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Abstract
Several etiologies result in chronic liver diseases including chronic hepatitis C virus infection

(HCV). Despite its high incidence and the severe economic and medical consequences,

liver disease is still commonly overlooked due to the lack of efficient non-invasive diagnostic

methods. While several techniques have been tested for the detection of fibrosis, the avail-

able biomarkers still present severe limitations that preclude their use in clinical diagnostics.

Liver diseases have also been the subject of metabolomic analysis. Here, we demonstrate

the suitability of 1H NMR spectroscopy for characterizing the metabolism of liver fibrosis

induced by HCV. Serum samples from HCV patients without fibrosis or with liver cirrhosis

were analyzed by NMR spectroscopy and the results were submitted to multivariate and

univariate statistical analysis. PLS-DA test was able to discriminate between advanced

fibrotic and non-fibrotic patients and several metabolites were found to be up or downregu-

lated in patients with cirrhosis. The suitability of the most significantly regulated metabolites

was validated by ROC analysis. Our study reveals that choline, acetoacetate and low-den-

sity lipoproteins are the most informative biomarkers for predicting cirrhosis in HCV patients.

Our results demonstrate that statistical analysis of 1H-NMR spectra is able to distinguish

between fibrotic and non-fibrotic patients suffering from HCV, representing a novel diagnos-

tic application for NMR spectroscopy.

Introduction
The term liver disease gives name to a plethora of pathologies, with more than a hundred
forms caused by a variety of factors. Disease onset spans through all stages of life, from
infants to older adults. When it becomes chronic, liver disease represents an important and
increasing global health problem [1], and despite the rather high incidence and severe
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consequences, the number of patients suffering from chronic liver disease still remains largely
underestimated. Most forms of chronic liver disease are accompanied by liver fibrosis (LF),
i.e. which constitutes an excessive accumulation of extracellular matrix proteins that distorts
the normal parenchymal structure of the liver [2]. Early diagnosis and classification of the
degree of liver fibrosis is, therefore crucial to select the most appropriate therapy, since drugs
targeting inflammation and cell injury are more effective at earlier to intermediate stages of
the disease.

Among the existing methods to detect liver disease and fibrosis, liver biopsy is considered
the gold standard and classifies fibrosis according to different semiquantitative and validated
histological scores. The METAVIR system scores fibrosis on a 4 level scale, where F0 indicates
the absence of fibrosis, and F4 is a fully developed cirrhosis [3]. Patients with stage F2 or higher
are considered to have significant fibrosis. However, liver biopsy is an invasive method that
remains an imperfect reference, where accuracy is affected by many factors including sample
size [4, 5], or sampling location of the biopsy specimen [6], and the etiology of the disease [7,
8]. Alternatively, several non-invasive techniques can be used to identify LF. Transient elasto-
graphy is the most popular imaging technique evaluating liver stiffness, but its accuracy in pre-
dicting cirrhosis (the terminal stage of fibrosis) strongly depends on the observer's expertise.
Therefore, the interest in identifying and staging LF by means of molecular serum markers has
increased over the last years. The ideal biomarker for LF should be non-invasive, unbiased by
inflammatory processes, highly sensitive and specific to identify early disease stages, active
fibrogenesis and advanced fibrosis (cirrhosis). Available serum biomarkers can be divided into
indirect markers of liver function and direct markers for extracellular matrix turnover [9, 10].
Unfortunately, these biomarkers are not liver specific, have low sensitivity, and/or still require
extensive validation.

One of the most efficient ways to identify new biomarkers is using metabolomics, i.e. the
comprehensive metabolite analysis in a biological sample [11]. Liver diseases have been the
subject of metabolomic analyses, specifically to investigate the development of hepatic fibrosis
and cirrhosis in rat and human samples [12]. Although these reports provide significant
advances in the field, the metabolic alterations associated with liver disease are not yet well
understood. In fact, there are reported metabolomic studes focusing on the progression of LF
in rats [13–16] but not in humans.

Common techniques applied to metabolomics are NMR spectroscopy [17], GC/MS [18]
and LC/MS [19, 20]. NMR is an excellent technique for profiling biofluids, and is especially
useful for characterizing complex solutions. It is quantifiable, reproducible, non-selective and
non-destructive, while not as sensitive as other techniques like GC/MS or LC/MS. NMR
based metabolic profiling of biofluids (e.g., serum and urine) has already been widely used to
search for potential biomarkers in several diseases [21]. Previously, a pilot study involving
NMR spectrometry on urine samples infection demonstrated its potential for the diagnosis of
HCV in clinical practice [22]. Many other papers have analyzed different types of liver dis-
eases using also NMR spectroscopy (review by [23]), but no studies have been focus on cir-
rhosis by HCV infection. The objective of our work is to demonstrate the suitability of 1H
NMR spectroscopy in characterizing the advanced LF metabolism induced by hepatitis C
virus (HCV).

We analyzed serum samples obtained from HCV patients with cirrhosis (the later stage of
liver fibrosis) (n = 27) and controls from HCV patients without detectable fibrosis (n = 30) in
their liver biopsies. Our results show that statistical analysis of serum 1H-NMR spectra can
effectively distinguish between these two groups of HCV patients, providing a novel applica-
tion of NMR spectroscopy.
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Materials and Methods

Subjects and sample collection
All participants in the study gave informed consent to clinical investigations, according to the
Declaration of Helsinki principles and provided written informed consent using an approved
consent form. All data were anonymized to protect the confidentiality of individual partici-
pants. The study was approved by the Hospital Clínic of Barcelona's Clinical Research Ethics
Committee (CEIC).The study initially included a group of 57 well-annotated HCV patients
with chronic hepatic disease from the Hospital Clínic de Barcelona. The pool of patients for the
current study included two classes: group 4 (G4) comprises 27 patients with chronic HCV liver
disease and stage F4 fibrosis, while control group 0 (G0) comprises 30 HCV patients without
fibrosis (stage F0), all of them diagnosed by liver biopsy. Blood was drawn from patients pre-
senting to clinic after overnight fast. Whole blood samples were immediately processed for
serum and samples were stored at −80°C until retrieval. Blood samples were also used to
measure routine laboratory markers and biomarkers, and demographic characteristics were
obtained at the same time.

All patients were followed up in the out-patients visits at Hospital Clinic. No patient was
receiving antiviral therapy at the moment of the blood extraction. Most of the patients with F0
fibrosis did not show any symptoms and did not receive concomitant or relevant medication.
On the other hand, patients with F4 fibrosis (compensated cirrhosis) were more prone to have
medical prescriptions. The most common therapies in cirrhotic patients were diuretics, beta-
blockers, or pain-killers. At the moment of serum extraction, all of them were under a free diet
without any specific restriction related with the liver disease. No patient consumed significant
alcohol. In cirrhotic patients (F4) the prevalence of hyperglycemia’s disorders may be as high
as 30%; however, most of them may be controlled with glucose nutritional restrictions without
therapeutic intervention. Five patients were eventually excluded from the analysis for the rea-
sons described in the Results section.

NMR spectroscopy
For NMR analysis, serum samples were left to thaw, and aliquots of 100 μL were mixed with
200 μL phosphate buffer (pH 7.0) containing 5 mmol/L TSP (Trimethylsilyl propionate) and
5% v/v D2O. The final mixtures were transferred to 3-mm NMR tubes. The pure metabolite
molecules used for referencing were all obtained from Sigma-Aldrich (St. Louis, MO, USA).

All 1H-NMR spectra were measured at 300 K on a Bruker Avance III 600 MHz spectrometer
(Bruker Biospin, Germany). Three complementary 1H NMR spectra were recorded per sample.
A standard 1H spectrum with water suppression (using a binomial 3-9-19 pulse) and 1.5 Hz/
point resolution was acquired within 100 seconds (using 32 transients and a total interscan
recovery delay of 2.2 s). The same experiment was then repeated (64 transients) with an
appended 40 ms T2 relaxation filter implemented as a CPMGmodule. Finally, a two dimen-
sional 1H,1H Total Correlation Spectrum (TOCSY) was recorded within 1 hour (8 transients,
1024 × 192 complex data points, 1.1 s total interscan delay) employing 60ms FLOPSY8 mixing.
All spectra were acquired and processed within TopSpin 3.2.6 applying a squared cosine win-
dow function, simple zero filling, and automatic zero-order phase correction (manually cor-
rected for the TOCSY spectrum); the spectra were manually referenced against internal TSP
(δ = 0.00 ppm). All NMR spectra were also peak-aligned manually using in-house scripts to
minimize variation due to peak shift [24].

Only the T2 filtered one-dimensional 1H NMR spectra were used for automatic statistical
analysis owing to their superior clarity, while their standard (not T2 filtered) analogues suffered
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from massive overlap from broad serum protein background signals. The two-dimensional
TOCSY spectra were used to identify and assign specific metabolites. The not T2 filtered was
proven useful to identify broad signals from triglycerides, proteins, cholesterols and phospho-
lipids among others.

Multivariate statistical analysis
For all statistical analyses the T2 filtered

1H NMR spectra of the 57 HCV patients (30 non-
fibrotic and 27 fibrotic) were subdivided into spectral regions (bins) of 0.03 ppm width, and
the pertaining regional integrals (bin intensities) were obtained using the Average Summethod
(i. e. to divide the sum by the number of points on the bin). This binning process was per-
formed automatically using the MestReNova software (version 10.0.1, MestreLab Research),
and covered the entire spectrum from 0 to 10 ppm. The region 4.5 to 5.15 ppm could not be
analysed due to the applied water suppression, while the spectrum was divided into segments
ranging from 9.5 to 0.5 ppm. Thus, a total of 262 bin intensities were obtained and analyzed
using the metabolomic data processing server MetaboAnalyst 2.0 (http://www.metaboanalyst.
ca) [25, 26]. Specifically, data were pre-processed for normalization and scaling, to remove pos-
sible bias from sample variability and preparation. Data were normalized to the total spectral
area and subsequently scaled (mean-centered and divided by standard deviation of each vari-
able). The normalized features were subsequently analyzed by PCA to detect intrinsic clusters
and outliers within the data set. To maximize separation between samples, partial least-squares
discriminant analysis (PLS-DA) was applied. Models were tested by 10-fold cross validation
using R2 and Q2 parameters, where R2 provides a measure for how much variation is repre-
sented by the model and Q2 for the goodness of prediction. Permutation test was performed to
check over fitting of the PLS-DA models. After building the PLS-DA model, variable impor-
tance in projection (VIP) score of each variable was used to rank the identified distinctive fea-
tures based on their significance in discriminating between control and fibrotic samples.
Variables with VIP score>1 were selected as significant bins.

Moreover, features identified as significant in differentiating between F0 and F4 grades were
plotted in a receiver operating characteristic (ROC) curve to visualize the predictive ability of
these features at different sensitivity and specificity levels using the ROCCET server (http://
www.roccet.ca) [27]. ROC curves were generated by Monte Carlo Cross Validation (MCCV)
using balanced subsampling. In each iterative MCCV step, two thirds of the samples were used
to evaluate the feature importance. The area under the curve (AUC) represents the discrimina-
tory ability of this metabolite as a potential biomarker, with values close to 1 implying a better
classification.

The most important distinctive features identified from the PLS-DA VIP model and show-
ing the highest individual ROC values, were subsequently combined linearly into a unique mul-
tiparametric predictive model using in-house MATLAB scripts. The risk score (H) of this
model was based on the following equation:

H ¼
Xn

i¼1
bi � Vi ð1Þ

where βi is the estimated beta coefficient for variable Vi and n accounts for the total number
of variables considered. The ability of the obtained multiparametric models to discriminate
between HCV patients with and without significant fibrosis was assessed by ROC curve.

1H-NMR Spectroscopy and Liver Cirrhosis
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Univariate analysis
Univariate statistics were performed on the selected variables as an alternative measure of vari-
able importance. To determine if changes in bin intensities were statistically significant fold
changes, Pearson’s r correlation and non-parametric Wilcoxon rank-sum scores were calcu-
lated using MetaboAnalyst 2.0. Altered features were considered significant when pertaining p-
values were less than 0.05. Finally, a heatmap of the samples was generated to visualize the clus-
ters identified by PLS-DA VIP scores.

Metabolite identification
The metabolites highlighted as significant hits by PLS-DA (with VIP> 1) were finally identi-
fied mainly from the well resolved TOCSY spectra, by comparing their spin systems and chem-
ical shifts with those reported in the literature or deposited in the Madison Metabolomics
Consortium Database (http://mmcd.nmrfam.wisc.edu/) and Human Metabolome Database
(HMDB) (http://www.hmdb.ca/metabolites/) [28, 29]. Using the standard 1H spectrum we
were able to identify broad signals from cholesterols or phospholipids. The identity of several
metabolites was furthermore confirmed by NMR after addition of the corresponding pure
compounds to a mixture of healthy human serum samples.

Results
1H-NMR spectra and multivariate analysis
We have verified the applicability of 1H NMR spectroscopy in the diagnosis, staging and prog-
nosis of HCV-induced liver disease by analyzing serum samples of 57 HCV patients in the
non-fibrotic (G0, 30 patients) and cirrhotic (G4, 27 patients) stages. For statistical analysis of
the T2-filtered one-dimensional 1H spectra we extracted and compared the signal intensity of
the spectral regions (bins) of 0.03 ppm width. To examine whether any age-or sex related meta-
bolic differences existed in our subject groups, PCA of 1H-NMR spectra between control and
patient subjects was performed. No age- or sex-related groupings were observed in the PCA
score plots, indicating that the majority of variance in the data is not related to any possible
metabolic differences in the age or gender of the subject (S1 Fig).

An initial exploratory PCA of the bin intensities produced a first survey of the metabonomic
dataset and unbiased data clustering and revealed 5 strong outliers, of which 4 belonged to
group G0 and one to G4 (data not shown). The fact we did not get enough metadata from one
of the samples to compare with all other, coupled with this sample was located out from the
Hotelling T2 distribution ellipses, led us to exclude it from the study. Other two outliers pre-
sented hemolysis, and the other two produced NMR spectra of poor quality and water suppres-
sion. These five outliers were excluded from further analysis. PCA also revealed one weak
outlier in the Hotelling T2 distribution ellipses (drawn at T2 = 0.95, S2A Fig) that was neverthe-
less included in the study. The remaining set of 51 patients showed well-distributed demo-
graphic, clinical and biological parameters (listed in metadata Table 1), and was subjected to
further analysis. A scatter plot of PC1 vs. PC2 scores indicated no unsupervised separation
trends between fibrosis patients in stage F0 and F4 (S2A Fig) while the pertaining groups G0
and G4 can be partially discriminated when including the third principal component, PC3
(S2B Fig). The difficulty in separating both groups likely reflects the complexity of the serum
sample and multifactorial variability.

Subsequent PLS-DA corroborated the group separation, where both fibrosis classes are well
discriminated by three principal components (Fig 1A), while some overlap persists when con-
sidering only PC1 and PC2 (Fig 1B). To evaluate the statistical robustness of the analysis,
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10-fold cross-validation was performed and Q2 and R2 values were deduced. Q2 provides an
estimate of the predictive power of the PLS-DAmodels, with a minimal threshold for good sep-
aration given by Q2 > 0.5. Increased R2 values (0< R2 < 1) likewise reflect predictive power
and variance. Our model scored high R2 � 0.8 and Q2 � 0.6, confirming good predictive
power (Fig 1C). Permutation tests (1000 repeats) yielded a very low p� 0.01, indicating that
none of the distributions formed by the permuted data is better than the observed statistic
based on the original data (Fig 1D). S3 Fig shows the loading plot component 1 vs. component
2 resulting after applying PLS-DA to NMR binned spectra of serum of controls and cirrhotic
patients.

Fig 2A and S1 Table show the key differentiating features (i.e., diagnostic binned NMR
signals) identified by PLS-DA analysis and sorted by increasing VIP score (only those with a
significant VIP value> 1 are included). Taking a VIP cut-off at 1.4, 27 features were found to
be significant discriminators between fibrosis classes G0 and G4, while only three features
(i.e., the NMR signals at 0.83, 3.20 and 2.06 ppm) showed a VIP> 1.8 for the same discrimi-
nation. A heatmap of relative intensity changes of potentially differentiating NMR signals
(from the PLS-DA / VIP analysis) was then composed to visualize possible clustering (Fig
2B). Indeed, a clear pattern emerges that shows depletion for the majority of metabolite
NMR signals in patients with fibrosis at stage F4 as compared to F0, while a minority of sig-
nals increase.

Table 1. Clinical Metadata of the Studied Patient Population.

METAVIR stage

Metadata F0 (n = 26) F4 (n = 26)

Age (years)a 40.63± 16.35 58.15± 9.03

Male genderb 46.15 61.54

Genotype VCH b

1a 7.69 16.00

1b 61.54 64.00

2 3.85 4.00

3 11.54 8.00

4 15.38 8.00

AST (IU/l)a 39.31± 21.67 120.62± 67.17

ALT (IU/l)a 65.04± 32.98 140.65± 101.46

GGT (IU/l)a 32.65± 26.77 66.42± 35.29

ALP (IU/L)a 159.00± 80.12 247.67± 115.48

Bilirubin (mg/dl)a 0.61± 0.30 1.07± 0.51

VCHCV (log)a,c 5.82± 0.87 6.08± 0.59

Glucose (mg/dl)a 82.31± 23.21 85.61± 40.35

Platelet (G/L)a 173.08± 99.26 117.65± 80.97

Cholesterol (mg/dl)a 143.81± 77.95 122.73± 74.94

BMI (Kg/m2)a 24.08± 9.95 25.14± 7.19

a Values are expressed as the average ± standard deviation.
b in percent of patients.
c Viral load of Hepatitis C virus.

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALP, alkaline

phosphatase; GGT, γ-glutamyl transferase; BMI, body mass index.

doi:10.1371/journal.pone.0155094.t001
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Univariate analysis
After validating our hypothesis that fibrosis stages F0 and F4 from HCV can be distinguished
based on T2 filtered one dimensional 1H NMR spectra, a univariate analysis was performed to
confirm the statistical significance of the distinctive peak regions (bins). A Wilcoxon Mann
Whitney test classified 51 bins as statistically significant (p< 0.05; S3 Table) and a correlation
analysis (S4 Fig) revealed clusters of bins with a specific pattern of changes that could be quan-
tified in relative terms: positive and negative correlation coefficients indicate metabolites with
increased concentration in the G4 and G0 patient groups, respectively. The correlation coeffi-
cients are close to ± 0.5, indicating a moderate but significant correlation. S4 Table summarizes
the results of the correlation analysis, including the p-values from a t-test on the correlation
coefficients and the false discovery rates (FDR). Both Wilcoxon MannWhitney test and corre-
lation analysis identified a common set of variable bins between groups G0 and G4, with the
bins at 0.83 and 3.20 ppm showing the most significant p-values. This result is consistent with
that from multivariate analysis, i.e. both methods identified the same significantly changing
bins.

Fig 1. PLS-DA analysis for G0 versus G4 serum samples. (A) Three-dimensional PLS-DA score plot. Red triangles: G0 samples (fibrosis stage
F0). Green crosses: G4 samples (fibrosis stage F4). (B) Two-dimensional PLS-DA score plot. Red circles: G0 samples. Green circles: G4 samples.
(C) PLS-DA classification using different numbers of components. The red asterisk indicates the best classifier. The inset table summarizes Q2, R2

and accuracy of the best model. Comps means number of components. (D) Permutation test statistics for 1000 permutations with observed statistic
at p < 0.01.

doi:10.1371/journal.pone.0155094.g001
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Fig 2. Significant features (binned signals) discriminating between G0 and G4 serum samples. (A)
Important features identified by PLS-DA and VIP scores. The colored boxes on the right indicate relative bin
integrals for G0 and G4 samples. Variable Importance in Projection is a weighted sum of squares of the PLS
loadings taking into account the amount of explained Y-variation in each dimension. (B) Heatmap of
unsupervised hierarchical clustering (distance measure using Pearson and clustering algorithm usingWard).
The heatmap was constructed from the most significantly differing bins (features), as identified by PLS-DA
and VIP scores. Only the top 25 features are shown. Each colored cell on the map corresponds to a relative
concentration value, with samples in rows (S2 Table indicates the original name of every sample) and
features/compounds in columns. Red and blue colors denote increased and decreased bin integrals,
respectively.

doi:10.1371/journal.pone.0155094.g002

1H-NMR Spectroscopy and Liver Cirrhosis

PLOS ONE | DOI:10.1371/journal.pone.0155094 May 9, 2016 8 / 19



Metabolite identification
For a biochemical interpretation of the observed spectral variations we attempted to assign the
bins to their respective metabolites. To that end, each bin was represented by its peak chemical
shift value that was then related to a metabolite based on literature. These hypothetical assign-
ments were subsequently confirmed by analyzing spin systems in the serum 1H–1H TOCSY
2D NMR spectra (S5 Fig), or by recording spectra of the supposed pure compounds added to
healthy human serum (S5 Table). Several metabolites with unequivocal assignment are shown
in Fig 3. Almost one third of the bins (NMR signal areas) were assigned to different metabolites
that include amino acids, organic acids, creatine, creatinine and choline, among others. Yet, a
significant number of NMR signal regions could not be unequivocally assigned due to signal
overlap and/or low sensitivity. Table 2 presents all the metabolites that were significantly corre-
lated with the model and their variations according to group with significant VIP values> 1
and p-values< 0.05. Most of these metabolites were—detected both, by multivariate and uni-
variate analysis. Correlation analysis and t-test furthermore indicated phenylalanine, glucose,
hydroxybutyrate and histidine as significant features with p values< 0.05 that are also included
in Table 2. Broad signals from very low density lipids as VLDL1, VLDL2 were upregulated in
cirrhotic patients as compared to controls. Interestingly, low density lipoproteins (LDL) and
lipoproteins with higher densities (HDL), were found significantly lower in G4 patients. Cho-
line allows discriminating between G4 and G0 groups: patients with cirrhosis significantly
show lower choline signal than patients in the G0 group. Creatinine and creatine were found
more intense in the G0 group spectra as compared to the G4 group. Ketone bodies, mainly
acetoacetate, but also 3-hydroxibutyrate were significantly downregulated in cirrhotic patients.
Several amino acids could also be identified in the spectra. All but phenylalanine were found
higher in control samples as compared to advanced fibrotic patients. Citric acid and glucose

Fig 3. Representative T2-filtered 1H- NMR spectrum of human serum samplemeasured at 300 K, 600 MHz. (A) Full spectrum (0–10 ppm),
(B) 35× zoom on the aromatic signal region (5.5–8.5 ppm). Signal assignments were derived by consulting the NMRmetabolic profiling database
(HMDB), literature references, or from NMR experiments on the pure compounds added to an average serum sample. Spectra were referenced
internally against the TSP signal (δ = 0.00 ppm). Assignment numbers correspond to identified metabolites as follows: 1, citric acid; 2, cysteine; 3,
lactic acid; 4, glutamine; 5, glutamate; 6, isoleucine; 7, valine; 8, leucine; 9, alanine; 10, 3-hydroxybutyrate; 11, lysine; 12, arginine; 13, Nac1 (N-
acetyl of glycoproteins); 14, Nac2; 15, choline; 16, creatine; 17, creatinine, 18, glycerol; 19, TMAO (trimethylamine N-oxide); 20, isobutyric acid;
21, VLDL1 (very low density lipoproteins); 22, acetoacetate; 23, VLDL2; 24, LDL2 (low density lipoproteins); 25, Lipid; 26, GPC
(glycerophosphocholine); 27, glucose β-H2; 28, glucose/sugars; 29, α-glucose; 30, lipids; 31, urea; 32, fumaric acid; 33, tyrosine; 34, histidine; 35,
phenylalanine; 36, hippuric acid; 37, formic acid.

doi:10.1371/journal.pone.0155094.g003
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were also present at higher levels in patients belonging to group G4. Finally, acetyl signals from
acid glycoproteins (NAC1 and NAC2) show decreased signal intensity in patients with cirrho-
sis. Same occurred with glycerol. Fig 4 shows some example boxplots of significantly altered
metabolites in G4 vs. G0 patient serum, as detected by univariate and/or multivariate analysis.

Table 2. Most important metabolites obtained from the PLS-VIP, Wilcoxon MannWhitney test and ROC analysis.

Metabolite Observed δ1H Assignment AUROC p.value

LDL1 # 0.84 (bs) CH3(CH2)n 0.83728 2.95E-06

Choline # 3.22 (s) N-(CH3)3 0.8284 9.74E-06

Acetoacetate # 2.30 (s) CH3 0.80769 0.0012499

NAC1 # 2.07 (bs) NHCOCH3 0.7929 0.00028694

Isoleucine +Leucine # 0.95 (t) 0.98 (t) γ-CH3, δ-CH3 0.77071 0.0024097

Creatinine + Creatine # 3.05 (s), 3.06 (s) CH3 CH3 0.76479 0.0073431

LDL # 1.23 (m) 0.76036 0.00087216

Glutamate # 2.37 (m) γ-CH2 0.75592 0.0010727

Glutamine # 2.46 (m) γ-CH2 0.7500 0.0012631

VLDL1 " 0.89 (bs) CH3(CH2)nC = 0.74852 0.0014119

HDL # 0.80 (bs) CH3(CH2)n 0.74556 0.0043228

Asparagine # 2.90 (dd) 1/2 β-CH2 0.74408 0.001473

Valine # 3.62 (d) α-CH 0.7426 0.012212

Lipid (albumin lysyl) # 3.01 (bs) ε-CH2 0.74112 0.0022208

VLDL2 " 1.25 (bs) (CH2)n 0.73964 0.01002

Unknown # 1.09 0.73669 0.0018143

NAC2 # 2.10 (bs) NHCOCH3 0.73077 0.0046624

Citrate " 2.55 (d) 1/2 γ-CH2 0.72929 0.0049306

Lysine # 1.92(m) β-CH2 0.72781 0.011943

Creatine # 3.95 (s) CH2 0.71893 0.0025988

Lipid " 1.28 (m) (CH2)nCO 0.71598 0.0038995

Unknown " 6.93 0.71598 0.0043897

Valine # 1.01 (d) γ-CH3 0.7145 0.011009

Lysine + Arginine # 1.9 (m) β-CH2 β-CH2 0.7145 0.016763

Cysteine # 3.04 (m) CH-SH 0.7145 0.0087713

Asparagine # 2.93 (dd) 1/2 β-CH2 0.70858 0.011321

Arginine + Lysine # 1.9 (m) β-CH2 β-CH2 0.70562 0.018961

Glutamine # 2.45 (m) γ-CH2 0.70562 0.0059592

Asparagine # 2.91 (dd) 1/2 β-CH2 0.70562 0.007396

Glycerol # 3.67 (dd) 1/2 CH2 0.70562 0.003731

Arginine # 1.69 (m) γ-CH2 0.70414 0.041512

3-hydroxybutyrate # 1.16 (d) γ-CH3 0.64793 0.034028

Glucose/Sugars " 3.5 (dd) C2H 0.66124 0.023402

Phenylalanine " 3.26 (dd) 1/2 β-CH2 0.64645 0.03929

Histidine # 7.04 (s) C4H-ring 0.64349 0.040614

A p-value < 0.05 from t-test between G0 and G4 serum samples was considered to be significant. AUROC: Area under the curve obtained from ROC

analysis for every metabolite. Only metabolites with AUROC > 0.7 are shown, except for the last four metabolites with an AUROC > 0.6. First column:

Arrows # and " indicate decreased or increased metabolite levels in G4 vs. G0 serum samples. Second column: Chemical shift for every metabolite,

signal structure: s, singlet; d, doublet; t, triplet; dd, doublet of doublets; bs, broad signal; m, multiplet; NAC, N-acetyl signals from glycoproteins; LDL, low

density lipoproteins; VLDL, very low density lipoproteins; HDL, high density lipoproteins.

doi:10.1371/journal.pone.0155094.t002
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ROC analysis
To better assess the predictive capacity of the PLS-DA classification model, model robustness
was assessed using ROC curve analysis. First, ROCCET program was employed to analyze
metabolites individually and Fig 5 shows three representative ROC curves. For instance for
the bin at 3.20 ppm (corresponding to choline) yields a sensitivity (i.e. percentage of G4 sam-
ples correctly classified as positives) and specificity (i.e. percentage of control samples cor-
rectly classified as negatives) of 80% and 70%, respectively, with a classification rate of 87%
(i.e. total number of correctly classified samples, data not shown). Moreover, the Area Under
the pertaining ROC curve (AUROC) was 0.83 (Fig 5), corroborating a high predictive accu-
racy of the model for this feature. The other two compounds showed also high AUROC
values (Fig 5). Table 2 lists AUROC values for the most important metabolites capable of dis-
criminating between G4 and G0 samples. While our results reflect a strong predictive power
for some of the assigned metabolites, fibrosis is a complex and multifactorial disease for
which, in principle, a multiparametric model based on multiple individual markers should
provide a more realistic metabolic description. We therefore developed a simple algorithm to
linearly combine different features (selecting metabolites with high AUROC values obtained
previously) into a single equation and we subsequently checked for their predictive capacity
also running ROC tests, analogous to the ROC value presented above, but reflecting their
joint contribution. Thus, by combining the three most significant metabolites identified by
multivariate analysis (choline, acetoacetate and LDL1), the AUROC score increased to 0.922
(Fig 5).

Fig 4. Boxplot of relative concentrations for some significantly alteredmetabolites (p < 0.05) in serum of G4 (green) and
G0 (red) patients. Y axes are represented as relative units. Data were normalized to the total spectral area. Due to this
normalization process we obtained negative scale in the Y-axis in some of the bins (Metaboanalyst program analysis). The bar
plots show the normalized values (mean +/- one standard deviation). The boxes range from the 25% and the 75% percentiles; the
5% and 95% percentiles are indicated as error bars; single data points are indicated by circles. Medians are indicated by
horizontal lines within each box.

doi:10.1371/journal.pone.0155094.g004
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Discussion
Among the etiologies resulting in chronic liver diseases, chronic HCV infection is the leading
cause for the development of LF, cirrhosis and hepatocellular carcinoma (HCC). Hence, there
is a growing interest in using metabolomics to find biomarkers for this pathology. In the pres-
ent work we have evaluated whether a metabolomics approach by 1H NMR can discriminate
between HCV patients with advanced LF (group G4) and those with no signs of LF (group
G0). Since metabolomic analyses are very sensitive to a plethora of causative factors we focused
on HCV patients with the same etiology and pathophysiology. All patients had a BMI< 26, as
an obesity cut-off, an inclusion criteria in the study that intends to minimize the influence of
excess adiposity on the generated metabolomic profiles. We found that a distinction between
both patient groups is indeed possible by comparing the concentrations of only a reduced set
of metabolites, as monitored by 1H NMR spectroscopy. Remarkably, the most relevant bins
(spectral sections) for distinguishing between groups G4 and G0 emerged from a combination
of parametric and non-parametric statistical methods. Moreover, the advantages of using both
univariate and multivariate statistics in data mining have recently been highlighted [30], and in
the present study, both complementary methods were able to identify virtually the same set of
metabolites.

Although our study is preliminary in terms of the number of patients, it is instructive to
interpret the most significant metabolites within the context of cellular metabolism. The pres-
ent data enabled us to draw several conclusions. First, it seems that changes in serum metabolo-
mics profiles reflect activation or impairment in several biologic pathways, mainly energetic
metabolism involving glutamine/glutamate, carbohydrates, ketone bodies, and lipids.

Alterations in glucose homeostasis are common in cirrhosis. The liver functions to maintain
normal levels of blood sugar by a combination of glycogenesis, glycogenolysis, gluconeogenesis
and glycolysis. Our study reveals that glucose is upregulated in the serum of G4 patients with

Fig 5. Individual receiver operating characteristic (ROC) curves. The colored curves represent the bins
at 0.83 ppm (LDL1), 3.20 ppm (choline) and 2.30 ppm (acetoacetate). The black curve represents our
multivariable predictive model described by the linear combination α*2.30 + β*0.83 + γ*3.20 that reaches a
cut-off value of -0.316, specificity of 80%, sensitivity of 70%, AUROC score of 0.922, and confidence interval
of 95% (0.85 to 0.97).

doi:10.1371/journal.pone.0155094.g005

1H-NMR Spectroscopy and Liver Cirrhosis

PLOS ONE | DOI:10.1371/journal.pone.0155094 May 9, 2016 12 / 19



advanced LF as compared to G0 control patients. A similar result was obtained by Amathieu
et al [31] when comparing serum from patients with mild or severe chronic liver failure by 1H
NMR. Alterations in glucose metabolism have been associated with increased severity of liver
disease and an elevated risk of liver carcinoma [32]. Compared with the levels in healthy indi-
viduals and patients of other liver diseases, autoimmune hepatitis patients exhibited rather
high plasma levels of glucose [33]. The increased glucose concentration found in G4 serum
could, thus, be due to its reduced metabolization via the tricarboxylic acid cycle, consistent
with the insulin resistance commonly found after HCV infection [34, 35]. The upregulation of
glucose in serum from G4 patients is also accompanied by a downregulation of glycerol that
can be converted to glucose in the liver and provides energy for cellular metabolism. Citrate is
likewise upregulated in G4 patient serum suggesting alterations in the metabolic Krebs cycle.
Fibrosis grade F4 is considered one step before a potential HCC (F5), and the increased citrate
level agrees well with the mitochondrial malfunction observed in liver cancer patient [36].
Cells may use citrate directly to fuel their metabolism and proliferation. Also citrate can be con-
verted to Acetyl-CoA and contribute in the synthesis of fatty acids and cholesterol, essential
components of cancer cell membranes [37].

Moreover, sera of G4 patients show lower levels of acetoacetate, the principal component of
the ketone bodies produced in the mitochondrial matrix of liver cells in response to carbohy-
drate deficiency [38]. Gao and colleagues obtained similar results for liver cirrhosis and HCC
patients when analyzing their serum by1H NMR. Also, 3-hydroxybutirate is downregulated in
cirrhotic patients (G4) as compared to G0 samples which has been already observed in hepati-
tis B virus-infected cirrhosis and alcoholic cirrhosis patients by using 1H NMR-based metabo-
nomics [39].

In line with these findings, serum creatine and creatinine levels are also significantly
reduced in fibrosis patients. Creatine is synthesized primarily in the liver and is again involved
in the general energy supply. The variability in creatinine levels agrees well with the interplay
between liver and renal (dis)function in liver disease.

Insulin resistance in liver has been related to oxidative stress, abnormal lipid metabolism
and hepatic steatosis after HCV infection [40]. In general, fat accumulation in hepatocytes can
be originated from several causes, including a decrease of very-low density lipoprotein secre-
tion. In 1H NMR spectra of serum, lipids are detected as broad signals from fatty acid methyl
and methylene moieties. Signals at 0.80, 0.84 and 1.23 ppm (from high and low density lipopro-
teins, HDL and LDL) are downregulated. In several studies, higher HDL levels agree with a
good hepatic function while low HDL levels correlate well with chronic liver disease [41].
Chronic HCV is also associated with hypolipidemia [42] and we consistently observe reduced
levels (85%) of cholesterol in G4 as compared to G0 patients (Table 1). Contrarily, other lipid
concentrations were increased in F4 patients (Table 2), and may be a result of an increased
energy requirement for cell proliferation (since cells also use fatty acids to generate their
energy).

The liver is the major site of amino acid conversion. Amino acids are needed for synthesis
of liver intracellular proteins, plasma proteins, and different compounds, such as glutamine or
creatine. The concentrations of amino acids are very often found altered in liver diseases [12,
31, 43, 44]. Amino acid homeostasis is controlled by their appearance and disappearance rates,
where the latter comprises conversion into other amino acids, breakdown, excretion and incor-
poration into proteins. Glutamate and glutamine are glucogenic amino acids involved in glu-
cose regeneration to feed the Krebs cycle. We found out that glutamine and glutamate levels
are significantly reduced in G4 patient serum relative to G0 patients. This is consistent with a
previous GC-MS study showing that several amino acids branched-chain amino acids
(BCAAs), valine, leucine, and isoleucine have been reported to have connections with HCC
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[45] and were also downregulated in liver cirrhosis patients [46]. In turn, phenylalanine is also
upregulated, and patients with fibrosis grade F4 generally suffer an imbalance in the plasma
levels of aromatic (AAA) and branched chain amino acids (BCAA). Indeed, a change in the
BCAA/AAA ratio has previously been described during hepatic failure [47, 48]. The increase in
serum phenylalanine can also be linked to changes in the gut microbiome that catabolizes it,
and is well known to be significantly altered in liver disease [49, 50].

We have also observed a decrease in N-acetyl glycoproteins for G4 as compared to G0
patients, which is consistent with the altered carbohydrate content of plasma glycoproteins
described for patients of diverse liver diseases [51, 52]. Such variations have also been reported
previously for HCC patients, particularly in comparison to cirrhosis patients without cancer
[53] or with alcoholic cirrhosis [54]. Overall, our data suggests that a decrease of serum glyco-
proteins may be associated to fibrosis.

Our results furthermore show increased serum choline concentrations in G4 vs. G0 patients.
Wei et al were able to distinguish HCC from HCV through metabolite profiling by NMR [55],
and choline was found upregulated in HCC patients [56]. Moreover, choline, betaine, and tri-
methylamine N-oxide (TMAO) seem to be upregulated metabolites in both liver and plasma of
rodents after feeding them with diets provoking fatty liver [57]. Bowers et al. also found choline
to be upregulated in HCC compared to HCV patients, but this was attributed to a bias from the
food intake [58]. Our data confirms that choline can be included as a biomarker (see below).

The suitability of the most significantly regulated metabolites as biomarkers was validated
by AUROC analysis (Fig 5 and S4 Fig). It reveals that the most informative biomarker for pre-
dicting significant fibrosis is choline, with p = 9.7e-06 (Table 2). Lipids are also very significant
markers with a very low p-value. Histidine, creatinine and creatine are further metabolites
capable of discriminating between fibrosis stages F0 and F4. To enhance their predictive value,
we combined the different metabolites into a model with maximal sensitivity, selectivity, and
AUROC. Thus, a specific combination of biomarkers is best suited to predict advanced liver
fibrosis, and our presented model based on the linear combination of relative concentrations of
the three most significantly changing metabolites reaches a sensitivity of 83.5%, specificity of
97.7%, and AUROC score of 0.922 that exceeds the individual AUROC scores for all markers
(Fig 5, black curve).

Conclusions
Liver diseases are an important global health problem, and clinicians are in need for new non-
invasive diagnostic biomarkers. In this context, metabolomics emerges as one of the most pow-
erful ways to identify new biomarkers. Here, we have demonstrated the potential of metabolo-
mics by 1H NMR spectroscopy on serum samples to discriminate between cirrhotic and non-
fibrotic HCV patients. Our results show that 1H NMR is a powerful tool to identify and moni-
tor non-invasive biomarkers for advanced liver fibrosis in serum as it is able to directly quantify
changes in relative metabolite concentrations that are representative of primary metabolism. A
combination of the three most significantly changing metabolites then yields maximal detec-
tion sensitivity, specificity and fidelity to distinguish HCV patients in fibrosis stages F0 and F4.
Our study paves the way to further NMR analyses on the progression of liver fibrosis (F1 to
F3).

Supporting Information
S1 Fig. Principal component analysis of 1H-NMR spectra corresponding to all the samples
included in the study colored according to (A) age. A: 30-40years, B: 40–50 years, C: 50–60
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years and D:> 60 years. (B) gender F: Female, M: Male.
(PPTX)

S2 Fig. Partial correlation analysis between serum samples from G0 and G4 patients. (A)- 2-D
score plot between the selected PCs. Red circles: Control samples (no fibrotic patients or G0).
Green circles: Fibrotic samples or G4. (B)- 3-D score plot between selected PCs. Red triangles: sam-
ples G0. Green crosses: Fibrotic samples or G4. The explained variances are shown in brackets.
(PPTX)

S3 Fig. PLS-DA loadings plot for components 1 and 2. Bins with higher loading are included
in S1 Table.
(PPTX)

S4 Fig. The 25 most important features selected by correlation analysis. Correlation plot dis-
plays a list of features whose relative concentration increased on samples from G0 to G4. The
compounds are represented as horizontal bars, with colors in pink indicating positive correlations
and that in blue indicating negative correlations. Positive correlation coefficients indicate features
upregulated in G4, while negative correlations are associated with lower levels in G0 individuals.
(PPTX)

S5 Fig. 2D 1H,1H-TOCSY spectrum of a representative HCV G0 patient serum sample.
Region between 0 and 6 ppm is represented. Assignment of the most significant metabolites is
shown.
(PPTX)

S1 Table. VIP features. List for the most important features identified by VIP-PLS-DA with
VIP> 1. Table shows every bin with the correspondent value for the first 5 components.
(XLSX)

S2 Table. List of samples analyzed in this study. Row number correspond to the position of
every sample in the heatmap presented in Fig 2B.
(XLSX)

S3 Table. Significant features identified by t-test. Columns show the different bins, and the
corresponding p and False Discovery Rate (FDR) values.
(XLSX)

S4 Table. Significant features identified by correlation analysis. Columns show the values of
correlation, t-test, p-value and false discovery rate for every bin.
(XLSX)

S5 Table. Identification of metabolites in NMR serum spectra. (A)- Metabolites confirmed
to be present in serum. Some of them were identified using 1H monodimensional o bidimen-
sional databases. To confirm their presence in human serum, some pure compounds were
added to a mix of healthy human serum samples. Chemical shifts that clearly identify those
metabolites in our spectra are shown (B)- Metabolites not confirmed to be present in serum
using external compounds. Chemical shifts from every metabolite are shown.
(XLSX)
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