though adherence to these
guidelines decreased overall healthcare costs and improved
patient survival (39, 40), the latest fourth edition offers no class
I and few class II recommendations in regards to severe TBI
management. The major focus of current neurointensive care
is (i) metabolic stabilization of the patient, (ii) prevention of
further deterioration, and (iii) facilitation of “spontaneous” brain
recovery. Along with prompt neurosurgical interventions when
warranted, optimizing hemostasis, oxygenation, ventilation,
temperature, blood pressure, blood glucose, and acute seizure
prophylaxis increased positive outcomes after severe TBI (38,
41, 42). Contrary to previous guidelines, a Glasgow Coma Scale
(GCS) of lower than 5 is no longer a contraindication to surgery
because of advances in modern surgery and the neurointensive
care unit which have improved survival of these patients (43,
44). Early management and proper monitoring of parameters
such as intracranial pressure and sodium levels have limited
certain types of secondary brain injury (42, 45). Compliance
with BTF guidelines is proportional to the strength of evidence
(46). For implementation of an efficient trauma system in
under-privileged areas, the organization of low cost resources
such as trauma registries are required (47–50). For example,
Latin American neurosurgeons have advocated for improving
clinical research methodologies and topics in the region (51),
to better understand implications and relationships between
intervention and outcomes. Aggressive surgical therapy seems
to be an option for improving survival even in penetrating
TBI (PTBI) (48) in developed countries. Intensive critical care
management and less aggressive surgical therapy based on the
military experience acquired during the 1970’s war in Lebanon
also produces favorable outcomes especially in pediatric and
adult severe TBI (52, 53). Severe TBI patients are treated
with a combined medical-surgical approach, managed initially
in the intensive care unit (ICU) with neuromonitoring (54,
55), in conjunction with BTF “living” guidelines (updated to
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incorporate the findings of randomized clinical trials (RCT), the
gold standard for proving the efficacy of new treatments) (37,
38, 56). The next section revisits a few trials and identifies TBI
pathophysiological processes that may have led to their failure.

CAN INSIGHTS INTO TBI
PATHOMECHANISM EXPLAIN FAILURE OF
PAST NEUROPROTECTION TRIALS?

Primary injury, which occurs at the time of impact, includes
tissue laceration, cerebral contusion, axonal damage and
hemorrhage. Following hospital care, TBI patients can also
remain disabled, rendering them worse off which led to
the conclusion that secondary injury. It was deduced that
secondary insults also significantly influenced outcomes (20, 56,
57). Investigations into the secondary injury process revealed
several concurrent processes with distinct spatiotemporal peaks
occurring within seconds after injury and lasting for years (58,
59). The result is a complex cascade of molecular and cellular
damage, which magnifies the primary injury causing delayed
and remote secondary injury (60–64). Initial descriptions of
secondary mechanisms included clinical parameters necessary
for decision-making, which led to the invention and adoption
of the Glasgow coma scale (GCS) (57, 65). The list now
includes parameters known to influence TBI outcome such as
cerebral blood flow (66), hypoxia-ischemia (67), mitochondrial
dysfunction (25), cerebral metabolism (68), cell death (69),
glutamate excitotoxicity (70, 71), calcium dysregulation, edema
(72) culminating in inflammation, the most enduring of the
secondary damage mechanisms (73–75). Inflammation has also
been linked to depression like symptoms causing depression
like symptoms via failure of neurogenesis (76, 77) in multiple
CNS conditions including TBI. All these processes have been
recapitulated in animals model (Figures 1) (78). In the early
post-traumatic period (seconds to days), injured neurons in
contusions appear swollen, but over time (days or weeks), they
become shrunken and eosinophilic, with pyknosis of the nuclei
(79). Neuronal and glial “apoptosis” was observed after TBI in
human tissue prior to description of the process (69) and later
confirmed (80).

Over the three decades, the improved survival of TBI patients
upon management with Glasgow coma score (21, 65) and the
adoption of cerebral cardiopulmonary resuscitation (CCPR)
protocols based upon quantitation of physiological measures
(81) led to RCTs that attempted to block/reverse the TBI
pathological processes. Such RCTs mostly failed to yield any
class I evidence necessary to improve TBI outcomes. These trials
included surgical interventions, which unlike decompressive
craniectomy (DC) in stroke (82), did not find benefit and had
to be stopped due to adverse effects and low recruitment. For
e.g., both Decompressive Craniectomy in Patients with Severe
Traumatic Brain Injury (DECRA) and Randomised Evaluation
of Surgery with Craniectomy for Uncontrollable Elevation of
Intracranial Pressure (RESCUEicp) showed poor outcome (55).
DECRA was criticized for excluding second tier treatments often
used in “real life,” not representing the “real world population,”
and because the duration of high ICP was too short (83, 84).

Further negating the DECRA findings, a retrospective analysis
revealed benefit of DC and/or barbiturate combination for
refractory intracranial pressure management after severe TBI
(85). More recently another DC trial (with 80% of patients
similar to DECRA and 38% to RESCUE-ICP) showed that the
addition of a barbiturate step following DC was more effective
than DC alone, barbiturate alone or barbiturate before DC
(86). RESCUEicp reported that at 6 months post-decompressive
craniectomy, mortality was lowered but at the cost of higher
rates of vegetative state, and severe disability. The trial evaluating
Early Surgery vs. Initial Conservative Treatment in Patients with
Traumatic Intracerebral Hemorrhage was halted after enrolling
<20% of the planned number (87, 88). The limited success
of surgical intervention is unsurprising as numerous secondary
processes (discussed below) are initiated after primary insult
and cannot be surgically targeted. More perplexing is the failure
of neuroprotective pharmacological RCTs (11, 89–92) including
the ProTECT trial (93) which were based on robust preclinical
data. Therefore, in the next section we explore the possible
reasons that single TBI pathological mechanism targeting RCTs
failed.

Mitochondrial Dysfunction/Calcium
Dysregulation
TBI induced mitochondrial dysfunction is the rate-limiting
step in metabolic restoration of a patient with clinical
management (25, 94, 95). Persistently elevated intracellular
calcium levels play a central role in activating cellular death
mechanisms. Dysfunction of mitochondria (96), production of
pro-inflammatory cytokines, as well as axonopathy (97) are all
related to calcium dysregulation (98). Upon binding of calcium,
the calmodulin-calcineurin complex upregulates the expression
of IL-2 by activating the transcription factor NFAT. IL-2
stimulates the proliferation of T lymphocytes, which then recruit
more immune cells and amplify the process (99). This pathway
is exploited in the treatment of cancer, transplant rejection,
and autoimmune diseases. Insights into what constitutes
mitochondrial dysfunction came from studies in cardiomyocytes.
In these cells low ATP, high calcium caused mitochondrial
dysfunction due to the opening of high conductance pores in
the inner mitochondrial membrane, uncoupling mitochondrial
oxidative phosphorylation and promoting ATP hydrolysis.
Cyclosporine A (CsA) was found to prevent such pore opening in
isolated mitochondria (100) and cells (101). However, prevention
of neurological deterioration was incorrectly attributed to CsA
(102), albeit unknown at that time (103). CsA was found to be
beneficial in transient forebrain ischemia rodent models upon
intracerebral injection provided it could cross the blood brain
barrier (BBB) (104). It was therefore given before and after
the injury to enable entry to the brain during the opening
of BBB and stabilized isolated mitochondria in rodent TBI
brains (105). However, despite safety in humans (106, 107),
the drug failed to meet the OBTT criteria for advancing to
translation (108). This could be in part due to inadequate
dosing or possible adverse effects associated with the vehicle
Cremaphor. The drug also has a short therapeutic window and
needs continuous infusion over the first 3 days post injury to
stabilize the mitochondria (109–112). Recent work with a new
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FIGURE 1 | Local cerebral glucose metabolism after penetrating ballistic-like brain injury (PBBI) (A) is shown as color-coded maps of average local cerebral metabolic

rate for glucose (LCMRglc) at 2.5 h after injury. Each coronal section is a representation of multiple animals within a group at that particular level. Rat brain atlas levels

are given on the left column as millimeters from bregma. Compared with controls (columns 1 and 2) in PBBI (column 3), LCMRglc decreased radially from injury core

into perilesional areas and globally across the entire brain. P-maps of average local cerebral glucose utilization were produced by comparing the values of pixels

corresponding to the same anatomic position across groups. (B) Confocal image of a Fluorojade B (FJB)-stained coronal section at 0.8mm distance from bregma

shows regions with FJB+ cells (circumscribed by white-dotted line). Greater neurodegeneration was observed in the injury core and peri-injury zone in the ipsilateral

than those in the contralateral cerebral cortex. (C) Composite light sheet microscopy image shows ipsi and contralateral hemispheres perfused with fluorescent

(Continued)
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FIGURE 1 | tomato-lectin at 2.5 h post PBBI. Region with injury induced hypoperfusion is circumscribed by white-dashed line. Surface reconstruction renders the

labeled vasculature in 3D. (D) Hypoperfused region overlaps with the 2-deoxy glucose (2-DG) uptake impairment heat map. (E) The incidence of neurodegeneration

was proportional to 2-DG uptake impairment at the injury core but not in regions caudal to the injury core. Fluorojade B (FJB)/LCMRglc ratio decreased from injury

core toward more caudal regions, decreasing maximally at−2.3mm from bregma and plateaued (penumbra). Further details are present in the original article (78).

carrier in gyrencephalic animals is reportedly neuroprotective
(113). A related drug, minocycline, although not tested in
OBTT and initially used for a different purpose i.e., reducing
neuroinflammation via ablation of activated microglia, was
tested in human TBI and found to have no benefits (114)
though the marker of inflammation was reduced. Minocycline,
a well-known antibiotic in the tetracycline family with anti-
inflammatory qualities that include inhibition of NFkB prevents
the transcription of pro-inflammatory cytokines and activation
of M1 microglia (99, 115). Consistent with equivocal data in
rodent TBI (116), a clinical trial using minocycline in chronic
TBI patients (6 to 142 months post TBI) showed reduced
microglial activation but increased neurodegeneration over time
(114). Microglial activation, measured with 11C-PBR28 PET
was reduced after 12 weeks of treatment with minocycline
but plasma axonal neurofilament light levels, a marker of
neurodegeneration, increased and white matter atrophy was
more prominent on MRI (114). This suggests that mitochondrial
function in even activated microglia are necessary to prevent
neurodegeneration, and that there is a need to separate the
anti-inflammatory regenerative properties e.g., phagocytosis and
proinflammatory degenerative properties e.g., pyroptosis that
reside within the same activated microglia, rather than merely
ablating all microglia. It is possible that attempts to reduce
proinflammatory activated microglia via cell ablation does
not mitigate their pyroptosis, an inflammatory process that
causes damage to intact tissue. Instead there may be a need
to ramp up the anti-inflammatory microglia activity (117).
Collectively, preclinical data and the minocycline TBI trial
suggest that non-specifically targeting activated glia through
these corresponding classes of drugs [Consistent with such
data mitochondrial uncoupling agents are also capable of tissue
sparing (118)] is not sufficient for neuroprotection in neither
an acute nor chronic time point when used with certain dosing
regimen.

Calcium is also required for the activation of calpain proteases
that cause the breakdown of the cytoskeleton and the cessation
of axonal transport (97). Neurofilaments and microtubules
accumulate and swelling ensues, forming axonal bulbs that
eventually separate the axon. Years after injury, extensive
axonopathy is associated with atrophy of the brain, expansion
of the ventricles, and premature dementia (119). Of the several
clinical trials that evaluated the effect of the calcium channel
blocker nimodipine in acute severe TBI, only one improved
neurological outcome at 6 months (120). However, subgroup
analyses from failed studies revealed that the patients with
evidence of subarachnoid hemorrhages on CT benefited from
the drug (121). Nimodipine is now widely used in patients with
SAH from traumatic and non-traumatic etiology as vasospasm
prophylaxis.

Glutamate Excitotoxicity
Another contributory mechanism to TBI is a surge of excitotoxic
amino acids, primarily glutamate, that occurs which causes
irreparable disturbances in ion fluxes (71). Binding of glutamate
to the N-methyl-D-aspartate (NMDA) receptor results in
depolarization of neurons, followed by a massive influx of
calcium, and efflux of (71, 122). Loss of GABAergic inhibition
(possibly due to higher numbers of GluR3 subunit containing
but GluR2 subunit depleted AMPA receptors which allow influx
of calcium mediating greater vulnerability to excitotoxicity),
and downregulation of astrocytic glutamate transporters which
allow excitatory neurotransmitter accumulation in the synapse
culminating in neuronal and glial (oligodendrocyte) cell death
(123, 124). The integrity of GABAergic inhibition needed to
contend with excitotoxicity may be compromised by reduced
glutathione activity. Glutathione activity was reduced in a rodent
model of TBI (125), and increased super oxide production
decreased parvalbumin expression in parvalbumin (PV+)
GABAergic cells (126). PV+ cells have dendritic arborizations
receiving fast converging excitatory inputs (127–130) as reviewed
earlier (131) and are endowed with a fast spiking phenotype
(132). Higher cognitive functions such as perception (133),
and the deterrence of epileptiform activity (134, 135) is
contingent upon reliable PV+ cell mediated inhibition. As
such, pharmacological disruption of glutamatergic signaling
onto fast spiking parvalbumin GABAergic cells disinhibits
the circuitry mediating gamma oscillations which facilitate
information storage and transfer (136). Promising preclinical
results with magnesium blockade of the neuronal NMDA
receptor (70), did not translate into neuroprotection in clinical
trials, in part due to narrow therapeutic windows, adverse
side effects, and interference with normal electrical activity
of the brain (11, 19, 90, 137). Glutamate NMDA receptor
antagonists (competitive receptor antagonists, ion channel
blockers, and glycine antagonists)—such as selfotel, aptiganel,
eliprodil, licostinel, and gavestinel—failed to show efficacy in
clinical trials of stroke or traumatic brain injury. Deficient
properties of the molecules used in human trials or inappropriate
design of clinical studies may have contributed to failure. It
is possible that excitoxicity kills inhibitory GABAergic cells
(such as hippocampal parvalbumin neurons) due to their
higher amounts of GluR3 containing and GluR2 lacking AMPA
receptor subunits than glutamatergic neurons, as mentioned
above. The clinical NMDA antagonists dose then targets only
the glutamatergic neurons, oligodendrocytes, and astrocytes
impairing brain metabolic capacity. An alternative hypothesis
suggests that glutamate may be involved in the acute neuro-
destructive phase immediately after traumatic or ischaemic injury
(excitotoxicity), but later, is required for normal physiological
functions except during spreading depolarizations (138). Thus
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blockade of synaptic transmission mediated by NMDA receptors
may hinder neuronal survival (139). Ikonomidou speculated that
these drugs could be useful if used just prior to a TBI event, akin
to an unexpected decreased in TBI related mortality in alcohol
and methamphetamine abusers (140, 141), despite neurotoxicity
of the abused substance (142). It remains to be seen what role
such drugs can play in TBI management.

Hyperglycolysis
Human brain normally uses glucose as the sole substrate and
due to lack of fuel stores; the brain requires a continuous
supply. Seymour Kety and Carl Schmidt introduced the first
quantitative measurements of human, whole-brain blood flow
and metabolism (143). Kety, Sokoloff and their colleagues noted
that, while the human brain is only 2% of the body weight,
it accounts for 20% of the body’s energy consumption. Their
technique laid the foundation for studies of brain metabolism
in terms of rates of glucose and oxygen consumption (144).
When the technique was applied to TBI, both cerebral metabolic
rate of oxygen (CMRO2) and cerebral metabolic rate of glucose
changes (CMRO2) were evident (66, 145). During the first 6
days after moderate or severe TBI, CMRO2 and arterial lactate
levels are the strongest predictors of neurologic outcome (146).
Relative to the impaired glucose uptake in the TBI brain, some
regions exhibited a high level of glycolysis. This process called
“hyperglycolysis” is defined as an increase in glucose utilization
two standard deviations above the normal. Hyperglycolysis is
thought to be mediated by the release of catecholamines in
response to injury to meet increased energy demand upon cells
to drive pumping mechanisms in order to restore membrane
ionic balance (147). In a study of 28 patients, Hovda et al.
reported that hyperglycolysis was observed in 56% of patients
on fluorodeoxyglucose-positron emission tomography (FDG-
PET within the first week of injury and persisted for several
weeks (148, 149). In the context of TBI, it is not clear which
cells are undergoing hyperglycolysis. Lactate accumulation in the
injured brain can stem from neuronal mitochondrial dysfunction
(150) and/or due to massive influx of lactate from peripheral
tissues (151). In turn, elevated lactate levels contribute to
pan necrosis (plasma membrane damage, cerebral edema, BBB
permeability and overall cell breakdown) (152). In preclinical
(153) and clinical studies (149) of TBI, hyperglycolysis and
related metabolic crisis (non-ischemic high lactate) increased
the incidence of spreading depolarization (138), seizures (154)
and were associated with poor outcomes (148). Misled by
an “insufficient fuel” concept, glucose supplementation was
explored in preclinical studies but surprisingly turned out to
be harmful (155–157). However, as in the case of mild TBI,
mere fasting was found to be neuroprotective (158). Accordingly,
there is no consensus on glycemic control after TBI. Novel
metabolic imaging techniques (159) or combination of metabolic
studies and neuromonitoring with imaging will be key to gaining
insights into the TBI metabolic crisis (94, 138, 150, 154). In
three clinical trials, intensive insulin therapy—when compared
to conventional insulin therapy—consistently increased the risk
of hypoglycemia in moderate to severe TBI patients and failed
to decrease mortality at 6 months (160–162). Among these

studies, only Yang et al. reported better neurological outcome,
measured with Glasgow Outcome Scale (GOS), at 6 months.
Supply-demandmismatch, generated from increasedmetabolism
in the setting of decreased cerebral blood flow (CBF), provokes an
energy crisis that promotes further damage (94).

This led to the search for alternative substrate to improve
cellular metabolism. Ketogenic diet (KD) via induction of
ketosis is known to increase cerebral metabolism of ketones.
Age-dependent neuroprotection after TBI in part could be due
to younger animals achieving significant β-hydroxybutyrate
levels earlier than adults do. In both juvenile rats subjected to
weight drop model and adolescent rats to cortical contusion
injury (CCI), KD resulted in decreased brain edema, cytochrome
c release, apoptotic and oxidative stress marker expression,
mitochondrial calcium loading, improved cellular energetics,
increased expression of brain-derived neurotrophic factor,
smaller contusion volumes and better motor, and cognitive
performances. Ketosis mediated by fasting or calorie restriction
was also neuroprotective in adult rats with TBI. One of the
prominent mechanisms of KD includes inhibition of glycolysis
(and subsequently dependent proinflammatory cytokine
synthesis), thus lowering inflammation and upregulating
bioenergetics via mitochondrial biogenesis (163). At the
organelle level a ketogenic diet was found to reduce onset of
seizures by preventing the opening of mitochondrial membrane
permeability transition pores (164) effectively acting as a
neuroprotective uncoupling agent (165).

In contrast to the beneficial effects of ketone metabolism,
poor nutritional support can exacerbate TBI (166). Currently,
clinical studies are underway to determine the optimal method
to induce cerebral ketone metabolism in the post-injury brain,
and to validate the neuroprotective benefits of ketogenic therapy
in humans (167). Improvements in the understanding of human
brain metabolism (168) led to the documentation of metabolism
perturbations in injured brains (94, 169–171) and the ability to
test if supplementation can bypass these impairments (172).

Hypoxia
In order to maintain its high metabolic activity, the brain
receives a substantial proportion of the cardiac output and
is therefore highly susceptible to hypoxia (173, 174). Under
normal circumstances, a decrease in arterial partial oxygen
tension (pBTiO2) is balanced by increases in cerebral blood
flow (CBF) to prevent cerebral ischemia, sometimes at the
expense of rising ICP (175). In TBI, loss of autoregulation, as
evidenced by concurrent reduction in CBF and pBTiO2, is one
of the mechanisms that exacerbate injury. Hypoxia accelerates
uncoupling of the electron transport chain and mitochondrial
permeabilization, which induces the release of pro-apoptotic
signals, such as reactive oxygen species (ROS) and cytochrome c,
inside the cytosol (96). Leakage of cytochrome c in conjunction
with elevated cytoplasmic calcium activates the caspase cascade,
leading to cell apoptosis. HIF-1α is a constitutively expressed
protein whose activity depends on oxygen availability (176). In
normoxia, HIF-1α is hydroxylated by prolyl hydroxylase (Lee
et al.) then tagged with ubiquitin for degradation in proteasomes
(177). In contrast, hypoxia decreases the activity of PHD and
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HIF-1α is translocated to the nucleus where it binds HIF-1β
and pyruvate kinase M2. This complex induces the transcription
of molecules that stimulate the expression of genes involved
in glycolysis, angiogenesis, neurogenesis and the synthesis of
proinflammatory cytokines (177–179).

Methods to alleviate TBI-induced brain tissue hypoxia
by using blood substitutes, increasing hemoglobin, oxygen
saturation, or oxygen tension are currently part of the TBI critical
care armament. Attempts to improve cerebral oxygenation with
blood substitutes such as perfluorocarbons (PFCs) alleviated
hypoxia in animal models of PBBI (78, 180, 181). However,
clinical translation of this artificial oxygen carrier was deemed
unsafe due to the development of thrombocytopenia, an
abnormality that could be detrimental in TBI patients, which
led to the cessation of the Safety and Tolerability of Oxycyte in
Patients With Traumatic Brain Injury (STOP-TBI) trial (182).
Insights into PFC cellular distribution facilitated its repurposing
to instead identify injury penumbra: perfluorocarbon enhanced
Glasgow Oxygen Level Dependent (GOLD) magnetic resonance
metabolic imaging (183).

Because of the prevalence of anemia in TBI patients and
associated worse outcomes, administration of erythropoietin
(EPO) was evaluated after head injury. The discovery of EPO, a
hormone principally produced by the peritubular interstitial cells
of the kidney, revolutionized the treatment of anemia in chronic
kidney disease patients. Identification of EPO of neuronal
and astrocytic origins and the hormone’s non-hematopoietic
functions (184) have been investigated. Binding to the EPO
receptor prevents apoptosis of mature neurons and enhances
the proliferation of neural progenitor cells (185). Its anti-
apoptotic properties are mediated by the inhibition of pro-
apoptotic molecules -including apoptosis regulators bcl-2-like
protein 4 (BAX) and cytochrome c, and the activation of the
NFKB pathway, which results in the stimulation of the adaptive
immune system cells. EPO also promotes proliferation of the
endothelium and the production of nitric oxide (NO) (185). In
the multicenter international EPO-TBI trial, EPO did not display
neuroprotective effects in patients with moderate to severe TBI
(186, 187). Perhaps EPO-induced inflammatory NO may have
abrogated any beneficial effect as it increased lesion volume after
PBBI (188).

Although, it could seem counterintuitive to use hyperoxia
in TBI (189) (i.e., to avoid reperfusion injury), researchers
found that markedly increasing oxygen (O2) delivery to the
traumatized brain, with hyperbaric oxygen therapy (HBOT) or
normobaric hyperoxia (NBH), could reverse the lack of O2 for
e.g., vascular stenosis (Figure 1) that precipitates cellular energy
failure and subsequent neuronal death. A recently published
review identified eight phase I and phase II clinical trials
evaluating the role of acute and subacute HBOT and/or NBH
in severe TBI patients. Overall, HBOT alone or in combination
with NBH improved physiologic markers of metabolic function
(microdialysate LPR, glycerol, ICP) and decreased long-term
morbidity and mortality to a greater extent than NBH alone or
standard of care (67, 190–192). The “Hyperbaric Oxygen Brain
Injury Treatment” (HOBIT) trial: (193) is a proposed adaptive
clinical trial designed to answer questions about dosage and

safety parameters of HBO2 and to provide important data to plan
a definitive phase III efficacy trial.

Edema
After TBI, edema develops because of cellular dysfunction
(cytotoxic edema) and blood brain barrier (BBB) disruption
(vasogenic edema). Increased permeability of the cell membrane
to Na+ and K+ followed by failure of the Na+/K+ ATPase
pump traps osmotically active molecules inside the cell.
Mechanical destruction of endothelial cells causes the capillaries
to leak a protein-rich exudate into the brain parenchyma.
CBF reduction, glutamate excitotoxicity, osmolar gradients
additionally participate in extending the edematous state and can
contribute to elevations in ICP (194). Different osmotic therapies
(mannitol, hypertonic saline, hypertonic lactate, barbiturate)
have been examined but none have improved long-term
neurological outcome or survival (38, 186). The “BRAIN” trial
tried to exploit the role of the kallikrein-kinin system in TBI
but it was terminated because Anatibant, an antagonist of the
bradykinin B2 receptor, caused more deaths than control 15
days post-injury (195, 196). The kinin family also is known to
have a neuroprotective role via the attenuation of microglial
proinflammatory secretion through actions of prostaglandin E
and microsomal prostaglandin E synthase (197, 198). Bradykinin
receptor B1 but not B2 deficiency protects from focal closed
head injury in mice by reducing axonal damage and astroglia
activation (198, 199). Anatibant may have selectively inhibited
the neuroprotective effects while allowing proinflammatory
signaling to persist leading to poor outcomes. Nevertheless, the
historical failure of acute neuroprotective interventions (11, 114,
137, 200–202) has exposed the limitations of preclinical TBI
models in guiding clinical trials in TBI. Similarly, limitations
inherent in pre-clinical testing such as insufficient rigor in pre-
clinical studies may also have contributed to RCT failure (203).
To offset this two groups have come up a similar suggestion
regarding data reporting in preclinical studies that would help
compare preclinical studies. Use of “delta Score” i.e., summing
the change in outcome that may occur in patients in the placebo
vs. drug-treated groups over time or effect size used to run meta-
analyses are helpful (204, 205). In aggregate, the RCTs failed
as they allow for persistence of dual edged inflammation. To
provide insights into how unmitigated inflammation underlies
progressive tissue loss, our laboratory research uses a rodent
model of penetrating TBI (PTBI). PTBI and TBI secondary
damagemechanism are similar andmay differ only inmagnitude.
Acute and delayed consequences of human PTBI (64, 206–208)
are replicated in Penetrating ballistic-like brain injury (PBBI), a
survivable rat PTBI model (34, 35, 78, 209, 210). We detail the
results from using this model below.

WHY IS THE PENUMBRA VULNERABLE?

Our recent study with rat PTBI showed that the ipsilateral
cortical region at 48 h post injury is replete with activated
microglia (boxed regions in Figures 2A–C) (210). Only the
“penumbra” (yellow highlight in Figure 2D) disappears by
10 weeks post injury (35) while regions more dorsal persist
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FIGURE 2 | Confocal images of free-floating rat brain sections stained with 2-(4-amidnophenyl)-1H-indole-6-carboxmidine (DAPI; blue), ionized calcium-binding

adapter molecule 1 (Iba-1; green), and apoptosis speck-like protein containing caspase-activation and recruitment domain (ASC) or interleukin (IL)-1b (red). Top panels

(A) show whole–brain sections from a representative sham (left) and 10% penetrating ballistic-like brain injury (PBBI) animal 48 h after injury (right). Sections show

(Continued)
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FIGURE 2 | Iba-1+ microglia widely dispersed throughout the brain. White boxes (1–4) in the whole–brain images are shown at 100x magnification in panels below.

ASC immunoreactive cells are absent in sham cortex (box 1), numerous ASC positive cells are present in PBBI perilesional area (box 2), but to a lesser extent in PBBI

intact ipsilateral dorsal cortex (box 3), and absent in contralateral cortex (box 4) (B) Iba-1 and ASC double positive cells are present in the ipsilateral hemisphere. In (C)

Iba-1 and IL-1b co-labeled cells are predominantly present in the ipsilateral cortex. Double positive cells are morphologically large with round/hypertrophied cell bodies

and short processes. Additional details are presented in the original publication (210). By subtracting the traces of the brain sections at 48 h post PBBI from those at

10 weeks post PBBI, the PBBI penumbra (box 2 within yellow highlight) is identified (D). The penumbra (box2) was occupied by highly activated microglia at 48 h post

injury is lost by 10 weeks post PBBI. In contrast, in box 3 microglial were activated to a lesser extent and at 10 weeks post injury such tissue survives.

despite the presence of proinflammatory activated glia (210).
It is possible that a gradient of DAMPS or NAMPs exists
with the high concentration at the injury core gradually
diminishing radially in a tissue architecture dependent manner.
Consistent with this concept, activated microglia in penumbra
surrounding the core region may undergo pyroptosis unlike
microglia in distal regions. Consequently by 10 weeks post injury
the entire penumbra with “critical” levels of DAMPs/NAMPs”
disappears while the regions with sub-critical levels survive.
This data is consistent with human TBI study where molecular
characterization revealed greater numbers of activated microglia
in pericontusion (penumbra) than contusion (211). Hence,
if reversal of penumbra vulnerability changes TBI outcomes,
rescuing the tissue may become a priority.

VULNERABLE TBI EVENTS THAT CAN AND
NEED TO BE TARGETED BY CLINICAL
THERAPY TO SPARE PENUMBRA

Inflammation
Within minutes of injury, damaged cells release damage-
associated molecular patterns (DAMPs)—high extracellular
potassium, adenosine triphosphate (ATP), mitochondrial DNA,
heat-shock proteins (HSPs), high mobility group binding
proteins (HMGB1) molecules, and Amyloid beta. These can
activate an inflammatory response in nearby cells (212, 213).
Consequentially, the assembly of inflammasomes, activation of
complement pathways and local immune cells, and production of
pro-inflammatory chemicals (chemokines, cytokines, ROS, NO)
trigger inflammatory cell death mechanisms (79, 210, 214). The
production of interleukin 1 beta (IL-1β) by activated microglia
peaks 48 h post-injury and favors polarization of microglia into
the pro-inflammatory type.

Broad anti-inflammatory interventions such as hypothermia
(215) or neuropeptide blockade (216) appear to be promising
based on biomarker profiles. The anti-apoptotic and anti-
inflammatory effects of hypothermia have also been investigated
in TBI (217). Use of hypothermia for refractory ICP after TBI
was beneficial in some centers (217). Particularly in China where
three of the four trials had positive effects (acute reduction
in ICP and long-term improvement of neurological deficits
and mortality at 6 months), however all other trials failed to
show similar results (186) e.g., Eurotherm3235 Trial, POLAR
RCT failed to reproduce the benefits and stopped due to
adverse effects. In the Eurotherm trial, titration with therapeutic
hypothermia successfully reduced ICP in participants with TBI
+ ICP of >20 mmHg, but also led to a higher mortality rate
and worse functional outcome (218). Post-hoc subgroup analysis

of the NABIS-HII trial revealed that hypothermia improved
outcomes in patients with evacuated subdural hematomas (219).
The failure of the latest hypothermia trial in TBI (220) provides
insights into the barriers of translating preclinical findings into
human TBI and may unfortunately lead to suboptimal use of this
potentially powerful therapeutic in potentially treatable severe
trauma patients (221). However, anti-inflammation is not the
only consequence of hypothermia, as this approach continues to
remain controversial in TBI due to its risk of altering mortality or
leading to poor outcomes or new pneumonia (222, 223).

Based on anti-inflammatory action in rheumatoid arthritis,
anakinra, FDA approved competitive inhibitor of an interleukin 1
(IL-1) receptor, role of such signaling was evaluated in controlled
cortical impact (CCI), a TBI model in rodents, injured IL-
1R1 null and wild type mice did not differ in respect to
brain lymphocyte numbers (224). In a less sever TBI model,
ablation of ILR1 signaling or exogenous IL-1Ra was sufficient
to reverse TBI induced deficits (225). Both IL1-alpha (IL-1α),
IL-1β signal through the same IL1R. Elevated IL1alpha/IL1 beta
are associated with favorable outcomes after TBI (226, 227). Off
label, use of anakinra for human TBI is reportedly beneficial
(228) in that it shift the microglia to less inflammatory phenotype
(229). Based on the preclinical data the detrimental effects of
IL1R signaling seem to dominate over the beneficial effects
in TBI context hence seeking total IL1R blockade in human

TBI needs to be tested next. Another inflammatory cytokine of
interest is tumor necrosis factor alpha (TNF-alpha), which upon

interacting with TNF receptor 1 but not TNF receptor 2 was
found detrimental in neurodegenerative disorders (230). This

made an FDA approved TNF antagonist Etanercept, an attractive

candidate for decreasing microglia activation after human TBI
(231). However, further studies are needed to achieve selective

blocking of the TNF receptor 1 rather than broad TNF receptor

blockade.
Example of an anti-inflammatory not useful in TBI is

statin. Statins downregulate the expression of vascular adhesion
molecules and chemoattractant molecules, and were thought
to be potential candidates in lowering the infiltration by

immune cells into injured brain. However, in a clinical trial,
administration of rosuvastatin 11 h after injury did not display

any differences in terms of disability (amnesia and disorientation
time) with the control group at 3 months but increased IL-
6 levels were seen 3 days after injury (232). Consistent with

these results, the OBTT study found no beneficial effects of
simvastatin administration over 2 weeks post-TBI using the oral
route of administration in multiple rodent models (233). Statins
are known to inhibit mitochondrial complex III (234) and can

produce myopathy as a side effect (235). Thus, statins possibly
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exacerbate TBI mitochondrial dysfuction (95) which may be the

reason that they failed to provide any benefit.
Although on the surface it appears that since inflammation

after TBI and SCI are mediated by activated microglia
these two pathologies could be identical, there is evidence
to suggest that the extent of mitochondrial impairment (a
measure of inflammation amplification) is different (236), which
becomes apparent with aging. For example, a neuroinflammatory
modulator, FTY720, which was unable to improve lesion size
or functional outcome in both trauma models at either stage,
acute vs. chronic, when given as a single dose (237), improved
neurological outcome when dosed over 3 days as was seen with
CsA (230), and was more effective in SCI even though the
inflammation in SCI is different from that in TBI (238).

While microglia are major effectors of inflammation and
mediated neuronal death, neutrophils are the first peripheral
immune cells to reach the site of injury (239). Over the following
hours to days after trauma, neutrophils infiltrate the CNS
and migrate across the BBB in response to chemoattractants
secreted by the choroid plexus (99). Recruitment of monocyte-
derived macrophages and T lymphocytes then follows. Antibody
blockade of cluster of differentiation (Cd) Cd11d/CD18, a type of
integrin found on both neutrophils and macrophages, reduced
systemic inflammatory response syndrome and improved
neurological outcomes in rodent models of TBI (240, 241).
In contrast to microglia, circulating immune cells such as
neutrophils in TBI only produce short duration inflammation
that resolves in part due to gasdermin (242). It remains to be
shown if this molecule can be exploited to resolve TBI induced
microglial inflammatory response.

The role of the adaptive immune system in TBI is still
unclear. While infiltration of T cells in the lesion site promoted
inflammation in a rat model of SCI, T cell-deficient mice were
found to have poorer outcomes than controls after CNS injury
(243, 244). Though T cells could have neuroprotective function
in TBI, maladaptive response to self-antigens in conjunction with
M1-like microglia action can extend damage and maintain a
chronic state of low-level inflammation (117).

Inflammation modulation could reduce the loss of neurons,
oligodendrocytes, and neural stem cells. In addition, clearance
of debris could help resolve and prevent secondary tissue
loss. This approach has been found to mitigate injury-induced
cognitive decline at 3 weeks post TBI. Inflammation reduction by
suppressing polarization into pro-inflammatory microglia (115,
116), promoting anti-inflammatory microglial activity (245) or
enhancing clearance of apoptotic cells (246) may confer greater
neuroprotection than focusing solely on inhibiting neuronal
death mechanisms. Immunomodulatory therapies for TBI need
to be developed with a goal to guide inflammation toward the
reparative phenotype (99, 247). To better target such therapies,
biochemical and imaging biomarkers can been considered
to quantitate TBI consequences, validate preclinical research
findings, and track effectiveness of therapeutic interventions in
humans(201, 248–254).

PRECONDITIONING PENUMBRA AGAINST
VULNERABILITY TO SECONDARY INJURY

Consequences of TBI are not limited to the immediate results
of primary and secondary injury mechanisms. Years after initial
injury, TBI survivors can develop non-convulsive seizures/post-
traumatic epilepsy (255–257) and progressive brain atrophy
due to “accelerated brain aging” (258–260) that render them
susceptible to further neurodegeneration (261, 262). Recurrent
post-traumatic seizures, or “post-traumatic epilepsy” (PTE), are
highly prevalent in TBI patients with a history of combat and are
a major cause of morbidity in veterans (263). TBI severity, dural
penetration, loss of consciousness, and post-traumatic amnesia
are some of the risk factors that contribute to the development of
PTE (263). In multiple models of TBI, it has been found that the
formation of epileptogenic foci stems from excitatory/inhibitory
neurotransmitter and receptor imbalances and loss of GABAergic
cells (264), and tauopathy (263). Although prevention of
acute seizures with anticonvulsants can manage immediate
glutamate excitotoxicity, PTE tends to be refractory to current
medical treatment (263). Axonal debris generated at impact
(62, 209) are interrogated by microglia as early as 6 h post-TBI
(265). Failure of activated microglia to phagocytose persistent
axonal fragments may lead to development of TBI-induced
autoantibodies (266). The persistence of axonal fragments and
chronic inflammation has been documented several years after
primary injury (207, 259, 267). This suggests that poor clearance
of axonal debris may provoke the chronic inflammation that
underlies neurodegenerative diseases (262). This may be in part
due to the presence of “do not eat me” or the absence of
“find me/eat me” signals, as seen in mice without CD47 (a
ubiquitously expressed surface glycoprotein that provides “do not
eat me” signals) which improved outcomes after TBI compared
to wild type (268). Although it is clear that modulation of
neuroinflammationmay improve outcomes, the pharmacological
and molecular tools needed to achieve this goal remain to be
determined.

Beta-amyloid is another contributor to the long-term
degeneration after TBI. The release of inflammasomes from
activated microglia promotes seeding and polymerization of
beta-amyloid (34, 210, 269) in the synapses (270). The
accumulation of insoluble plaques in the extracellular space
and tau neurofibrillary tangles inside neurons is already known
to precede clinical symptoms of Alzheimer’s disease. Tau
protein deposits are also the hallmark of chronic traumatic
encephalopathy (CTE), another degenerative brain disease
associated with TBI. CTE tends to develop in people with
a history of repetitive mild TBI such as military veterans
and collision sports athletes. Retired players of the National
Football League are three times more likely to die from
a neurodegenerative disorder than matched controls (271).
Similar to PTE, no TBI therapy has been able to address
the neurodegenerative consequences modulated by the chronic
inflammation that lingers years after injury.
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ADULT NEUROGENESIS (REPARATIVE
ENDOGENOUS NEUROGENESIS) AS A
“NEUROREGENERATIVE THERAPY”?

Since the discovery of CNS blast cells/neural stem cells in
mammalian brain in 1989, the ability of these cells to become
neurons became a topic of interest (272). Several lower-
order mammals, reptiles, amphibians, and birds continue to
experience neurogenesis well into adulthood. However, in
adult humans, neurogenesis remains a topic of controversy.
In order to understand the role of endogenous neurogenesis,
it is desirable to consider how development of the cell types
of the brain and the spinal cord occurs. In the mammalian
fetus, NSCs are the fundamental ancestor cells for the central
nervous system (CNS), as defined by their ability to self-
renew and produce all three major CNS cell types: neurons,
astrocytes, and oligodendrocytes (272, 273). In humans, these
predecessor cells are the first neurons observed at 5-weeks after
conception, even before closure of the neural tube which is
lined by the neural stem cells of the ventricular zone (274).
These cells are found in a layer just below the pial surface
of the prospective cortex and migrate tangentially into the
telencephalon (275). The two principal colonies of neural stem
cells so far identified are located in the subventricular zone (SVZ)
and the subgranular zone (SGZ) (276). They give rise to striatal
and olfactory bulb neurons (274, 276), and hippocampal neurons,
respectively.

Because neuronal loss is the single most important
consequence of TBI, efforts to replace neurons have become a
fundamental part of TBI research. In rodents, adult neurogenesis
is robust even after TBI (277–279). In humans, the evidence for
effective reparative adult neurogenesis is controversial, and is
probably insignificant at best (280–282). NSCs persist in adult
human brains and can produce astrocytes but not neurons
(283). Apart from cell death, cell proliferation has also been
observed after TBI. This regeneration raises the possibility of
therapeutic manipulation of multipotent precursors in situ
to repair the injured brain. The poor outcomes after TBI
characterized by marked gray and white matter loss (259) do
not support the notion that proliferating endogenous cells
could replace lost neurons in mammals. However, physiological
markers of neurogenesis and cell proliferation, measured in
tissue samples one to 16 h after TBI, may indicate that the adult
injured brain has the potential to replace lost cells and needs
to be correlated to patients’ outcomes (284). Complicating
this, inflammation also contributes to the apoptosis of neural
stem cells (285) and possibly oligodendrocytes (286) Figure 3.
Providing neurotrophic factors, such as S100B or FGF, seems
to enhance endogenous neurogenesis in experimental animals
and correlates with better cognitive function (287). Failure
to boost endogenous proliferation of NSCs in clinical studies
(288) and the inability to produce mature neurons in vitro
from cultured adult human NSCs reiterate that humans
are incapable of adult neurogenesis (289). Proneurogenic
compounds that have been found to be beneficial in preclinical

TBI (290) as well as other CNS dysfunction models (291–294).

Although the exact mechanism of action for these compounds is

still an area of active research, the effect of proneurogenic
compounds in human TBI remains to be explored. In

contrast, clinical treatments with exogenous, transplanted
NSCs are moving to Phase II trials, for non-TBI indications

(295–300).

ANTI-INFLAMMATORY EFFECTS OF
TRANSPLANT vs. CELL REPLACEMENT
EFFECTS

Several preclinical studies support the hypothesis that TBI-
responsive neuroinflammation is a clinically relevant therapeutic
target; however, few clinical trials target traumatic inflammation
(117). Cell ablation pharmacological inhibition studies (114,
116, 233, 301–305) suggest that neural stem cells (NSCs),
astrocytes, and activated microglia stabilize the brain lesion
and prevent further neurodegeneration. However, unlike NSCs,
reactive astrocytes and activated microglia are also known to
exacerbate TBI (210, 270, 306, 307). It is in this context,
that exogenous NSC transplantation alone may be a means
to reduce neuroinflammation. Anti-inflammatory properties of
mesenchyme-derived stem cells have been extensively reviewed
(308) and their utility in TBI has been described elsewhere (309).
Intra carotid artery delivery of human MSC was in fact found to
be safe in stroke patients (310) as well as ALS (311). See Table 1
for MSC use in clinical trails.

Similar to other chronic inflammatory diseases, addressing
the impaired debris clearance by microglia may be essential in
converting degeneration into regeneration (162, 312). How does
chronic inflammation negatively influence TBI outcomes? As
mentioned earlier, microglia are the main phagocytic cells of the
brain and are responsible in part for ECF microenvironment
homeostasis (313). As shown in Figure 3 following injury,
the accumulation of myelin debris, beta-amyloid, and other
DAMPs could impair microglia phagocytosis and exclusively
activate their proinflammatory phenotype (210, 270, 314).
Recent insights into biochemical differences in myelin between
normal in comparison to injured subjects show how injury
induced autoimmune demyelination may progress (315). This
situation could potentially benefit from cell transplantation.
Transplantation of human fetal NSCs within 24 h of TBI has
been shown to reduce microglial pro-inflammatory activation
(316) and can alleviate post-traumatic cognitive deficits (316–
319). It is not known if such transplantation after PBBI
would produce sustained beneficial effects. Recently, our lab
demonstrated robust and durable engraftment of hNSCs when
transplanted 7–10 days after the injury, in models of PBBI (309)
Furthermore, the FDA has already approved of these cells for
clinical trials in other CNS disorders but not yet in TBI (217, 305,
320).

One of the impediments for the long-term implementation
of stem cell-based therapies is lack of insight into their
mechanism of action (321). However, restorative neuroscience
has been energized following the discovery of NSCs (272),
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FIGURE 3 | A schematic representation shows the normal cellular interactions in the intact brain (left) in contrast to neurotoxic interactions post injury (right). The intact

vasculature (left bottom) is held in place by astrocytic end-feet; astrocytic blood brain barrier keeps immune cells out of the parenchyma but allows diffusion of

glucose. Glucose is taken by neural cells metabolized through glycolysis in cytoplasm and oxidative phosphorylation in mitochondria. High neuronal glutathione levels

(blue arrow) mitigate oxidative damage due to inherent metabolic activity. The multipartite synapses are pruned by microglia, the axons wrapped by myelin from

oligodendrocytes facilitate rapid neurotransmission. Astrocytes soaking up excess glutamate in synapses, which in turns increases glucose uptake from blood.

Normal microglia phagocytose various extracellular debris (including amyloid β) produce by metabolic activity. Aberrant cellular interactions after TBI (right) as

consequence of mechanical forces disrupt the blood-brain-barrier causing leakage of intravascular contents into the brain parenchyma and facilitate invasion of the

CNS with non-resident cells such as RBCs and neutrophils. Initial trauma causes the release of glutamate and other excitatory amino acids and potassium efflux.

Lowered neuronal glutathione levels lead to deceased capacity to inhibit excitatory neurotransmission. Ions with their water shells enter astrocytes swelling the cells

such that end-feet of astrocytes fail to maintain blood barrier or clear synaptic glutamate. Excess glutamate binds NMDA receptors on neurons and oligodendrocytes.

Resulting neuronal depolarization and accumulation of calcium in mitochondria abolishes normal electrochemical gradient required to generate ATP. ATP dependent

ion pump activity is required to work against electrochemical gradient to hyperpolarize neurons. Due to irreversible ionic imbalance membrane integrity is lost,

unraveling the myelin and death of neurons and oligodendrocytes. This process is called “glutamate excitotoxicity” produces the second wave of TBI related cell death

after the primary mechanical injury. Calcium pollution renders mitochondria depolarized, builds up oxidative damage, opening of the permeability transition pore, lipid

peroxidation, cytochrome c release, assembly of caspase dependent proteases, and apoptosis. In addition, with injured axons calpain-induced lysosomal rupture,

cathepsin-induced cytoskeletal proteolysis set into motion the self-destructive axonal degeneration. Hypoxia stabilizes HIF-1α facilitating expression of

pro-inflammatory cytokine genes (IL-1β, IL-18, TNFα). Succinate acts as a signal that positively feeds inflammation. NSC disrupt such feedback and mediate

inflammation resolution by rending microglia anti-inflammatory. Pro-inflammatory cytokines are released in the extracellular environment via pores (ex: IL-1β via

gasdermin D) and spread inflammation to adjacent cells including mitochondrial dysfunction and secondary death of oligodendrocytes, neural stem cells and neurons.

Presence of proinflammatory microglia corrupts astrocytes turning them into agents of neurotoxicity. Transient “eat-me” signals on the surface of neurons activate glial

Phagoptosis leading to further loss of tissue that was otherwise intact at the time of primary injury. Proinflammatory microglia and neurons may undergo pyroptosis or

other inflammatory cell death further spreading the inflammation.

their mitogens (322), their ability to be cultured from adult
rodent brain (323), and embryonic (324) human brains
(289). Recapitulation of human neuronal development
after transplantation of human fetal neural stem cells in
rodent embryos (325, 326) suggests that transplantation of

NSCs could rebuild injured brains by emulating aspects

of CNS development, such as tract forming and target cell

innervation.

Human Neural Stem Cells as Agents of
Neuroprotection After TBI
Successful transplantation of fetal tissue in adult rat brains (327),
led to the first neuroprotective fetal cortical tissue transplants
in TBI rats (328). The source of NSCs was cortical tissue (329–
331). Preclinical studies of TBI showed that transplantation was
acutely neuroprotective but not past 2 weeks post injury. The lack
of neuronal replacement was attributed to robust host immune
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TABLE 1 | MSC trials.

Trial sponsor

(Location)

Disease target Cellular

characteristics

Phase (#

participants)

Response to treatment References

1 Neurogen Brain and

Spine Institute

(India)

Acute TBI Autologous bone marrow

mononuclear cells

Completed (43) BMSC therapy is safe and

effective on patients with severe

TBI complications

NCT02028104

2 The University of

Texas Health Science

Center, Houston

Acute TBI Autologous bone marrow

mononuclear cells

Phase 2b-55 – NCT02525432

(United States)

Acute TBI Autologous bone marrow

mononuclear cells

Completed-25 Treatment is safe and effective

on structural preservation and

the global neuroinflammatory

response

NCT01575470

3 Bioquark Inc.

(India)

Brain death secondary

to TBI

Mesenchymal stem cells Recruiting-20 – NCT02742857

4 Robert W. Alexander,

MD, FICS

Acute TBI (concussion) Adipose-Derived cellular

stromal vascular function

Recruiting-200 – NCT02959294

(United States)

5 SanBio, Inc.

(United States)

Chronic motor deficit

from TBI

SB623 cells: adult

bone-marrow-derived

cells that are transiently

transfected with a

plasmid construct

encoding the intracellular

domain of human

Notch-1

Phase 2-52 Statistically-significant

improvements in motor function,

and no serious adverse events

NCT02416492

6 MD Stem Cells

(United States)

Neurological Disorders Intravenous and

intranasal BMSC

Recruiting-300 – NCT02795052

response. In order to overcome this limitation, researchers
initiated a number of studies, including transplantation of
human neuronal precursors, where experimental subjects
receive immunosuppression (205). One of the mechanisms
of action for hNSC transplants was elucidated in a multiple
sclerosis model. In that study, NSCs appeared to sense the
extracellular succinate that accumulates in the chronically
inflamed CNS and ameliorated neuroinflammation via
succinate-SUCNR1-dependent mechanisms (332). Consistent
with these findings iPSC derived NSC as well as oligo precursor

transplants are reported to spare tissue in rodent spinal cord
injury model (333). Such tissue sparing occurs following
inflammation resolution. As outlined in Figure 4, in the

absence of timely resolution of injury induced activated
microglia, the injury is magnified over time and space producing
progressive increased tissue destruction in part via microglial
pyroptosis (210) and facilitates worse outcomes such as antibody
generation against cellular breakdown products (266) and
neurodegeneration (Figure 5). Neural stem cell transplants
could confer neuroprotection to alleviate such tissue loss and
lead to a desired outcome via inhibiting microglial pyroptosis,
disrupting the succinate based inflammation amplification,
and promoting phagocytosis by surviving activated microglia
(Figure 5). Perhaps all stem cells confer neuroprotection via
efferocytosis (334).

Cell Replacement
Transplanted NSC-derived neurons can integrate and contribute
electrophysiologically in both sham as well as injured rodent
and primate brains (321, 335–339). However, previous studies
have reported limited neuronal replacement after hNSCs
transplantation in rat models of TBI (318). Recently our
lab and others have shown robust and durable engraftment
of hNSCs with delayed differentiation into mature neurons,
for as many as 20% of transplanted cells, up to 16 weeks
in a rodent PBBI model. Nevertheless, their integration into
injured rat CNS and contribution to reversal of TBI induced
motor and cognitive deficits has yet to be fully demonstrated
(309, 340). Assessing electrophysiological properties and their
contribution to amelioration of TBI-induced deficits would
provide crucial mechanistic insight. It is not yet known if it is
possible and/or necessary to guide transplant-derived neurons
to a specific target (such as anterior horn cells, or substantia
nigra) and how this can be done. The use of clinically relevant
neurogenic compounds could be key to assist in targeting the
migration of transplant-derived neurons. In primates with SCI,
researchers have found that transplanted NSI 566 cells can be
harnessed to restore lost function 9 months after grafting by
differentiating into neurons and supportive glia (339). If cell
replacement is indeed achieved it could positively steer outcomes
(Figure 5).
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FIGURE 4 | A theoretical schematic (top) shows evolution of the primary PTBI injury into disability. A PTBI brain schematic focused on inflammatory microglia over

nine regions outlines possible mechanisms underlying magnification of primary injury and spread to remote sites. 1- intact brain tissue, 2-petechiae in injured brain

which perpetuate blood brain barrier compromise, hemorrhage, delayed cell death, 3- a gradient of local DAMPs/NAMPs may combine with circulating inflammatory

mediators (via broken BBB) to recruit and activate microglia in penumbra rendering tissue vulnerable to secondary damage, 4- region with neuronal

apoptosis/pyroptosis and neural stem cell recruitment and apoptotic death., 5- regions of astrocyte destruction and reactive gliosis which stems from 6-Focal injury.

The focal injury turns into a permanent cavity in part due to oncotic cell death and axonal destruction (brown dotted line). 7- Normal surveying microglial acquire

various reversible/irreversible activation states as they travel along the DAMP/NAMP gradient. 8. Irreversibly activated microglia could migrate away from injury core

toward remote deeper regions. 9-Pyroptosis of activated microglia in remote regions connected to injury site (via pathways that were axotomised by injury) may

mediate secondary axotomy and remote neurodegeneration (210, 270).

The current literature suggests that NSC mediated
neuroprotection (332, 333) could be achieved more
easily than cell replacement, especially in severe TBI.
It is true that the incidence of severe TBI is small and
cell therapy to treat will not be appealing to mild and
moderate TBI patients. However, the costs associated
with TBI requiring hospitalization necessitate use of
cell therapy to treat sever TBI (18, 341). Following the
discovery of the mechanistic insights, “the neuroprotective
factor” could be delivered via non-cell transplantation
means even for less severe TBI where cell therapy is not
warranted.

RATIONALE FOR USE OF hNSC TO TREAT
TBI AND GUIDELINES FOR CELL THERAPY

After examining several RCTs and gaining insights into their
failure to confer neuroprotection, (11, 90, 114), identification of
anti-inflammatory mechanisms as leading neuroprotective

agents, the neuroprotective properties sub-acute use of
human NSCs (332, 333, 342)is worthy of exploration in
TBI. NSCs could potentially mitigate secondary damage
by (1) reducing inflammation; (2) promoting regeneration

with appropriate pharmacological interventions (e.g., drugs
promoting neurogenesis such as NSI-189) and rehabilitative

measures; and (3) Slowing down TBI-induced delayed disability.
Accomplishing this set of objectives in itself would be an

important goal of NSC therapy. As of mid-2018, a total of 316
patients with various reported CNS disorders have received

clinical grade hNSC transplants (Table 2). None of these patients

had any safety issues yet. Neuralstem Inc., has sponsored phase
I and phase II clinical trials evaluating hNSC transplantation as
a potential therapy for ALS (354). In these, a post hoc analysis
compared ambulatory limb-onset ALS participants who were
administered open-label intraspinal hNSC and followed for up
to 3 years after transplant. Due to lack of controls, participants
in these phase 1 and 2 trials were matched to subjects from the
Pooled Resource Open-Access ALS Clinical Trials (PRO-ACT)
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FIGURE 5 | A schematic summarizes the outcome of normal aging, accelerated aging following TBI, putative mitigation of disease progression by neuroprotection,

and additional benefits from cell replacement. The x-axis represents time, the y-axis represents neuronal numbers and dependent behaviors ranging from normal at

the top to vegetative at the bottom. The normal aging process produces a gradual decline (dotted outline) in cognitive and motor behaviors. Following a TBI (black

arrow) the process of aging is accelerated (solid downward line), with chronic inflammation and tissue loss reducing ability. Successful resuscitation can help survive

otherwise fatal TBI, if post survival hospitalization produces ideal recovery then return to work is possible (dotted-dashed line), mitigation of chronic inflammation via

neuroprotective agents could stem tissue loss and stabilize ability (dashed line). If the neuroprotection is mediated by neural stem cells that have the potential to

replace lost cells, the new tissue in conjunction with nursing care and rehabilitation may facilitate sufficient recovery that is indistinguishable from normal aging (arrow

elevating the dashed line to dashed-dotted level). The boxes below represent the transient nature of various therapeutic windows. It is evident that therapeutic

windows during hospitalization are short, while those associated with disability such as post-traumatic epilepsy (PTE)/seizures depend on incidence, each event if

prevented by timely intervention could mitigate further decline in ability. Acute cell death is transient, however chronic inflammation and secondary cell death that are

diminishing opportunities. Hence, only acute/sub-acute neuroprotection can afford maximum benefit. However, if the cell replacement can be exploited with

rehabilitation in a timely manner, there is no limit to the therapeutic window.

and ceftriaxone datasets to provide required analyses in order to
inform future clinical trial designs. The ALS Functional Rating
Scale revised (ALSFRSR) and a composite statistic combining
survival and functional status (ALS/SURV) were assessed to
monitor changes in function. Results from These Ph1/2 studies
revealed significantly improved survival and function (346)
when compared to historical datasets. In another study where
non-ambulatory ALS patients received either unilateral or
bilateral injections, no increase of disease progression after the
transplants was observed for up to 18 months after surgery.
Rather, two patients showed a transitory improvement of
the subscore ambulation on the ALS-FRS-R scale (from 1 to
2). A third patient showed improvement of the MRC score

for tibialis anterior, which persisted for as long as 7 months.
Three of the patients died due to disease progression (353).

More recently a study of stereotactic, intracerebral injection
of CTX0E03 neural stem cells from ReNeuron into patients
with moderate to moderately severe disability as a result of an

ischemic stroke has progressed from a Phase I to Phase IIb as
the clinical endpoints are being met albeit slower than expected

(295, 299, 300).

PATHWAY TO ADDRESS UNMET PATIENT
NEED, CLINICAL TRIALS, TO ARRIVE AT
PROVEN TREATMENTS

The previous sections suggest that the unit of intervention for
TBI should be at the cellular level i.e., at the unit of life. However,
it is important to be wary of moving too hastily. The compelling
unmet TBI medical need and desperation on the part of patients,
in the absence of multicenter clinical trials, can lead to unproven
therapies being administered to patients. Three such cases of
unproven stem cell therapies (mix of multiple fetal NSCs or
MSCs and NSCs) have been documented (355–357). Fortunately,
all of the issues could be resolved by corrective measures
i.e., removal of the transplanted cells. The aforementioned
events have their roots in premature and unapproved use of
treatments that were initiated by investigator/patient. “Stem
cell tourism” that exploits the therapeutic hope of patients
and families with incurable neurological diseases can jeopardize
the legitimacy of stem cell research. Julian et al posit that
an improvement in education, regulation, legislation, and
involvement of authorities in global health in neurology and
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TABLE 2 | Human fetal neural stem cells in Clinical Trials.

Trial sponsor (Location) Disease target Cellular

characteristics

Phase

(#. treated)

Response to treatment References

1 City of Hope (CA, USA) recurrent high grade

gliomas

carboxylesterase-

expressing neural stem

cells

phase I (15) Initial safety and proof of

concept regarding the ability

of NSCs to target brain

tumors

NCT01172964

(343–345)

2 Neuralstem Inc. (MD, USA) in

collaboration with Emory University

Atlanta, Georgia, United States,

Massachusetts General Hospital

Boston, Massachusetts,

United States, University of

Michigan, Ann Arbor, Michigan,

United States

ALS Eight wk fetal-derived

neural stem cells

phase I (18) Safe NCT01348451 (346)

phase II (18) Improved survival compared

to standard treatment

NCT01730716

chronic spinal cord

injury

phase I (8) On going NCT01772810 and NSI

website (347)

stroke phase I/II (9) Safe with behavior

modification

NSI website

3 ReNeuron Ltd. (UK) Division of

Clinical Neurosciences, Glasgow

Southern General Hospital,

Glasgow, UK, G51 4TF,ReNeuron,

Queen Elizabeth Hospital,

Birmingham, UK, NHS Southern

General Hospital, Glasgow, UK,

G51 4TF, Kings College Hospital

London, UKUniversity College

London Hospital London, UK, Royal

Victoria Infirmary Newcastle, UK

Nottingham City Hospital

Nottingham, UK Salford Royal NHS

Foundation Trust Salford, UK Royal

Hallamshire Hospital Sheffield, UK

Southampton Hospital

Southampton, UK

stroke 12 wk fetal cortex

derived, genetically

modified CTX0E03

neural stem cells

phase I (12) Safe NCT01151124 (299)

phase II (41) Safe with behavior

modification slightly delayed

than expected.

NCT02117635

4 ReNeuron, Division of Clinical

Neurosciences, Glasgow Southern

General Hospital, Glasgow, UK,

G51 4TF

lower limb ischemia phase I (9) NCT03333980

5 Stem Cells Inc. (CA, USA) neuronal ceroid

lipofuscinosis

16 wk fetal-derived

neural stem cells

phase I (6) NCT00337636 (348)

cervical spinal cord

injury

phase II (50)

macular degeneration phase I/II (15)

thoracic spinal cord

injury

phase I/II (12) NCT01321333

(349, 350)

Pelizaeus-Merzbacher

disease

phase I (4) NCT01005004

6 TRANSEURO (UK) STEM-PD Parkinson’s disease fetal-derived

dopaminergic cells

phase I (40) NCT01898390

(351, 352)

7 Azienda Ospedaliera Santa Maria,

Eastern Piedmont University,

Novara and Terni Hospital,

Terni,Italy.

ALS 8 wk fetal-derived

neural stem cells

phase I (3) EudraCT:2009-

014484-39

(353)
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TABLE 3 | Unproven application of cell therapy.

1 Moscow Hospital Ataxia telangiectasia (AT) 8–12 wk aborted fetal

periventricular tissue isolated

from fresh-autopsy cultured for

∼16 days, 1–2 fetus/procedure,

3 procedures total

1 Tumor formation (355)

2 Commercial stem-cell clinics

in China, Argentina, and

Mexico.

Residual deficits from an

ischemic stroke

the infusions were described as

consisting of mesenchymal,

embryonic, and fetal neural stem

cells

1 Debilitating

glioproliferation

(356)

3 “stem cells” at a clinic in

Georgia, USAPrivate clinic,

Exudative macular

degeneration

autologous adipose

tissue-derived “stem cells”

1 Bilateral Retinal

Detachments

(357)

4 Thailand-Canada Lupus nephritis autologous CD34+

hematopoietic stem cell

transplantation, mobilized with

GCF and collected from

peripheral blood

1 angiomyeloproliferative

lesions

(359)

5 Multiple US based Stem

cells clinics in FL, CT and

MD

Patient for each of the

following conditions: Two for

non neovascular AMD, and

one for Quiescent

neovascular AMD

autologous adipose

tissue-derived “stem cells”

3 Loss of vision NCT01736059:

NCT02320812, (360),

NCT01920867,

NCT0024269

6 Stem Cell Ophthalmology

Treatment Study (SCOTS)

FL,CT,MD

Stargardt’s macular

dystrophy

autologous bone

marrow-derived stem cells in the

right eye

1 recurrent retinal

detachment with

proliferative

vitreoretinopathy.

(361)

7 Stem Cell Ophthalmology

Treatment Study (SCOTS)

FL,CT,MD

optic neuropathy autologous bone

marrow-derived stem cells

1 Improved vision NCT 01920867 (362)

Unproven stem cells use with beneficial vs. debilitating consequences 1 success vs. 8 failures

neurosurgery is required to prevent such exploitation (358)
(Table 3).

CONCLUSION

For over 30 years of TBI research, neuroprotection via RCTs

has been elusive. Progressive tissue loss in severe TBI is
an unmet need that turns TBI into a disease process with
no hope for recovery. Analysis of the trial failures has led

to insights into the mechanisms that need to be targeted,
specifically neuroinflammation. Preclinical animal model studies

that recapitulate human severe TBI have led to the identification
of mechanisms underlying the vulnerability of the penumbra and
evaluating the extent of penumbra sparing will likely give insights

into the neuroprotective ability of an intervention. Additionally,
the continued exploration of neural stem cells transplantation,

which was bolstered by initial efforts with fetal cortical tissue
transplants that were neuroprotective, resulted in the discovery
that cell transplants can resolve inflammation via disruption of
proinflammatory pyroptotic signaling and without interfering
with activated glial functions such as phagocytosis. Multiple
independent studies in a variety of CNS conditions suggest

use of clinical trial grade human neural stem cells which have
been found to be safe and meeting the clinical end points.
Thus, the rational for using human neural stem cell based
transplantation for TBI is well supported as both enduring
neuroprotection and cell replacement can be achieved with single
agent.
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