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ABSTRACT
Information on the prevalence of micronutrient deficiencies is needed to determine related disease burden; underpin evidence-based advocacy;
and design, deliver, and monitor safe, effective interventions. Assessing the global prevalence of deficiency requires a valid micronutrient status
biomarker with an appropriate cutoff to define deficiency and relevant data from representative surveys across multiple locations and years. The
Global Burden of Disease Study includes prevalence estimates for iodine, iron, zinc, and vitamin A deficiencies, for which recommended
biomarkers and appropriate deficiency cutoffs exist. Because representative survey data are lacking, only retinol concentration is used to model
vitamin A deficiency, and proxy indicators are used for the other micronutrients (goiter for iodine, hemoglobin for iron, and dietary food adequacy
for zinc). Because of data limitations, complex statistical modeling is required to produce current estimates, relying on assumptions and proxies
that likely understate the extent of micronutrient deficiencies and the consequent global health burden. Curr Dev Nutr 2022;5:nzab141.

Keywords: global burden of disease, iodine, iron, micronutrient, prevalence, vitamin A, zinc, deficiency
C© The Author(s) 2021. Published by Oxford University Press on behalf of the American Society for Nutrition. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Manuscript received September 1, 2021. Initial review completed November 5, 2021. Revision accepted November 16, 2021. Published online November 18, 2021. doi:
https://doi.org/10.1093/cdn/nzab141
Supported in part by Bill & Melinda Gates Foundation grant INV-003021 to the Micronutrient Forum (to SJMO). Under the grant conditions of the Foundation, a Creative Commons Attribution 4.0
Generic License has already been assigned to the Author Accepted Manuscript version that might arise from this submission.
Author disclosures: RR works for the Bill & Melinda Gates Foundation. KHB, the spouse of SYH, works as a consultant for the Micronutrient Forum. All other authors report no conflicts of interest.
The funder had no role in the present review, except for RR, an employee of the Bill & Melinda Gates Foundation, who contributed to editing the manuscript.
Supplemental Table 1 is available from the “Supplementary data” link in the online posting of the article and from the same link in the online table of contents at https://academic.oup.com/cdn/.
SYH and ACM contributed equally to this work.
Address correspondence to SYH (e-mail: syhess@ucdavis.edu).
Abbreviations used: BRINDA, Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia; DALY, disability-adjusted life-years; DHS, Demographic Health Survey; DisMod-MR,
disease modeling—meta regression; FBS, food balance sheet; GBD, Global Burden of Disease; MR-BRT, meta regression—Bayesian, regularized, trimmed; PAF, population-attributable fraction;
SDG, Sustainable Developmental Goal; SEV, summary exposure value; ST-GPR, Spatio-Temporal Gaussian Process Regression; SUA, Supply Utilization Account; VMNIS, Vitamin and Mineral
Nutrition Information System; YLD, years of life lived with disability; YLL, years of life lost.

Introduction

Micronutrient deficiencies result in a broad range of adverse health con-
sequences, including increased infectious disease, growth restriction,
physical disabilities, and impaired neurocognitive development (1–4).
According to the most recent Lancet Series on maternal and child un-
dernutrition (5), maternal and child undernutrition, including anemia
and deficiencies of zinc, vitamin A, and other micronutrients, remain
major global health concerns. Despite the serious consequences of these
deficiencies for the individual and for society, there are limited data
on vitamin and mineral status of human populations from nationally
representative surveys, especially in low- and middle-income countries.
This lack of information hinders global, regional, and national efforts to
prevent micronutrient deficiencies and their consequences (6, 7). Infor-

mation on the prevalence of micronutrient deficiencies is needed to as-
sess the related disease burden; underpin evidence-based advocacy; and
design, deliver, target, and monitor safe, effective, and sustainable in-
tervention programs (8–10). Moreover, information on the prevalence
of anemia and micronutrients is needed to track progress toward the
Global Nutrition Target 2 (50% reduction in the prevalence of anemia
in women of reproductive age by the year 2025), Sustainable Develop-
mental Goals (SDGs) indicator 2.2.3 (prevalence of anemia in women
15–49 y of age, by pregnancy status), and SDG 3 (good health and well-
being) (11, 12).

The collection of population-level data through regular surveys,
such as the Demographic Health Surveys (DHSs) supported by the
United States Agency for International Development and representative
surveys led by national governments, allows tracking of multiple sets of
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indicators (13). Data on anemia and micronutrient deficiencies from
many nationally and subnationally representative surveys are available
in the Vitamin and Mineral Nutrition Information System (VMNIS), an
interactive data repository managed by the WHO (14). The WHO pre-
viously developed global estimates of vitamin A deficiency and anemia
using this information (15–18). The Iodine Global Network aggregates
and tracks iodine status through the Global Iodine Scorecard (19). The
global risk of zinc deficiency was estimated by Wessells and Brown (20).
Recent reviews have also attempted to describe the public health burden
of thiamin, vitamin D, and folate deficiencies (21–23). As part of the
Global Burden of Disease (GBD) Study, the prevalence and related dis-
ease burden of anemia are estimated, along with deficiencies of iodine,
iron, zinc, and vitamin A. These estimates are updated every 1–2 y (24,
25).

The motivation for global health metrics, such as the Global Health
Estimates by the WHO (26) and the GBD Study (24), is to provide pol-
icy makers with data on disease prevalence, trends over time, and the
causes of and risk factors for death and disability. Global health met-
rics may shed light on public health problems that would otherwise be
neglected (27). Specifically, the estimated prevalence of micronutrient
deficiencies is used to guide funding agencies and policy makers to pri-
oritize the allocation of global and national resources toward micronu-
trient programs or other public health and social development interven-
tions, such as water, sanitation and hygiene, early childhood education,
and malaria control and prevention, among others.

Considering that global health metrics influence investment priori-
ties and may ultimately affect the health and well-being of the most vul-
nerable population groups, it is important to understand the underlying
data and methods used to generate these statistics. Estimating the global
disease burden due to any risk factor requires the integration of multiple
types and sources of data and the use of statistical modeling to harmo-
nize the data and impute data gaps for estimating prevalence. Combin-
ing these with other sources of information (e.g., the health impact of
micronutrient deficiency) to generate measures of disease burden and
accompanying summary measures further requires numerous intercon-
nected assumptions. The objective of the present article is to review the
data required and modeling methods and assumptions used to generate
estimates of the prevalence and related disease burden of micronutrient
deficiencies. The challenges that must be overcome are described, us-
ing the GBD Study as a case study. The underlying data and methods
used for each of the 4 micronutrients in GBD are not the same. Thus,
in the following sections, we summarize details about the data sources
and methods used for each of the micronutrient deficiencies currently
included in GBD. Dissemination of the methods is critical so that any
limitations of the analyses can be understood and evaluated by experts
in the field.

Steps Required to Estimate the Prevalence of
Micronutrient Deficiencies and Associated Disease Burden

A biomarker of micronutrient status is a measure or indicator of expo-
sure, status, and function (28); more specifically, in the present review,
a biomarker is defined as a measure or indicator present in body fluids
or tissue. Sparse information on deficiency prevalence can be bolstered
by data on related measures or indicators, although use of these indi-

rect indicators of micronutrient status requires assumptions that may
undermine the accuracy and precision of the estimate. For example, di-
etary intake data have been used to determine the prevalence of dietary
inadequacy, which is then used as a surrogate for the prevalence of defi-
ciency. In other cases, nutrient availability data, based on national food
balance sheets (FBSs) or Supply Utilization Accounts (SUAs) prepared
by the FAO, have been used to estimate the risk of dietary inadequa-
cies. Dietary inadequacy, however, cannot be considered equivalent to
micronutrient deficiency for several reasons. For example, some mi-
cronutrients may be consumed seasonally and stored in the body, so
intermittent inadequacy of intake may not result in deficiency. Also, mi-
cronutrients may be consumed from unmeasured sources, such as sup-
plements, ambient water, and soil contamination of foods, or produced
by gut flora or fermentation of food. Estimating the dietary intake based
on a single 24-h recall also has several weaknesses due to common mea-
surement errors and within-person (day-to-day) variation in nutrient
intake (29, 30). The use of food availability as a proxy is even more con-
troversial, because FBS and SUA data reflect neither true dietary intakes
nor the distribution of intakes across the population (31), so they would
not be expected to correlate closely with deficiency prevalence based
on biochemical data obtained from selected population subgroups (32).
Thus, dietary data have fundamental weaknesses because they only in-
dicate a possible risk of micronutrient deficiency, but do not provide
direct information on micronutrient status (6).

Several steps are required to develop estimates of the disease burden
imposed by micronutrient deficiencies (Figure 1). First, information is
needed on the prevalence of the deficiency, which in turn requires that
1) a valid biomarker of the status of the micronutrient of interest has
been identified; 2) appropriate cutoffs have been agreed upon to de-
fine deficiency, based on either the threshold of the biomarker at which
health impairments begin to occur, or a statistically defined cutoff; and
3) data on the prevalence of deficiency are available across multiple loca-
tions and years from representative samples of the populations or pop-
ulation subgroups of interest. In addition, there is a need for adequate
scientific evidence from diverse populations to link the micronutrient
deficiency with adverse health outcomes and quantify the magnitude
and strength of those relations. Lastly, to ensure full transparency, ad-
equate documentation of assumptions and methods is needed for any
modeling exercise producing global health estimates.

For each of the 4 micronutrients included in the GBD Study, ≥1 re-
liable biomarker has been recommended by expert groups (Table 1).
Specifically, urinary iodine concentration is recommended as a marker
of population iodine exposure (33–35), and more recently plasma or
serum thyroglobulin has been proposed as an indicator of iodine sta-
tus (35). If the prevalence of goiter is used as an indicator of iodine
deficiency, the WHO recommends combining grade 1 goiter (i.e., goi-
ter is palpable, but not visible) with grade 2 goiter (i.e., visible goi-
ter) to calculate the total goiter prevalence (36). Plasma ferritin and
soluble transferrin receptor concentrations are recommended for as-
sessing iron status (37–40), plasma zinc concentration for zinc status
(41–43), and plasma retinol or retinol-binding protein concentration
for vitamin A status (44, 45). For each of these micronutrients, there
is consensus on the cutoff to define deficiency (34, 38, 39, 45, 46),
and concentrations of ferritin, soluble transferrin receptor, zinc, retinol,
and retinol-binding protein may require adjustment for inflammation
(47–50).
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FIGURE 1 Steps in determining the global disease burden attributable to selected micronutrient deficiencies.

Micronutrient status data available from different sources indi-
cate variable coverage depending on the particular micronutrient. The
WHO VMNIS is a curated, publicly accessible data repository on
the hemoglobin and micronutrient status of representative population
groups (14), although some national survey data are either not pub-
licly available or not yet included in this database. Hemoglobin is the
biomarker most frequently available in the VMNIS, with other mi-
cronutrient biomarkers reported less often (Table 2). For example,
plasma zinc concentration was assessed among young children only in
35 surveys from 27 countries, and in 9 surveys among women of re-
productive age. Similarly, there is limited information on micronutri-
ent intakes from nationally or regionally representative dietary surveys.
The Global Dietary Database 2017 identified a total of 1220 dietary sur-

veys, but only 113 surveys assessed dietary iron intake, 78 surveys as-
sessed dietary zinc, and <20 surveys each assessed vitamin A (includ-
ing vitamin A supplement intake) and iodine intake (51). Thus, there is
a scarcity of information on population micronutrient status based on
reliable biomarkers and dietary intake (7), and there currently is inad-
equate information to estimate the global prevalence of iron and zinc
deficiencies reliably for the years of interest from 1990 to the present,
which are modeled in the GBD Study.

After extracting all available and relevant data, the next step is stan-
dardization of data around a reference definition, then combining this
information with demographic data and predictive covariates to statis-
tically model the relations and extrapolate the prevalence to other lo-
cations (i.e., other countries), population subgroups, and time points

TABLE 1 Biomarkers recommended by expert groups to determine micronutrient deficiency at
the population level1

Micronutrient Recommended biomarker Expert group References

Iodine Urinary iodine BOND, IGN, WHO (34, 35)
s/p thyroglobulin BOND (35)

Iron s/p ferritin BOND, WHO (37, 38, 40)
s/p soluble transferrin receptor BOND, WHO (39, 40)

Zinc s/p zinc BOND, IZiNCG (41–43)
Vitamin A s/p retinol BOND, WHO (44, 45)

s/p retinol-binding protein concentration BOND (44)
1BOND, Biomarkers of Nutrition for Development; IGN, Iodine Global Network; IZiNCG, International Zinc Nutrition Consulta-
tive Group; s/p, serum or plasma.
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TABLE 2 Overview of representative surveys at the national and regional levels that determined hemoglobin and micronutrient
status indicators included in the VMNIS of the WHO1

Preschool children School children Women of reproductive age
Surveys, n Countries, n Surveys, n Countries, n Surveys, n Countries, n

Hemoglobin 400 127 114 59 251 98
Urinary iodine concentration 13 11 197 110 34 27
Plasma ferritin 90 63 38 26 33 28
Transferrin receptor 27 19 9 7 8 8
Plasma zinc 35 27 19 14 9 9
Plasma retinol 112 75 33 25 22 20
Retinol-binding protein 28 22 5 4 9 7
1For the VMNIS, see (14). Number of surveys implemented between 1990 and 2020 included in VMNIS as of 5 May, 2021. VMNIS, Vitamin Mineral Nutrition Information
System.

for which data are not available. This step is commonly done with spa-
tiotemporal modeling techniques, which use the available prevalence
data and information on correlates to the particular micronutrient de-
ficiency (e.g., macroeconomic indicators), along with the spatial and
temporal relations among the data. These methods develop statistical
relations between the available prevalence data and the predictors (e.g.,
correlates, space and time) which are then used to predict the unknown
prevalence values. The rise in popularity of machine learning and com-
plex modeling techniques in recent years (52) has led to the point where,
for some, “black box” algorithms make it difficult to determine the im-
pact of predictors and their consistency across countries and popula-
tion subgroups. This has led to a push for explainable machine learning
algorithms and emphasizes the underlying importance of clear docu-
mentation of the models (53).

The final step is to identify disease endpoints caused by the micronu-
trient deficiency and quantify the increased risk associated with having
a particular micronutrient status. This is typically done using the hier-
archy of scientific evidence (54), where published studies from inter-
vention trials and cohort studies are the preferred sources of risk mea-
surement. Cross-sectional case-control and observational studies can
also be considered in certain circumstances, where risk of recall or mea-
surement bias is low. All study findings need to be appropriately meta-
analyzed—including controlling for confounding and quantification of
residual heterogeneity—to determine the overall RR. These data can po-
tentially be supplemented with additional information to quantify dif-
ferential risk between subgroups.

Additional important modeling considerations are both estimation
of robust uncertainty intervals and validation of these uncertainty in-
tervals. For models with multiple stages, estimates of uncertainty need
to propagate error from one stage to the next, which can be completed
using bootstrapping techniques for frequentist approaches (55) or via
Bayesian analyses with appropriately chosen prior distributions (56).
Validation of uncertainty intervals and predictive estimates can be com-
pleted with out-of-sample predictive validity tests or (preferably) newly
obtained empirical data.

General Overview of the GBD Study

The GBD Study, which is led by the Institute for Health Metrics and
Evaluation (IHME) at the University of Washington, is an international

collaboration of >7500 researchers in 136 countries, herein referred to
as the GBD Collaboration, who work to generate modeled estimates of
comparative health loss from >300 diseases and injuries and 87 risk fac-
tors in 204 countries and territories, disaggregated by age and sex, from
1990 to the present, allowing comparisons over time, across age groups,
and among populations (25). Thus, the effects of micronutrient defi-
ciencies are just one of multiple analyses that are completed. The GBD
Study catalogues all input data for each model in the Global Health Data
Exchange, using data from the VMNIS whenever possible and supple-
menting with additional representative surveys, national reports, pub-
lished studies, and other sources identified by GBD collaborators.

To estimate the disease burden of anemia and micronutrient defi-
ciencies, the GBD Study uses 2 main methods: 1) causal attribution
methods, where specific micronutrient deficiencies are considered as an
underlying cause of a particular disease burden (e.g., blindness due to
vitamin A deficiency) (57); and 2) the risk factor method, where the mi-
cronutrient deficiency is a risk factor for other diseases (e.g., diarrhea
attributable to vitamin A deficiency as a risk factor) (58). The model-
ing strategy for these 2 distinct scenarios uses parallel processes that
are internally consistent for each micronutrient, but the results are pre-
sented separately by GBD. For those micronutrients considered in the
GBD Study as both causes of disease and risk factors for disease (namely,
vitamin A deficiency and iron deficiency), the burden attributable to
the risk factor, by definition, includes the burden due to the causal at-
tribution. Thus, results of the 2 methods are not, and should not be,
summed.

With both methods, the GBD Collaboration first estimates the fre-
quency and burden of the condition within the population. A vari-
ety of data sources are consulted to estimate the epidemiology of each
disease or injury. These data sources are, for example, inpatient and
outpatient hospital records and health insurance claims, household sur-
veys, micronutrient status surveys, published scientific studies, govern-
ment reports, and results from cause-of-death models to inform esti-
mates (59). Data are extracted, processed, standardized, and modeled
to produce internally consistent estimates of prevalence and incidence.
Separate sources of data on distribution of symptoms are then used to
distribute prevalence cases into different sequelae classes, which serve
as the units of calculation of years of life lived with disability (YLDs).
For the causal attribution method, cause-specific deaths are consid-
ered along with global standard life expectancy to calculate years of life
lost (YLLs) and prevalent cases are divided into different categories of
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severity, called sequelae, where the prevalence of each sequela is mul-
tiplied against a corresponding disability weight to calculate YLDs, ac-
counting for comorbidity of diseases. The disability weight scales were
determined from separate disability weight surveys (60, 61) and range
from 0 (implying no loss of health) to 1 (implying health loss equiv-
alent to death). The disability weights were found not to vary signifi-
cantly by sex, location, or education status, so they are applied uniformly
across geography, age, and time. Summing YLLs and YLDs results in es-
timates of disability-adjusted life years (DALYs). Micronutrients that are
analyzed as GBD causes of specific diseases include iodine deficiency
(for which disease sequelae include visible goiter and cretinism), di-
etary iron deficiency (sequelae include only anemia), and vitamin A de-
ficiency (sequelae include asymptomatic vitamin A deficiency and vi-
sion impairment) (57).

For the GBD risk factor method, estimates of exposure are ei-
ther expressed in terms of prevalence (same as GBD causes; e.g.,
anemic yes/no) or based on biomarker concentration (e.g., low
hemoglobin concentration for iron deficiency risk exposure). The ex-
posures are combined with meta-analyzed outcome-specific RRs to cal-
culate population-attributable fractions (PAFs) and then to estimate the
attributable deaths, YLDs, and DALYs due to specific risk factors for
particular diseases. Micronutrient deficiencies that are analyzed as GBD
risk factors include iron, zinc, and vitamin A deficiency (58).

Connecting and measuring the association of risk factors with dis-
ease outcomes is a key part of estimating global disease burden. In
the GBD 2019 Study, the GBD Collaboration commonly performed
meta-analyses using a procedure referred to as meta regression—
Bayesian, regularized, trimmed (MR-BRT). MR-BRT is a Bayesian
meta-regression model that allows for the inclusion of covariates to ex-
plain between-study bias and variability, and adds prior probability dis-
tributions, which can include any previous information on these param-
eters, to deal with data sparsity (62). The main features that set MR-
BRT apart from other meta-analysis methods are 1) relaxation of the
log-linear assumption inherent in all meta-regressions by incorporation
of flexible splines and 2) implementation of likelihood-based designa-
tion of outlier data which allows for trimming of data from the model
and prevents outlier studies from biasing the final result. The user spec-
ifies an outlier percentage; once this parameter is set the model and
which data points are ignored (if any) are estimated simultaneously.
The final trimming value is based on quantitative measures like model
fit criteria or cross-validation, or more qualitative measures like iden-
tifying the lowest trim percentage that produces stable mean results.
A methods article by Zheng et al. (62) describing MR-BRT includes
an example of a meta-analysis of vitamin A supplementation on diar-
rheal disease using MR-BRT. The trimming results in 2 of the 12 stud-
ies being ignored, which changes the effect size from −0.15 without
trimming to −0.05 with trimming. For GBD 2019, MR-BRT was ap-
plied with 10% trimming of the data. Exposure for each risk factor is
then summarized and presented as a summary exposure value (SEV)
to permit comparison across risk factors. SEV calculation combines
measurement of exposure, size of impact (i.e., maximum RR), and at-
tributable burden into a single number, but does not always easily trans-
late into corresponding measures of biomarker-based micronutrient
deficiency.

Table 3 summarizes the micronutrient deficiency and related health
burden results estimated in the GBD 2019 Study. In the following TA
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sections, we provide a more detailed overview of the GBD methods,
and critiques from a nutritionist perspective, on estimating the dis-
ease burden imposed by deficiencies of iodine, iron, vitamin A, and
zinc.

Estimate of Disease Burden Due to Iodine Deficiency in the
GBD 2019 Study, Using the Causal Attribution Method

Estimate of prevalence of iodine deficiency
As noted, the estimate of the disease burden due to iodine deficiency
only uses the causal attribution method, based on the understanding
that iodine deficiency is a unique cause of goiter and cretinism. For
the GBD 2019 Study, the estimates for the prevalence of visible goi-
ter and cretinism were based on studies archived in the WHO VMNIS
(14).

Estimate of disease burden due to iodine deficiency
The modeling strategy for visible goiter due to iodine deficiency in GBD
2019 is a 2-step process (57). The initial model captures the age trend
in the prevalence data, which is used to split the data into narrower
age ranges. The prevalence of visible goiter is then modeled using the
data disaggregated by age group using disease modeling—meta regres-
sion (DisMod-MR) 2.1, a hierarchical Bayesian spatial meta-analysis
method that borrows strength across location and time to inform es-
timates where data are sparse or absent. Several new assumptions were
introduced into this model in 2019 to allow for the possibilities that 1)
visible goiter incidence does not increase with age, 2) a small amount
of remission is possible, and 3) the prevalence is 0 at birth. These as-
sumptions were based on scientific evidence suggesting that the high-
est prevalence of visible goiter occurs among middle-age individuals
and were prompted by observations that the previous, stricter param-
eters were limiting the predictive power of the model. The proportion
of households using iodized salt and estimated sodium intake were in-
cluded in the model as country-level covariates. No out-of-sample pre-
dictive validity testing was performed on DisMod-MR 2.1 models of
goiter.

The prevalence of intellectual disability due to iodine deficiency is
estimated by regressing the prevalence of cretinism (on the logit scale)
on the prevalence of goiter (also logit transformed), based on studies re-
porting both conditions in the same population (57). This fitted model
is then used to predict cretinism for all country locations using the goi-
ter estimates from the DisMod-MR 2.1 model. Locations where the total
goiter prevalence is <20% or household coverage of iodized salt is >90%
were assumed to have 0 intellectual disability due to iodine deficiency.
Data on intellectual disability due to iodine deficiency among children
5 y of age were used as incidence input in a second DisMod-MR 2.1
model to generate estimates for location-, year-, age-, and sex-specific
population groups (57). Alongside incidence estimates, data from sev-
eral published studies on the RR of mortality for people with intel-
lectual disability are included in the model to capture the long-term
mortality risk attributable to intellectual disability (63) and are used
to estimate the relation between mortality risk and age. As a last step,
the disabilities due to goiter and intellectual impairment are assigned
based on disability weights that are constant regardless of age, gender, or
location.

Critique of methods used for iodine-related estimates
Whereas visible goiter and cretinism are the most severe manifestations
of iodine deficiency, palpable nonvisible goiter is presently ignored in
the GBD Study, and studies with goiter prevalence are outdated (64).
Moreover, there is some evidence that mild to moderate iodine defi-
ciency may impair children’s cognitive development (65), even without
visible goiter. This is not considered in the disease burden estimates,
however, because there is insufficient scientific evidence from random-
ized controlled trials (66). Thus, the full health impact of iodine defi-
ciency is likely underestimated in the GBD Study, and an important way
forward will be to develop methods to estimate prevalence of iodine de-
ficiency based on urinary iodide and to fully evaluate the evidence for
iodine deficiency as a risk factor for other conditions.

Estimates of Disease Burden Due to Iron Deficiency in the
GBD 2019 Study

Both the causal attribution and risk factor modeling strategies are used
in the GBD Study to reflect 2 different conceptual definitions of iron
deficiency (57, 58). The causal attribution model is used to estimate the
burden of “dietary iron deficiency,” which isolates the anemia-specific
disease burden due just to inadequate dietary iron intake and not to
the multiple other diseases, such as infections and blood loss, that can
manifest as absolute or functional iron deficiency. In parallel, the risk
factor model quantifies the aggregate exposure to iron deficiency, re-
gardless of the underlying cause. Thus, iron deficiency as a risk factor
is based on all subtypes of anemia for which iron deficiency (i.e., low
intake, poor absorption, or excess loss) is theoretically a contributing
factor and which thus have the potential to respond to iron supplemen-
tation (58). For both modeling methods, exposure to iron deficiency is
determined based on the distribution of hemoglobin concentration, as
will be explained. Although the 2 modeling methods are presented sep-
arately in GBD 2019, they are modeled together using an internally con-
sistent framework. The burden attributable to the GBD 2019 risk factor
method of iron deficiency also includes the burden identified with the
causal attribution method.

Estimate of disease burden due to dietary iron deficiency in
the GBD 2019 Study, using the causal attribution method
Estimate of prevalence of dietary iron deficiency anemia.
Dietary iron deficiency is determined from the GBD estimation of over-
all anemia, and therefore represents only iron deficiency associated with
anemia and does not include iron deficiency without anemia. The ane-
mia model has 2 main steps: 1) estimation of overall anemia preva-
lence, and 2) assignment of anemia to underlying causes (causal attri-
bution). The GBD Collaboration estimated the anemia prevalence us-
ing 2 Spatio-Temporal Gaussian Process Regression (ST-GPR) models:
1 for mean hemoglobin concentration and 1 for SD of hemoglobin to
estimate the center and spread of hemoglobin distribution. ST-GPR is
a general modeling tool developed by the GBD Collaboration to gen-
erate estimates of population-level quantities smoothed over geogra-
phy and time. It uses 3 steps starting with mixed-effects regression, fol-
lowed by spatiotemporal weighting, and smoothing of residuals. New
to GBD 2019 is the addition of ensemble model selection to the first
stage of ST-GPR models, where a suite of candidate covariates were
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utilized in a train-test-test approach and ranked based on out-of-sample
predictive validity (57). An ensemble of distribution families was then
fit to individual-level data on hemoglobin concentration, again using a
train-test approach where different combinations of distribution fami-
lies were selected based on structured out-of-sample predictive validity
testing using a combination of data from high-income and low- and
middle-income countries. These distributions were combined with ST-
GPR estimates of mean and SD of hemoglobin concentrations to es-
timate a full distribution of hemoglobin concentration for each loca-
tion, year, age group, and sex. Prevalence estimates were derived using
the WHO cutoff definitions for anemia (67), except for the <1-mo-old
infants, for which there are no international recommendations avail-
able (68). The anemia prevalence for pregnant and nonpregnant females
were modeled separately because of the different cutoffs, with a fixed es-
timate of the impact of pregnancy status based on an MR-BRT model
evaluating the difference in hemoglobin between pregnant and non-
pregnant persons as a function of age.

The second step of GBD anemia estimation is to assign each case
of anemia to a specific cause. The inputs for this analysis are the
previously determined distributions of hemoglobin; the prevalence
of the different causes of anemia in each population, which range
from malaria to schistosomiasis, menstrual disorders, kidney disease,
hemoglobinopathies, and many more (Supplemental Table 1); and es-
timates of the hemoglobin shift for each cause of anemia (i.e., the av-
erage change in hemoglobin due to the cause). The hemoglobin distri-
bution after accounting for the impact of a specific cause is obtained by
shifting the hemoglobin distribution by the product of the prevalence
of that cause and the hemoglobin shift of the cause. The remaining ane-
mia after adjusting for all known causes is then defined as “residual ane-
mia cases,” which are assigned to 5 causes: dietary iron deficiency; other
infectious diseases; other neglected tropical diseases; other endocrine,
nutrition, blood, and immune disorders; and other hemoglobinopathies
and hemolytic anemias. Because data on the prevalence of these 5 resid-
ual causes are limited, their impacts on anemia are estimated by first
removing the impact of all other known causes of anemia and then as-
signing the remaining cases to these 5 residual causes at fixed propor-
tions. In other words, the prevalence of dietary iron deficiency anemia
is estimated as a proportion of the counterfactual anemia (i.e., the pro-
portion of anemia in the absence of other known anemia causes). Direct
incorporation of iron status data (which do not differentiate by cause of
iron deficiency) is not readily possible within the GBD cause framework
because, as described, this framework requires the disease burden to be
assigned directly to underlying causes.

Estimate of anemia burden due to dietary iron deficiency.
Disability weights, which represent the extent of health loss associated
with a specific health outcome, are used to calculate YLDs. Specifically,
the disability weight (95% CI) assigned for mild anemia is 0.004 (0.001,
0.008), for moderate anemia is 0.052 (0.034, 0.076), and for severe ane-
mia is 0.149 (0.101, 0.210) (57). This method captures only the direct
burden of anemia due to dietary iron deficiency. The indirect effects
of iron deficiency on other conditions, such as maternal mortality, low
birth weight, or impaired physical performance, for example, would be
considered in the analysis of iron deficiency as a risk factor.

Estimate of disease burden due to iron deficiency in the
GBD 2019 Study, using the risk factor method
Estimate of exposure to iron deficiency.
As described, for the risk factor method in GBD 2019, iron deficiency
as a risk factor includes all anemia subtypes that can manifest as iron
deficiency and would therefore have the potential to respond to iron
supplementation. The prevalence of iron deficiency is quantified in
terms of hemoglobin concentration. The exposure to iron deficiency
is estimated by removing all of the anemia subtypes that are not re-
lated to iron deficiency (Supplemental Table 1), leaving all of those
that are iron-related in a single group. The latter disorders include
causes of excessive blood loss, as well as conditions that impair iron ab-
sorption (e.g., maternal hemorrhage, uterine fibroids, menstrual disor-
ders, hookworm, schistosomiasis, gastritis and duodenitis, inflamma-
tory bowel disease). This was achieved in GBD 2019 by summing the
combined prevalence times hemoglobin shift from each of the con-
ditions categorized as not being iron-related and adding that sum to
the observed mean hemoglobin (from the anemia envelope ST-GPR
model). The theoretical minimum risk exposure level (TMREL), as the
“normal” hemoglobin by age, sex, and pregnancy status, was estimated
as the 95th percentile of mean hemoglobin concentration across all GBD
location-years.

Estimate of disease burden risk-attributable to iron deficiency.
For GBD 2019, only 2 causes of anemia were identified as having suf-
ficient evidence to support burden attribution to iron deficiency. One
cause was dietary iron deficiency, where the attributable fraction was
assigned 100% to iron deficiency. The second cause was maternal dis-
orders and all subcauses of maternal disorders. PAFs for linking ma-
ternal disorders to iron deficiency were calculated in the standard way
by combining exposure estimates with corresponding outcome-specific
RRs. RRs of iron deficiency were derived from the meta-analyses by
Murray-Kolb et al. (69, 70), which found an RR (95% CI) for all-cause
maternal mortality of 1.252 (1.087, 1.425). This study did not assess
iron status, iron deficiency, or iron supplementation, but rather assessed
hemoglobin concentration as a risk factor for overall (i.e., not cause-
specific) maternal mortality and the underlying sources could not be
identified to facilitate updating meta-analysis using MR-BRT. An “anal-
ogy” criterion was used to assign hemoglobin-derived RR informa-
tion to iron deficiency, which was facilitated by expressing the expo-
sure of iron deficiency in terms of iron-related hemoglobin decrement
rather than prevalence of iron deficiency. In GBD 2016, only 2 of 9 sub-
causes of maternal disorders—maternal hemorrhage and maternal sep-
sis and other maternal infections—were estimated as having burden at-
tributable to iron deficiency. In GBD 2017, this decision was revisited
during annual collaborator consultation sessions and revised to include
all maternal disorders subcauses in recognition of the evidence from
the meta-analyses by Murray-Kolb et al. (69) only being for all-cause
maternal mortality. The same RR from Murray-Kolb et al. was applied
for all maternal subcauses and the PAFs for each were therefore equiv-
alent (58). This procedure resulted in GBD 2017 and GBD 2019 having
higher estimates of the burden attributable to iron deficiency than pre-
vious GBD studies.
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Critique of methods used for iron-related estimates
The use of hemoglobin concentration as a proxy to estimate the preva-
lence of iron deficiency is discouraged because of concerns about the
assumptions related to how much of the anemia is due to iron deficiency
in different settings, as recently confirmed by the Biomarkers Reflect-
ing Inflammation and Nutritional Determinants of Anemia (BRINDA)
project using results from national surveys with iron biomarker data
(71, 72). Such variation in the iron-related proportion of anemia is re-
flected in the GBD 2019 estimates, but the concordance between GBD
and BRINDA findings has yet to be evaluated quantitatively. An addi-
tional challenge that the GBD Collaboration faces is that many available
hemoglobin results derive from surveys conducted in low- and middle-
income countries (14). Although the surveys conducted between 1990
and the present include assessments in most population groups, they
focus primarily on the most vulnerable groups, such as preschool chil-
dren (n = 400 surveys), pregnant women (n = 290 surveys), and women
of reproductive age (n = 251 surveys), with fewer surveys among other
population groups such as adolescents (n = 152 surveys), men (n = 144
surveys), school-age children (n = 114 surveys), and elders (n = 64 sur-
veys). Thus, the data used to create anemia prevalence estimates for all
age groups by sex and by country and over time require statistical mod-
els to fill in data gaps. Then, in the second step of causal distribution, the
GBD Collaboration estimates the proportion of anemia due to dietary
iron deficiency, which relies on assigning all estimated cases of ane-
mia to a single cause using the hemoglobin shift of every known cause
of anemia, the proportion of residual cases attributed to each residual
cause, and the full distribution of hemoglobin concentration. Much of
this information is sparse, and conceptually the possibility that anemia
causes often overlap is ignored. In other words, this method does not al-
low for anemia due to multiple causes, such as combined iron deficiency
and chronic or recurrent infectious diseases. It also does not consider
the health consequences of iron deficiency without anemia, leading to
likely underestimation of the full disease burden of iron deficiency. The
biggest limitation is the sparsity of reliable iron status data. Data collec-
tion on various age groups and in additional locations is urgently needed
to fill gaps empirically and facilitate widespread validation and improve-
ment of statistical models of hemoglobin, anemia, and iron deficiency.

Estimate of Disease Burden Due to Zinc Deficiency in the
2019 GBD Study, Using the Risk Factor Method

Estimate of prevalence of zinc deficiency
The estimate of the disease burden due to zinc deficiency only uses the
risk factor method, and is applied only to children 1–4 y of age. Be-
cause of the limited amount of representative information available on
plasma zinc concentration from different populations, the prevalence of
zinc deficiency is estimated based on dietary intake data from nationally
and subnationally representative nutrition surveys and on food avail-
ability data obtained from FAO SUAs (after adjusting for food waste).
This information is then used to predict the mean zinc intake at the
population level, and to characterize the distribution of zinc intake, as
a proxy for zinc status (58, 73). Zinc deficiency was defined as con-
sumption of <2.5 mg Zn/d, which is the estimated average requirement
(EAR) for children 1–4 y of age based on the US Institute of Medicine
(74). The analyses do not account for phytase content in foods, because

a model based on isotopic tracers of zinc absorption among young chil-
dren found no detectable effect of phytate (75). When assessing zinc in-
take, the GBD Collaboration considered 24-h dietary recall surveys as
the gold standard and FAO SUA data were corrected for bias using MR-
BRT. This Bayesian meta-regression model uses covariate data to try to
adjust for differences between studies (e.g., demographics of the study
population) and prior distributions to aid the estimation of model pa-
rameters (62). MR-BRT is used for cross-walks (i.e., mappings between
≥2 standards) and bias adjustments. That is, MR-BRT was used to es-
timate and correct for systematic differences in the FAO data sources
compared with what would be expected from 24-h recall data (58). The
GBD Collaboration used their ST-GPR model followed by ensemble
distribution fitting (a similar approach to that described already for ane-
mia estimation) to estimate the mean intake of zinc by age, sex, country,
and year. To assist with prediction for locations and years without data,
the GBD Collaboration also used the lag-distributed income and energy
availability (kcal) of that location-year as a covariate in GBD 2019 (58).

Estimate of disease burden due to zinc deficiency
For the GBD 2019 Study, the GBD Collaboration performed their own
meta-analyses of randomized controlled trials of zinc supplementation
among young children using MR-BRT. This is a departure from the
GBD 2017 Study, where the RRs of selected illnesses due to zinc defi-
ciency were obtained by pooling the RRs from studies included in the
most recently published meta-analyses by Mayo-Wilson et al. (4). The
meta-analyses performed for the GBD 2019 Study have not yet been
published, thus details will be described here briefly. The use of MR-
BRT resulted in the removal of lower respiratory tract infections, and
the RR (95% CI) for diarrhea were updated to 0.88 (0.83, 0.93). These
differences are due to the studies included in the meta-analyses and the
methods used to determine the RRs. Briefly, the GBD 2019 included 5
additional trials not considered in the Mayo-Wilson meta-analyses (76–
80). Further, Mayo-Wilson et al. (4) had calculated the RRs for each trial,
whereas the GBD 2019 used the study-reported RRs when available and
the Mayo-Wilson RRs otherwise. In the GBD 2019 Study, the RRs were
not adjusted for the country-specific prevalence of zinc deficiency due
to the lack of a significant relation between the background prevalence
of deficiency (defined on the basis of the dietary and SUA data) and the
magnitude of the RR.

Critique of methods used for zinc-related estimates
Estimating the prevalence of zinc deficiency based on dietary availabil-
ity from the national food supply likely underestimates the true preva-
lence of zinc deficiency, as has been found in countries with nation-
ally representative data on plasma zinc concentration (81). An addi-
tional concern is that there are presently 2 global dietary databases avail-
able, and results from each lead to different conclusions regarding nu-
trient adequacy (82). Moreover, serum or plasma zinc concentration is
controlled by a homeostatic mechanism and responds only slightly to
changes in dietary zinc intake (32, 83). Thus, although zinc availability
in the food supply may be useful to identify the potential risk of zinc
deficiency for a specific country, it is not recommended as a proxy for
the prevalence of zinc deficiency. Nevertheless, opinions differ on ac-
ceptable methods to estimate the prevalence of a micronutrient defi-
ciency when data are scarce, as discussed during a technical consulta-
tion jointly organized by the WHO and the US CDC (84). Participants
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at that consultation reportedly agreed that a conceptual framework may
be useful to help understand underlying factors and processes that are
expected to influence a prevalence estimate and that such a framework
requires flexibility to allow for inclusion of biological, behavioral, or
health care system covariates at the study and country levels. Concerns
were raised that there is a risk of making an analytical model increas-
ingly complex and that, even if covariates conceptually make sense, the
quality of the data across countries and data availability may limit the
usefulness of the covariates (84).

Estimate of Disease Burden Due to Vitamin A Deficiency in
the GBD 2019 Study

The estimates of the disease burden due to vitamin A deficiency rely
on both the causal attribution method and the risk factor method. The
same approach to estimate the prevalence of vitamin A deficiency is
used for both methods, as we will describe.

Estimate of prevalence of vitamin A deficiency
The GBD Collaboration estimated the prevalence of vitamin A defi-
ciency using a 3-step process. In the first step, the prevalence of vitamin
A supplementation coverage was estimated using an ST-GPR model
(e.g., timing of the introduction of a supplementation program). In the
second step, estimates of high-dose vitamin A supplementation were
used as a covariate in the ST-GPR model for the prevalence of vitamin A
deficiency. This model used serum retinol concentrations < 0.7μmol/L
for age- and sex-specific groups using WHO VMINIS (14) as the pri-
mary data source to assign the prevalence of vitamin A deficiency, with
some additional data from DHSs and other surveys. Before these data
were analyzed, they were cross-walked to create sex-specific and age-
specific estimates of deficiency prevalence from combined sex and age
estimates using MR-BRT and DisMod-MR, respectively. The covariates
used in the model were the estimated vitamin A supplementation cover-
age (as described), sociodemographic index, age-specific stunting SEV,
the log of lag-distributed income per capita, and availability of retinol
activity equivalent units in the national food supply. In the third step,
the prevalence of vision loss due to vitamin A deficiency is estimated, as
we will describe.

Estimate of disease burden due to vitamin A deficiency,
using the causal attribution method
The prevalence of vision loss due to vitamin A deficiency was estimated
using DisMod-MR with the estimated vitamin A deficiency prevalence
as the only covariate. The case of vision loss due to vitamin A deficiency
is defined as the presence of a corneal scar, which is in line with the
definition used in the WHO VIMNS database (14). The input data for
this model were split by sex using the sex ratio for vision loss due to vi-
tamin A deficiency (estimated using a separate MR-BRT model) (57).
The following assumptions were made in the modeling procedure: no
excess mortality, possibility of birth prevalence, and reduction in inci-
dence and remission of vitamin A deficiency after 5 y of age. Conse-
quently, the incidence estimates were driven by the age pattern of preva-
lence after allowing for remission. The total vision loss is then cross-
walked into moderate vision loss, severe vision loss, and blindness us-
ing DisMod-MR using age, socio-demographic index, and an index of

health care access and quality (57). The disability weight (95% CI) as-
signed for moderate vision loss is 0.031 (0.019, 0.049), for severe vi-
sion loss is 0.184 (0.125, 0.258), and for blindness is 0.187 (0.124, 0.260)
(57).

Estimate of disease burden due to vitamin A deficiency,
using the risk factor method
For the GBD 2019 Study, the GBD Collaboration reanalyzed re-
sults from randomized controlled trials of vitamin A supplementation
among young children using MR-BRT. Similarly to the methods used
for zinc, the most recently published meta-analyses by Imdad et al. (3)
calculated the RRs for each trial, whereas GBD 2019 used the study-
reported RRs when available and the Imdad et al. RRs otherwise. The
result of this analysis was that lower respiratory tract infections were not
statistically significant, and thus were removed as an outcome of vitamin
A deficiency, and the RRs for diarrhea and measles were updated (de-
creased in both cases). In GBD 2019, the RRs were not adjusted for the
country-specific prevalence of vitamin A deficiency due to lack of a sig-
nificant relation between the magnitude of the RR and the background
prevalence of deficiency.

Critique of methods used for vitamin A-related estimates
Vitamin A deficiency is the only micronutrient included in the GBD
Study presently based on the recommended biomarker and deficiency
cutoff. For the GBD 2019 Study, the GBD Collaboration ran their own
meta-analyses using MR-BRT. The conclusion was that vitamin A sup-
plementation is no longer significantly associated with lower respira-
tory tract infection, which is in line with conclusions of the most re-
cently published meta-analyses by Imdad et al. (3). In contrast, the RR
(95% CI) derived for vitamin A supplementation on measles indicated
a smaller benefit in the GBD meta-analysis (RR: 0.72; 0.53, 0.97) than in
the findings by Imdad et al. (RR: 0.50; 0.37, 0.67). This is partly due to
the exclusion of 3 studies which only had seroconversion as the primary
outcome (85–87). The rationale for excluding these studies was that they
did not report on the RR for the incidence or mortality of measles and a
health burden is the outcome of interest in the GBD Study. These meta-
analyses have not yet been published independently by the GBD Col-
laboration, and such a publication will be important to understand what
assumptions were made.

Discussion

Direct assessment of the prevalence of micronutrient deficiencies and
their related disease burdens requires measurement of known biomark-
ers of micronutrient status among representative samples of the popu-
lation subgroups of interest. Because relevant information is inadequate
for most micronutrients of likely public health concern, alternative
methods have been applied to estimate the prevalence of these deficien-
cies. Among the 4 micronutrients included in the GBD 2019 Study, only
vitamin A deficiency is presently based on the recommended biomarker
and deficiency cutoff. For iodine, iron, and zinc deficiencies, proxy in-
dicators are used, which leads to a discrepancy between the definitions
generally used in the field of nutrition and those used in the GBD Study
(Table 4) and different, and possibly inaccurate, prevalence estimates
being published by different groups. Moreover, the use of different data
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TABLE 4 Terminology and definitions of population-level micronutrient deficiency status commonly used in the field of nutrition
research compared with the GBD Study1

Terminology Nutritionists’ definition
Summary of indicators and modeling approach

used in the GBD Study

Iodine deficiency Concentrations of urinary iodine or thyroglobulin
below or above the cutoff, respectively;
prevalence of total goiter (palpable, but not
visible; and visible) (34–36)

Visible goiter

Anemia Hemoglobin concentration cutoff specific to each
population subgroup (as defined by age, sex,
and physiological status) (67)

Hemoglobin concentration below the
population-specific cutoff (67)

Dietary iron deficiency Usual intake of iron from diet less than the
population-specific EAR, as determined by
dietary assessments, such as 24-h recalls

Risk exposure for dietary iron deficiency modeled
based on hemoglobin concentration below the
anemia cutoff after accounting for other known
anemia causes, and after accounting for known
causes of iron deficiency (such as hookworm,
schistosomiasis, upper gastrointestinal
bleeding, and gynecologic conditions)

Iron deficiency Concentration of iron status biomarkers below
(i.e., ferritin) or above (i.e., transferrin receptor,
zinc protoporphyrin) the cutoff (38, 39);
indicators commonly adjusted for indicators of
inflammation (i.e., C-reactive protein, α-1-acid
glycoprotein) (47, 48)

Risk exposure for iron deficiency modeled based
on hemoglobin concentration below the anemia
cutoff after accounting for other known anemia
causes

Zinc deficiency Concentration of plasma zinc below the
population-specific cutoff (41); plasma zinc
commonly adjusted for indicators of
inflammation (i.e., C-reactive protein, α-1-acid
glycoprotein), especially in young children (49)

Dietary zinc inadequacy estimated from dietary
surveys and FAO SUAs, especially in young
children

Vitamin A deficiency Concentration of retinol or retinol-binding protein
below the cutoff (45); concentrations often
adjusted for indicators of inflammation (i.e.,
C-reactive protein, α-1-acid glycoprotein) (50)

Concentration of serum retinol below the cutoff

1EAR, estimated average requirement; GBD, Global Burden of Disease; SUA, Supply Utilization Account.

sources and analytical methods limits comparability across micronu-
trients and between micronutrients and other risk factors for disease
outcomes.

The methods used to estimate the prevalence and disease burden
differ for each of the 4 micronutrients in the GBD Study, and some of
the methods have changed with new iterations of the GBD Study. The
changes over time reflect the approach taken by the GBD Collabora-
tion to continuously update the GBD Study and are the reason why each
GBD Study supersedes the previously published version. In some cases,
these changes may be due to newly available data or scientific evidence.
In other instances, the changes may be due to newly available statistical
models, such as MR-BRT, which was developed to deal with problem-
atic assumptions inherent in other meta-regression methods (62). For
example, for the GBD 2017 Study (88), the disease burdens due to vi-
tamin A and zinc deficiency were estimated by pooling the RRs from
studies included in published meta-analyses (3, 4), and the GBD Col-
laboration performed the meta-analyses with the metafor package in
R (89). In contrast, the GBD 2019 Study used the reported RRs of the
individual randomized controlled trials, if available, and the GBD Col-
laboration performed the meta-analyses using MR-BRT (58). As a re-
sult of multiple methodological changes, the estimated disease burdens
for these 2 micronutrients were substantially lower in the GBD 2019
Study than in previous GBD Studies (90). These examples highlight
that the GBD Study is undergoing continual development. Although

the inclusion of newly available data and scientific evidence and the de-
velopment of new models are important for improving global health
metrics, such as the GBD estimates, some of these changes may alter
previous conclusions and trigger uncertainty about the accuracy of the
estimates.

The present review focused on the assessment of iodine, iron, zinc,
and vitamin A because these are included in the GBD Study, which
served as the case study for this review. Several other micronutrients,
however, have public health consequences. Specifically, a recent initia-
tive to develop a strategic plan to increase the availability and utilization
of reliable data on population micronutrient status globally also empha-
sized the need for more data on folate, vitamin B-12, vitamin D, and
thiamin (6, 7), whose deficiencies may result in physical disability, sen-
sory impairments, restricted physical growth, impaired neurocognitive
development, or death (21–23, 91–93). Other micronutrients such as ri-
boflavin, niacin, and pyridoxine and mineral elements such as calcium
and selenium may be equally important for public health, but informa-
tion about them is even more limited because of the scarcity of pop-
ulation status data (7). Without population-level assessments of these
micronutrient deficiencies, we will remain uncertain about their public
health impact and thus fail to address and prevent potential deficien-
cies and associated health consequences. Thus, assessing biomarkers of
more micronutrients in nationally or regionally representative surveys
is urgently needed to shed light on the extent of the problem.
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Because the available data for micronutrient deficiency are sparse
for many locations, statistical modeling is required in many facets of
estimating the global burden of disease. For micronutrient deficien-
cies, many locations have sparse data and prevalence estimates above or
below a certain threshold can have a major impact on the perceived need
for, or success of, an intervention. Transparency and validation of the
modeling assumptions and requirements are critical so that the limita-
tions of the analyses can be assessed by experts in the field. The presen-
tation of valid uncertainty intervals (i.e., intervals with an appropriate
amount of uncertainty) is a critical aspect of reporting results. The un-
certainty of GBD input data includes combined uncertainty from both
sampling and nonsampling variance. The GBD Collaboration then ap-
plies Bayesian methods to model each quantity, routinely using out-of-
sample predictive validity testing when feasible (i.e., when data sets are
sufficiently large), and samples 1000 draws from the posterior distri-
bution of each model. Uncertainty is propagated through subsequent
calculations by randomly combining sets of 1000 draws so as to avoid
any assumption about correlation (e.g., uncertainty in one country is
independent of uncertainty in another). In theory this approach should
produce valid uncertainty intervals, but complex multistep approaches
have uncertainty estimates that can be sensitive to modeling assump-
tions and risk underestimating uncertainty (94). Appropriate reporting
of uncertainty can also point to major data gaps and can indicate where
more resources should be allocated to data generation. The importance
of transparency has been recognized by many (95), and the GBD Study
adheres to the Guidelines for Accurate and Transparent Health Esti-
mates Reporting (GATHER) (96). Transparency requires producers of
global burden estimates to have clear documentation, testing, and val-
idation of assumptions and valid reporting of uncertainty, which will
help the consumers of global burden estimates understand the complex-
ity of the process and the importance and value of the uncertainty re-
ported with the results. In addition, Shiffman and Shawar (27) suggested
that organizations involved in global health metrics should design and
disseminate their work cautiously and with potential adverse effects in
mind.

Because of the present scarcity of information, micronutrient defi-
ciencies remain largely hidden and overlooked, resulting in insufficient
progress toward achieving the 2030 SDG agenda (97, 98). This is partic-
ularly relevant because addressing micronutrient deficiencies is among
the most cost-efficient intervention strategies to improve health (99,
100). Moreover, relying on proxy indicators to predict the health burden
of risk factors such as micronutrient deficiencies, even with quantifica-
tion of valid uncertainty intervals, may obscure the data sparseness and
leave the impression that we know more than we do, which can lead to
a lack of investments in relevant data collection.

Conclusions

Estimating the disease burden due to micronutrient deficiencies is a
continuous and iterative process and requires harnessing new data
sources and new data processing methods as they become available.
At present, the lack of micronutrient status data from representative
surveys is a major limitation in the attempt to estimate the global
prevalence of micronutrient deficiencies and related disease burden,
highlighting the need to collect more micronutrient status data from

nationally representative surveys. Because of these limitations in data
availability, complex statistical modeling is required to produce current
estimates using assumptions and proxies that likely understate the true
extent of deficiencies and the consequent global health burden.
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