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Electric Pulse Stimulation of 
Myotubes as an In Vitro Exercise 
Model: Cell-Mediated and Non-
Cell-Mediated Effects
Inkie J.A. Evers-van Gogh1, Sheril Alex2, Rinke Stienstra2,3, Arjan B. Brenkman1, 
Sander Kersten2 & Eric Kalkhoven1

Regular exercise has emerged as one of the best therapeutic strategies to prevent and treat 
type-2-diabetes. Exercise-induced changes in the muscle secretome, consisting of myokines and 
metabolites, may underlie the inter-organ communication between muscle and other organs. 
To investigate this crosstalk, we developed an in vitro system in which mouse C2C12 myotubes 
underwent electric pulse stimulation (EPS) to induce contraction. Subsequently the effects of EPS-
conditioned media (EPS-CM) on hepatocytes were investigated. Here, we demonstrate that EPS-CM 
induces Metallothionein 1/2 and Slc30a2 gene expression and reduces Cyp2a3 gene expression in rat 
hepatocytes. When testing EPS-CM that was generated in the absence of C2C12 myotubes (non-cell 
EPS-CM) no decrease in Cyp2a3 expression was detected. However, similar inductions in hepatic 
Mt1/2 and Slc30a2 expression were observed. Non-cell EPS-CM were also applied to C2C12 myotubes 
and compared to C2C12 myotubes that underwent EPS: here changes in AMPK phosphorylation and 
myokine secretion largely depended on EPS-induced contraction. Taken together, these findings 
indicate that EPS can alter C2C12 myotube function and thereby affect gene expression in cells 
subjected to EPS-CM (Cyp2a3).  However, EPS can also generate non-cell-mediated changes in cell 
culture media, which can affect gene expression in cells subjected to EPS-CM too. While EPS clearly 
represents a valuable tool in exercise research, care should be taken in experimental design to 
control for non-cell-mediated effects.

Over the past few decades, the prevalence of obesity and its associated complications, type 2 diabetes and 
cardiovascular disease, have increased to a great extent1,2. Regular exercise has emerged as one of the best 
therapeutic strategies to prevent and treat these diseases, often partially independent of weight loss3–5. 
While muscle is the primary organ affected by exercise, beneficial effects can be observed on a variety 
of distant organ systems, such as the brain, heart, lungs, adipose tissue and liver6. The means by which 
exercise mediates these beneficial effects on distant target organs are largely undefined.

Recently, muscle has been identified as an active secretory organ. The cytokines and peptides released 
from the muscle, exerting autocrine, paracrine and endocrine functions, are classified as myokines 
(reviewed in7). New myokines are constantly being identified, using different in vivo (mouse and human) 
and in vitro (cellular) models. For example, muscle-specific overexpression of PGC1α , a transcriptional 
coactivator that is induced by exercise and drives several of the beneficial effects of exercise in muscle, 
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resulted in the identification of Irisin8. Irisin is an exercise-induced myokine that has been suggested to 
primarily target white adipose tissue, resulting in conversion to a brown-like phenotype and increased 
thermogenesis8. Muscle-specific overexpression of a specific PGC1α  isoform (PGC1-α 4) in mice led 
to the identification of the myokine meteorin-like (Metrnl), which was shown to reduce adipose tissue 
inflammation and thereby stimulates thermogenesis9. In an alternative approach, we recently identified 
and validated chemokine (C-X3-C motif) ligand 1 (CX3CL1) and Monocyte Chemoattractant Protein 
(MCP-1) as exercise-induced myokines in humans by microarray-based analysis of secreted proteins 
in a one-legged acute endurance exercise study10,11. Cultured myotubes (mouse or human) have also 
been used in several studies to identify myokines, often subjected to electric pulse stimulation (EPS) 
to induce contraction and thereby mimic exercise12,13. Such approaches have for example resulted in 
the identification of Leukemia Inhibitory Factor (LIF)14, pigment epithelium derived factor (PEDF) and 
dipeptidyl peptidase 4 (DPP4)12 as exercise-induced myokines. Besides myokines, skeletal muscle also 
secretes metabolites into the circulation, as revealed by metabolomic approaches15,16. At least one of these 
metabolites, β -aminoisobutyric acid (BAIBA), may function in an endocrine fashion, as it has been sug-
gested to induce browning of white adipose tissue and increase β -oxidation in the liver16.

While these recent studies provide proof-of-principle that myokines and/or muscle-derived metab-
olites can mediate the crosstalk between exercising muscle and distant target organs (especially white 
adipose tissue8,9,16), effects on the liver were not always investigated. In addition, as the muscle secretome 
consists of hundreds of myokines and metabolites11,12,16–22, muscle-liver communication may depend on 
the combination of several (un)identified factors present in the exercise-induced secretome. In the present 
study we therefore subjected C2C12 myotubes to EPS, collected the contraction induced secretome (EPS 
conditioned media; EPS-CM), and investigated the effects of this EPS-CM on hepatic gene expression in 
FAO hepatocytes and primary hepatocytes. Here, we demonstrate that EPS-CM induces Metallothionein 
1/2 and Slc30a2 gene expression and reduces Cyp2a3 gene expression in rat hepatocytes. However, 
EPS-CM generated in the absence of C2C12 myotubes also induced Metallothionein 1/2 and Slc30a2 gene 
expression, indicating that EPS can induce both cell-mediated (Cyp2a3) and non-cell-mediated effects. 
Direct effects of EPS on C2C12 myotube function (AMPK phosphorylation, myokine secretion) were 
mainly caused by EPS-induced contraction and not due to EPS-induced changes in cell culture media. 
Taken together, these findings indicate that EPS clearly represents a valuable tool in exercise research, but 
care should be taken in experimental design to control for non-cell-mediated effects.

Methods
Cell Culture. Mouse skeletal muscle C2C12 cells were maintained in DMEM containing 4.5 g/l glu-
cose (Lonza, Basel, Switzerland) supplemented with 10% heat inactivated Fetal Bovine Serum (FBS) 
(Gibco/Life Technologies, Carlsbad, CA, USA), 100 μ g/ml penicillin and 100 μ g/ml streptomycin (Lonza) 
(growth medium). Differentiation was induced by switching from growth medium to DMEM containing 
4.5 g/l glucose supplemented with 2% Horse Serum (Gibco/Life Technologies), 100 μ g/ml penicillin and 
100 μ g/ml streptomycin (differentiation medium) and the differentiation medium was changed every day. 
Differentiation was started when cells reached ~80–90% confluence (day 0). Rat hepatoma FAO cells 
were maintained in DMEM containing 4.5 g/l glucose supplemented with 10% FBS, 100 μ g/ml penicillin 
and 100 μ g/ml streptomycin. Primary hepatocytes were isolated from Wistar-HsdCpb:WU rats (Harlan, 
Horst, The Netherlands) by two-step collagenase perfusion23. Cells were plated on collagen-coated plates 
at a density of 9 ×  104 viable cells/cm2 and cultured in DMEM containing 4.5 g/l glucose supplemented 
with 10% heat inactivated FBS, 100 μ g/ml penicillin and 100 μ g/ml streptomycin. Treatment was started 
and fresh medium was added 3–4 hours after plating.

Electric pulse stimulation. Electric pulse stimulation experiments were performed according to 
Lambernd et al.24. In short, myotubes were differentiated until day 5, followed by overnight starvation 
in DMEM without FBS (starvation medium) to exclude effects of the many undefined factors in FBS. 
Starvation medium was refreshed directly before stimulation to minimize effects of factors potentially 
secreted during the overnight starvation. EPS, with the conditions of 1 Hz frequency, 2 ms pulse duration 
and 11.5 V intensity, was applied using a C-dish with carbon electrodes combined with a pulse generator 
for 24 hours (C-Pace 100; IonOptix, Milton, MA, USA). Conditioned media (CM) with and without 
EPS were collected, pooled, centrifuged at 800 rpm for 5 min and stored at − 80 °C. A 1:1 ratio of growth 
medium (10% FBS) and CM (0% FBS) was added to FAO hepatocytes and primary hepatocytes for the 
indicated time points. Myotubes were used for RNA isolation or protein isolation (see RNA isolation and 
Real-time PCR and Western blotting).

Conditioned Medium Fractionation. Control-CM and EPS-CM was fractionated into a protein 
fraction and a small molecule fraction using Vivaspin 2 columns with 5,000 MWCO (Hydrosart®) 
Membrane (Generon, Berkshire, UK). Methanol:chloroform extraction was used to fractionate the small 
molecule/metabolite fraction into polar and non-polar molecules. In short, A 1:1:1 ratio of CM, meth-
anol and chloroform was vortexed for 2 minutes, rotated for 10 minutes and centrifuged at 14.000 rpm 
for 10 min at 4 °C. The polar/methanol fraction and apolar/chloroform fraction were dried, dissolved in 
DMEM containing 4.5 g/l glucose supplemented with 100 μ g/ml penicillin and 100 μ g/ml streptomycin 
and added to FAO hepatocytes for the indicated time points.
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ELISA. CM were analyzed using ELISA to measure the secretion of IL-6, MCP-1 and KC. DuoSet 
ELISA Development kits against mouse IL-6, MCP-1 and KC were used (R&D Systems, Minneapolis, 
MN, USA). The cytokine concentrations were quantified by using a mouse recombinant IL-6, MCP-1 
and KC as standard. The measurements were performed exactly following the manufacturers’ protocols. 
For statistical analysis Student t-tests were used.

Affymetrix microarray. Microarray analysis was performed on RNA of FAO hepatocytes stimulated 
with C2C12 CM for 2 and 16 hours. The RNA of 4 individual experiments was extracted using TRIzol 
reagent (Invitrogen, Carlsbad, CA, USA), purified using the RNeasy Micro Kit (Qiagen, Germantown, 
MD, USA) and the integrity were verified with the RNA 6000 Nano assay on the Agilent 2100 Bioanalyzer 
(Agilent Technologies, Amsterdam, the Netherlands). Hybridization, washing, and scanning of the 
Affymetrix GeneChip Rat Gene 1.0 ST Array were performed on Affymetrix GeneTitan. Scans of the 
Affymetrix arrays were processed using packages from the Bioconductor project25. Raw signal intensities 
were obtained by robust multiarray (RMA) normalization26.

RNA isolation and Real-time PCR. Total RNA from cultured cells and mice livers was extracted 
using TRIzol reagent (Invitrogen). Reverse transcription was performed using Superscript II and oli-
go(dT) primers (Invitrogen). PCR-amplifications were carried out using iQ SYBR Green Supermix on a 
MyIQ real time PCR detection system (Bio-Rad, Hercules, CA, USA).

The sequences of the primers used for real-time PCR are as follows: rMt1 forward, GCT GTG TCT 
GCA AAG GTG C; rMt1 reverse, ATT TAC ACC TGA GGG CAG CA; rMt2 forward, AAG AAA AGC 
TGC TGT TCC TGC; rMt2 reverse, CTG CAC TTG TCC GAA GCC T; rSlc30a2 forward, CCA GTG 
TCC GAG CTG CCT T; rSlc30a2 reverse, GAT GGA GAA GAG GAA GGT GC; rCyp2a3 forward, TGT 
CTG TCT GGA AGC AGA GG; rCyp2a3 reverse, GGA TGG TGA ATA CAG GAC CG; r36B4 forward, 
CGG GAA GGC TGT GGT GCT GAT G; r36B4 reverse, TCG GTG AGG TCC TCC TTG GTG AAC; 
rβ -Actin forward, CTG GCT CCT AGC ACC ATG A; rβ -Actin reverse, TAG AGC CAC CAA TCC 
ACA CA; mIl-6 forward, CAT CCA GTT GCC TTC TTG GG; mIl-6 reverse, CCA GTT TGG TAG 
CAT CCA TC; mMcp-1 CTT CTG GGC CTG CTG TTC A; mMcp-1 reverse, CCA GCC TAC TCA 
TTG GGA TCA; mKc forward, ACT GCA CCC AAA CCG AAG TC; mKc reverse, TGG GGA CAC 
CTT TTA GCA TCT T; mTbp forward, GGG GAG CTG TGA TGT GAA GT; mTbp reverse, CCA GGA 
AAT AAT TCT GGC TCA; mβ -Actin forward, CTA AGG CCA ACC GTG AAA AG; and mβ -Actin 
reverse, ACT TGT CGG AAG CCT CTT TG. The rat genes were normalized to 36B4 and B-actin, 
while all mouse genes were normalized to TBP and B-actin. Primer efficiencies were determined using 
LinRegPCR v11.127. Relative expression of the transcript levels was calculated as described previously28. 
For statistical analysis Student t-tests were used.

Western blotting. To obtain total protein extracts from differentiated myotubes, cells were washed 
with ice-cold PBS before adding cold lysis buffer (25 mM Tris HCL pH =  7.9, 5 mM MgCl2, 10% glycerol, 
100 mM KCl; 1% NP40; 0.3 mM dithiothreitol, 5 mM sodium pyrophosphate, 1 mM sodium orthova-
nadate, 50 mM sodium fluoride, containing freshly added protease inhibitor cocktail (Roche Applied 
Science, Penzberg, Germany)29. Cells were scraped, homogenized with a 25-gauge needle and centri-
fuged at 14.000 rpm for 10 min at 4 °C. Supernatants were collected and boiled with Laemmli sample 
buffer. Cell lysates were subjected to SDS-Page and proteins were transferred to polyvinylidene difluoride 
membrane (Immobilon, Millipore, Billerica, MA, USA). Membranes were blocked and incubated with 
anti-AMPKα , anti-phospho-AMPKα  (Thr 172) (Cell Signaling Technology, Danvers, MA, USA) and 
anti-Actin (Sigma Aldrich). Quantification was carried out using ImageJ 1.49 m. For statistical analysis 
Student t-tests were used.

Results
EPS as an exercise mimic in C2C12 myotubes. In agreement with well-established protocols, after 
5 days of differentiation in 2% horse serum, the majority of the C2C12 myoblasts had fused together and 
formed multinucleated myotubes30,31. We applied EPS (1 Hz frequency, 2 ms pulse duration and 11.5 V 
intensity) to these myotubes for 24 hours, which resulted in contraction of the myotubes (Fig. 1A)24. No 
other dramatic morphological changes were detected after 24 hours of EPS. Exercise and contraction 
increase ATP consumption in skeletal muscle and in primary skeletal muscle cultures, which causes 
phosphorylation and activation of AMPK24,32,33. To confirm that the EPS-induced contraction of C2C12 
myotubes is an exercise-like condition, we examined AMPK phosphorylation and secretion of the myok-
ines IL-6, MCP-1 and KC, the functional homolog of human IL-8. We detected a clear induction in the 
p-AMPK/AMPK ratio after 24 hours of EPS (Fig. 1B). In addition, the EPS-induced contraction affected 
the secretion of the myokines IL-6, MCP-1 and KC: EPS significantly up-regulated IL-6 secretion, reach-
ing a concentration of 22 pg/ml after 24 hours EPS, compared with 17 pg/ml in the control situation, 
MCP1 was induced from 162 pg/ml to 397 pg/ml and KC from 237 pg/ml to 642 pg/ml (Fig. 1C).

EPS-conditioned media alter gene expression in hepatocytes. As a model to investigate the 
crosstalk between muscle and liver during exercise, FAO hepatocytes were incubated with a mixture of 
normal growth medium and C2C12 CM in a 1:1 ratio (Fig 1A). The FAO hepatocytes were incubated for 
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2 and 16 hours with the medium mixture to examine short-term and long-term effects on gene expres-
sion, respectively. Microarray analysis was performed on 4 biological replicates. In total, 9 genes were sig-
nificantly upregulated (Fold change (FC) >  1.15; p <  0.05) and 10 genes were significantly downregulated 
(FC <  − 1.15; p <  0.05) after treatment with EPS-CM for both the 2 and 16 hour time point (Fig. 2A). We 
confirmed the upregulation of Metallothionein (Mt) 1 and 2 genes, which encode small cysteine rich pro-
teins that bind metals such as zinc and copper and acts as antioxidants34 and of Slc30a2, which encodes 
a zinc transporter34 by RT-PCR analysis (Fig 2B). RT-PCR analysis also confirmed the downregulation 
of Cyp2a3 (Cyp2a6 in humans and Cyp2a5 in mice), which is a cytochrome P450 isoform responsible 
for the activation of nitrosamines35,36. To investigate these gene expression changes in a more physiologi-
cally relevant ex vivo system, cultured primary rat hepatocytes were also incubated with control-CM and 
EPS-CM. The induction of Mt1 and Mt2 mRNA expression in hepatocytes by the contraction-induced 
muscle secretome was confirmed in this additional setting (Fig. 2C). The induction of Slc30a2 was also 
confirmed, although in primary hepatocytes the induction was only seen after 16 hours of treatment 
instead of after 2 hours in FAO hepatocytes (Fig. 2C). The downregulation of Cyp2a3 expression observed 
in FAO hepatocytes could not be confirmed in primary hepatocytes: expression was not detectable after 
2 hours of treatment and the 16 hour time point did not show a reduction (Fig. 2C).

Polar small molecules are predominantly responsible for the hepatic Mt1/2 induction. As 
Mt1/2 expression was consistently induced by EPS-CM in both FAO hepatocytes and primary hepat-
ocytes, we wished to identify the molecule(s) mediating this effect. EPS-CM was fractionated into a 
protein fraction and a small molecule fraction using a 5 kD cut-off column, and FAO hepatocytes were 
subjected to either fraction. As shown in Fig.  3A, Mt1/2 expression was clearly induced by the small 
molecule fraction, while the > 5 kD fraction, containing myokines and other large macromolecules, had 
no significant effect. Subsequent fractionation of the small molecule fraction into polar and non-polar 
molecules (using a methanol:chloroform extraction) indicated that polar small molecules were predom-
inantly responsible for the Mt1/2 induction (Fig. 3B).

Non-cell EPS-CM can alter gene expression in hepatocytes. As the in vitro model we used to 
investigate the crosstalk between muscle and liver during exercise is not reported in literature thus far, 
we also generated EPS-CM in the absence of C2C12 myotubes as an additional control (Fig. 4A). FAO 
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Figure 1. C2C12 electric pulse stimulation as a model to investigate muscle-liver crosstalk. A: 
Experimental set-up, stimulation of FAO hepatocytes and primary rat hepatocytes with conditioned medium 
of C2C12 with and without Electric Pulse Stimulation (EPS) for 24 h. B: Representative Western blot analysis 
of phosphorylation levels of AMPK in C2C12 cells with and without EPS (left panel). Quantification of 
p-AMPK over AMPK ratio was performed on 3 individual experiments (right panel). C: Concentrations of 
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Error bars represent SD values. ** =  p <  0.01; *** =  p <  0.001.
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hepatocytes were subjected to this non-cell EPS-CM for 2 hours (Fig.  4B) and 16 hours (Fig.  4C) and 
gene expression was analyzed. For both time points a similar induction of Mt1 and Mt2 expression 
was observed in EPS-CM generated with and without C2C12 cells (Fig. 4B,C), and the same effect was 
observed for Slc30a2 at the 2 hour time point (Fig.  4B). The EPS-mediated reduction in Cyp2a3 gene 
expression was only observed in medium generated in the presence of C2C12 cells (Fig  4B,C). These 
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Figure 2. EPS conditioned medium alters gene expression in FAO hepatocytes and primary rat 
hepatocytes. A: Affymetrix microarray analysis of FAO hepatocytes stimulated with C2C12 conditioned 
media (CM). Four individual experiments were performed and the genes significantly (p <  0.05) up- and 
down-regulated (up, FC >  1.15; down, FC <  − 1.15) after both 2 h and 16 h stimulation are depicted. 
Inductions shown are compared to 2 hour and 16 hour stimulation with CM without EPS. Color scale ranges 
from a signal log ratio of − 2 (green) to 5 (red). B: Relative gene expression of Mt1, Mt2, Slc30a2 and 
Cyp2a3 in FAO hepatocytes measured by RT-PCR. C: Relative gene expression of Mt1, Mt2, Slc30a2 and 
Cyp2a3 in primary rat hepatocytes measured by RT-PCR. (B-C) Error bars represent SD values of biological 
triplicates. * =  p <  0.05; ** =  p <  0.01; *** =  p <  0.001 compared to CM without EPS at the same time point.
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findings suggest that next to the cell-dependent changes in Cyp2a3 mRNA expression, EPS (and/or the 
electrodes) can also cause cell-independent changes in cell culture media that can subsequently affect 
hepatic gene expression.

EPS causes cell-dependent changes in C2C12 myotube function. As cell-independent 
EPS-induced changes, as observed in hepatocytes (Fig. 4), can potentially also affect the C2C12 myotubes 
themselves, we treated C2C12 myotubes with non-cell EPS-CM and tested the effects on the phospho-
rylation of AMPK and on the mRNA expression and secretion of the myokines IL-6, MCP-1 and KC 
(Fig. 5). AMPK phosphorylation is specific for EPS stimulated contracting C2C12 myotubes, as no induc-
tion was detected when C2C12 myotubes were treated with non-cell EPS-CM (Fig. 5B). On the mRNA 
level, the induction of Mcp-1 and Kc was largely dependent on the EPS media being conditioned by the 
contraction of C2C12 myotubes (Fig. 5C); a similar trend was observed for Il-6, but this effect failed to 
reach significance due to the modest inductions (Fig.  5C). To investigate whether these results could 
also be translated into myokine secretion into the cell culture medium, we analyzed the concentrations 
of IL-6, MCP-1 and KC in the media of the two different experimental settings. In agreement with the 
mRNA data (Fig. 5C), MCP-1 and KC, secretion was clearly induced by EPS-induced contraction, with 
only mild inductions observed upon treatment of C2C12 myotubes with non-cell EPS-CM (MCP-1: fold 
change 29.1 vs 1.6; KC: fold change 11.3 vs 1.8; Fig. 5D). The relatively mild induction of Il-6 secretion 
was also largely due to EPS-induced contraction (Fold change 3.7 vs 1.2; Fig. 5D). Taken together, these 
findings indicate that EPS can induce cell-dependent changes in C2C12 myotubes (AMPK phosphoryl-
ation, myokine secretion), but can also generate non-cell-mediated changes in cell culture media, which 
can affect gene expression in cells subjected to EPS-CM (e.g. Mt1/2 and Slc30a2 in hepatocytes). While 
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Figure 4. EPS can cause cell-independent changes in cell culture media that can subsequently affect 
hepatic gene expression. A: Experimental set-up, stimulation of FAO hepatocytes with EPS-CM generated 
with and without C2C12 cells. B: Relative gene expression of Mt1, Mt2, Slc30a2 and Cyp2a3 after 2 hour 
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EPS clearly represents a valuable tool in exercise research, care should be taken in experimental design 
to control for non-cell-mediated effects.

Discussion
Regular exercise is very effective in the prevention and treatment of diseases3–5, but the means by which 
exercise mediates beneficial effects on distant target organs (e.g. liver) are largely undefined. As a model 
system for muscle-liver communication, we induced C2C12 myotube contraction by EPS to investigate 
the effects of the contraction-induced muscle secretome on hepatic gene expression. EPS specifically 
induced AMPK phosphorylation and myokine secretion, indicating that EPS represents a valuable tool 
in exercise research. When subjecting FAO hepatocytes and primary hepatocytes to CM of contracting 
C2C12 myotubes, expression of Mt1, Mt2 and Slc30a2 clearly increased. Fractionation of EPS-CM sug-
gested that the main factor responsible for this phenomenon was a polar small molecule. However, a 
similar induction of Mt1/2 and Slc30a2 in FAO hepatocytes was observed when EPS-CM was generated 
in the absence of C2C12 myotubes. This finding suggests that EPS (and/or the electrodes) can also cause 
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cell-independent changes in cell culture media that can subsequently affect hepatic gene expression. 
The identity of the molecule(s) in non-cell EPS-CM responsible for this induction of Mt1/2 in hepato-
cytes remains to be established. Potential candidates include metal ions (Zn, Cu), as these can induce 
expression of Mt1/2 as well as the zinc transporter Slc30A2 that we found to be upregulated by non-cell 
EPS-CM too37,38. It is unlikely that these metal ions are generated by the electrodes itself, because the 
C-dish we used to apply the EPS to the C2C12 myotubes contains electrodes made of carbon. However, 
the electric pulses generated result in a redox reaction, which will result in (usually small) changes in, 
in our case, cell culture medium. In conclusion, our findings indicate that caution is warranted when 
employing EPS and that care should be taken in experimental design to control for non-cell-mediated 
effects, especially when cells are subjected to EPS-CM (e.g. hepatocytes in the current study).

Next to cell-independent changes, we also discovered cell-dependent effects of EPS-CM treatment. 
Only the CM of contracting C2C12 myotubes was able to reduce the expression of Cyp2a3 in FAO 
hepatocytes. It should be noted however that this effect was not observed in primary hepatocytes and 
that the Cyp2a3 gene is usually not very highly expressed in rat liver39. The biological relevance of the 
down-regulation of Cyp2a3 in FAO hepatocytes by EPS-CM therefore remains to be established.

While our initial identification of Mt1/2 as hepatic genes potentially regulated by the muscle secretome 
in vitro should be treated with caution (see above), both genes were also induced in mice that under-
went a 12-week swimming exercise intervention40. Furthermore, increased hepatic Mt levels were shown 
during the recovery stage after intense acute exercise41. In agreement with these findings, we observed 
increased hepatic Mt1 and Mt2 expression upon a 3-week treadmill exercise intervention in vivo (unpub-
lished observations). Exercise-induced expression of hepatic Mt genes may contribute to improved health 
through multiple mechanisms. The small cysteine-rich MT proteins bind metals (zinc, copper) and act 
as antioxidants. The ability of MT to scavenge a wide range of free radicals seems important to prevent 
diabetic complications, as oxidative stress is the critical initiator for diabetic onset and complications. In 
addition, various clinical trials have described a positive role for antioxidants in the prevention of both 
diabetic onset and complications42. MT also functions as a regulator of Zn homeostasis. A poor zinc 
status is very common in patients with type 2 diabetes and many physiological roles of Zn in insulin 
function have been indicated43,44. In addition, studies evaluating the effects of oral Zinc supplementation 
in patients with diabetes mellitus have demonstrated an improvement in glycaemic control and lipid 
parameters after zinc supplementation45. Several studies have indeed demonstrated a strong correla-
tion between MT and prevention of diabetes through its antioxidant action, Zn regulation, or both46–49. 
Interestingly, MT increase or additional transgenic overexpression has been shown to prevent diabetic 
complications and liver fibrosis43,50,51. Furthermore, MT levels have been suggested to mediate the bene-
ficial effect of zinc supplementation in the liver47. Wang et al. proposed a mechanism by which MT pre-
serves GSK-3β  inactivation to maintain glucose and lipid metabolism balance under diabetic conditions 
in cardiomyocytes52. If MT also inhibits GSK-3β  in the liver this would result in an increased glycogen 
synthase activity. Previous research has indicated that both the inhibition of GSK-3β  and the increase of 
glycogen synthase activity in the liver are beneficial for type 2 diabetic patients, which suggests that the 
inhibition of GSK-3β  in the liver could be a third MT function beneficial for patients suffering from type 
2 diabetes53,54. Taken together, these findings suggest that the exercise-induced expression of hepatic Mt 
genes may help to prevent or reverse diabetic complications.
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