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Sabine Gebhardt-Henrich

Received: 25 May 2022

Accepted: 5 August 2022

Published: 10 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

animals

Review

Regulatory Role of Apoptotic and Inflammasome Related
Proteins and Their Possible Functional Aspect in Thiram
Associated Tibial Dyschondroplasia of Poultry
Muhammad Fakhar-e-Alam Kulyar 1,2 , Wangyuan Yao 1, Quan Mo 1, Yanmei Ding 1, Yan Zhang 1, Jindong Gao 1,
Kewei Li 1, Huachun Pan 1, Shah Nawaz 1, Muhammad Shahzad 3, Khalid Mehmood 3 , Mudassar Iqbal 3,
Muhammad Akhtar 1, Zeeshan Ahmad Bhutta 4 , Muhammad Waqas 5, Jiakui Li 1,6,* and Desheng Qi 2,*

1 College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
2 Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong

Agricultural University, Wuhan 430070, China
3 Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur,

Bahawalpur 63100, Pakistan
4 College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
5 Faculty of Veterinary & Animal Sciences, University of Poonch Rawalakot, Rawalakot 12350, Pakistan
6 College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry

University, Linzhi 860000, China
* Correspondence: lijk210@mail.hzau.edu.cn (J.L.); qds@mail.hzau.edu.cn (D.Q.)

Simple Summary: Tibial dyschondroplasia (TD) is a metabolic disorder that impairs bony and carti-
lage processes. It is common in broilers due to the consumption of thiram, especially in the industrial
and agriculture zones. During the condition, cartilage does not only seem to develop ossification
during its occurrence but also causes lameness, mortality, and moral convictions in commercial
poultry. Moreover, it has been characterized as an economically significant condition since it causes
carcass damage due to the involvement of different biological pathways that lead to a particular
change in the chondrocytes. These entire cellular pathways are interconnected through various
cellular inputs, including anti-apoptotic, pro-apoptotic, and executioner caspases that modulate the
other essential chondrogenic proteins (collagen and aggrecan), extracellular metalloproteinases, and
NLRP3 base inflammasome.

Abstract: Tibial dyschondroplasia debilities apoptotic and inflammasomal conditions that can fur-
ther destroy chondrocytes. Inflammasomes are specialized protein complexes that process pro-
inflammatory cytokines, e.g., interleukin-1β (IL-1β) and IL-18. Moreover, there is mounting evidence
that many of the signaling molecules that govern programmed cell death also affect inflammasome
activation in a cell-intrinsic way. During the last decade, apoptotic functions have been described
for signaling molecules involving inflammatory responses and cell death pathways. Considering
these exceptional developments in the knowledge of processes, this review gives a glimpse of the
significance of these two pathways and their connected proteins in tibial dyschondroplasia. The
current review deeply elaborates on the elevated level of signaling mediators of mitochondrial-
mediated apoptosis and the inflammasome. Although investigating these pathways’ mechanisms
has made significant progress, this review identifies areas where more study is especially required. It
might lead to developing innovative therapeutics for tibial dyschondroplasia and other associated
bone disorders, e.g., osteoporosis and osteoarthritis, where apoptosis and inflammasome are the
significant pathways.
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1. Introduction

Cellular and molecular pathways regulate bone formation and growth. Any varia-
tion from the normal process may result in bone abnormalities, which pose a significant
economic challenge to the poultry business [1]. The control of bone formation and growth
seems complicated, with several layers of interaction between the regulatory factors [2].
Chondrocytes’ formation and differentiation occur on the growth plate in a particular
region. Pre-hypertrophic chondrocytes form a columnar layer once proliferating chon-
drocytes stop replicating. These phases are determined by the cellular phenotype and
extracellular matrix metalloproteinase (ECM) proteins. Columnar cells, pre-hypertrophic
cells, and hypertrophic cells express distinct transcription factors and ECM proteins as they
progress through the embryonic stages [3]. As a result, interactions between these essential
processes in the growth plate become necessary for appropriate long bone development [4].

Tibial dyschondroplasia is among the remarkably prevailing skeletal abnormalities
affecting young poultry birds [5]. The prevalence of this tibiotarsal bone condition has
increased by 30% in the flock at broiler farms. Due to the majority of its symptoms being
sub-clinical [6], it is often difficult to adequately detect the prevalence of TD at these farms;
as a result, farmers frequently find it easy to let their guard down. In fact, broilers with
TD experience leg weakness, limited motion, and even walking difficulties. Broilers are
more likely to sustain fractures during the feeding process, which negatively impacts the
welfare of the birds and reduces production, which further causes significant financial
loss for the poultry industry. Various researchers worldwide have constantly focused
on the etiology and prevention of TD [7,8]. In most cases, nutritional, ecological, and
genetic factors have been implicated in its etiology [9]. For instance, soybean meal in
feeding has been associated with TD pervasiveness, along with further concerns, including
ergocalciferol insufficiency, hyperthyroidism (overactive thyroid), and abnormal levels of
biological parameters such as interleukin-1β and nitric oxide [10]. Moreover, according to
some studies, copper deficiency, fusarochromanone, excessive dietary levels of cysteine
and homocysteine, metabolic acidosis [11], vitamin D deficiency [12], disbalance of calcium
and phosphorus [13], and thiram contamination [14] may also cause the condition. The
condition of TD has been linked to aberrant ossification and prolongation of tibial growth
plates (GP) as a result of reduced chondrocyte propagation and differentiation [15]. An
ideal cartilage matrix has enough blood supply and mineralization; however, this is not
always the case for TD [16]. During TD conditions, chondrocytes are premature and more
prominent than usual because of pre-hypertrophic enlargement with avascular ossein zones
in cartilage [17].

Pesticides are widely used in agriculture to eradicate or control many agricultural bugs,
herbicides, and diseases that may harm crops and animals. On the other side, pesticides
have become a hazard due to their toxicity. Living organisms may be exposed precisely or
periphrastically over the food chain, air, soil, and water [18]. Thiram (Tetramethyl thiuram
disulfide) is a dithiocarbamate pesticide and fungicide commonly used in horticulture to
treat grains for seed protection and preservation [19]. It has a lipophilic character that can
effortlessly combine with cell membranes to induce cytotoxicity, bone formation problems,
cartilage damage, and immunological downturns. It may also cause membrane disruption,
bone biosynthetic pathway inactivation, and angiogenesis inhibition [20]. So, it is highly
associated with the induction of TD, with symptoms that resemble commonly occurring
tibial dyschondroplasia. Additionally, earlier research has shown that TH (thiram) may
cause TD in chickens at the dose rate of 50 mg/kg [5,21]. Moreover, it has been frequently
mobilized to imitate TD in numerous research trials [22–25]. Our prior studies indicate that
thiram induces apoptosis in chondrocytes raising the number of apoptotic chondrocytes
inside the osteogenesis area [26–28]. Besides, thiram inhibits angiogenesis within the
GP, reducing chondrocytes function and osteogenesis [29]. Among thiram’s most visible
and damaging effects is a bone cartilage disorder in broilers when fed thiram-containing
diets [24,29]. During this disorder, non-mineralized avascular cartilage accumulates in the
growth plates of the proximal tibia, resulting in lameness [30].
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2. Prospective Tibial Cartilage Development

The growth and development of long bones in poultry are accomplished by chondro-
cytes and a matrix composed of highly organized growth plates [31]. These cells in the
growth plate can be subdivided into five phases for endochondral ossification (EO) [32].
OE is a term used to describe the process of bone formation. It is a process that includes the
continuous replacement of growing cartilage to generate a thick bony structure [33]. The
chondrocytes multiply, grow, and die during the ossification process, while the extracellular
matrix that builds during this process is subsequently invaded by the vascular system and
various bone cells, forming bone over cartilage matrix remnants [34]. The process occurs
in three unique locations: the physis, the epiphysis, and the cuboidal. During bone devel-
opment, chondrocytes may be subdivided into layers or zones in which the hypertrophic
zone is the most important for the formation of endochondral ossification [35,36]. Chon-
drocytes are formed in this area by final differentiation of the proliferating zone farthest
from the epiphyseal plate. When these cells stop proliferating, they enlarge, profoundly
impacting the development process [37,38]. Once the bone has developed to both ends,
the hypertrophic zone forms at the bottom of the growth plate, between the preceding
propagating cell layers and the epiphyseal bone (Figure 1) [35]. Here, the chondrocytes
are surrounded by an extracellular matrix, which eventually mineralizes in the zone of
preliminary calcification. After the invasion of the chondrocyte columns by the metaphy-
seal vascular system, bone grows on the remaining columns of hardened cartilage. The
combination of hardened cartilage and undeveloped bone is then progressively reshaped
to become mature bone [39].
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Figure 1. An illustration of a growth plate’s different zones.

Each growth plate is a multilayer sandwich structure organized into four distinct
zones: reserve, proliferating, transformational, and degeneration zones [40]. Immature
cells in the growth plate are included in the resting zone because they are located near the
epiphysis. This zone comprises tiny, homogeneous, compactly placed chondrocytes that
appear alone or in couples and are positioned inside the reserve zone (also called resting or
germinal area). This zone is further distinguished by a low proliferation rate, proteoglycan,
and collagen type II production [41,42]. The proliferating zone is the next layer down from
the reserve area. Chondrocytes are flattened and well-separated into columns in this area.
During mitosis, cells only divide at the bottom of a column. Collagen production in the true
germinal layer has risen significantly in type II and type XI [43]. The transformation zone,
which lies beneath the proliferative zone, is divided into a top and bottom hypertrophic
zone and a degenerative zone. Chondrocytes at this stage are distinguished by their lack of
cellular proliferation and decreased DNA synthesis [15,43].
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3. Growth Plate Associated Tibial Dyschondroplasia in Poultry

During TD condition, the chondrocytes in the growth plate region are unorganized,
having fewer blood vessels with lesions in proliferative and hypertrophic zones [29]. These
lesions include avascular, noncalcified tissue and soft cartilage. Histologically, hypertrophic
zone enlarges and combines with avascular cartilage zones [17]. Thiram is highly associated
with the induction of TD, with symptoms resembling tibial dyschondroplasia (Figure 2).
Additionally, earlier research has shown that TH (Thiram) may cause TD in chickens. More-
over, it has been frequently mobilized to imitate TD in numerous research trials [14,22,44].
Our prior studies indicate that thiram induces apoptosis in chondrocytes, raising the num-
ber of apoptotic chondrocytes inside the osteogenesis area [27,45]. Besides, thiram inhibits
angiogenesis within the GP, reducing chondrocytes function and osteogenesis [23,29].

Animals 2022, 12, x FOR PEER REVIEW 4 of 19 
 

appear alone or in couples and are positioned inside the reserve zone (also called resting 
or germinal area). This zone is further distinguished by a low proliferation rate, 
proteoglycan, and collagen type II production [41,42]. The proliferating zone is the next 
layer down from the reserve area. Chondrocytes are flattened and well-separated into 
columns in this area. During mitosis, cells only divide at the bottom of a column. Collagen 
production in the true germinal layer has risen significantly in type II and type XI [43]. 
The transformation zone, which lies beneath the proliferative zone, is divided into a top 
and bottom hypertrophic zone and a degenerative zone. Chondrocytes at this stage are 
distinguished by their lack of cellular proliferation and decreased DNA synthesis [15,43]. 

3. Growth Plate Associated Tibial Dyschondroplasia in Poultry 
During TD condition, the chondrocytes in the growth plate region are unorganized, 

having fewer blood vessels with lesions in proliferative and hypertrophic zones [29]. 
These lesions include avascular, noncalcified tissue and soft cartilage. Histologically, 
hypertrophic zone enlarges and combines with avascular cartilage zones [17]. Thiram is 
highly associated with the induction of TD, with symptoms resembling tibial 
dyschondroplasia (Figure 2). Additionally, earlier research has shown that TH (Thiram) 
may cause TD in chickens. Moreover, it has been frequently mobilized to imitate TD in 
numerous research trials [14,22,44]. Our prior studies indicate that thiram induces 
apoptosis in chondrocytes, raising the number of apoptotic chondrocytes inside the 
osteogenesis area [27,45]. Besides, thiram inhibits angiogenesis within the GP, reducing 
chondrocytes function and osteogenesis [23,29]. 

 
Figure 2. The root cause of tibial dyschondroplasia in broilers. 

4. Role of Different Proteins in the Pathogenesis of TD 
Research on disease pathogenesis and treatment involves comparing a diseased 

condition to a healthy one. The discovery of differentially regulated proteins in a disease 
seems to be a particular focus of inquiry. Those proteins might be a promising biomarker 
in pharmacological and clinical research. This kind of data might be helpful after 
combining with other biological data to establish a disease’s target picture. Too far, a 
plethora of research has demonstrated the essential proteins encode in combat against TD. 
Following are some significant proteins involved in tibial dyschondroplasia. 

4.1. Role of Chondrogenic Marker Proteins 
The damaged articular cartilage has a deficient ability to mend itself from causing 

any impairment [46]. Collagen II and aggrecan are two of the bones’ most crucial 
extracellular matrix components [47]. Any defect in collagen (type II) results either in 
approximate or quantitative alteration, depending on the mutant site. As a result, the 
clinical symptoms of collagen II abnormalities range from neonatal mortality to minor 
skeletal dysplasia [48]. Similarly, aggrecan is also a significant proteoglycan in the 
articular cartilage, expressed by chondrocytes. This protein is essential in chondro-skeletal 

Figure 2. The root cause of tibial dyschondroplasia in broilers.

4. Role of Different Proteins in the Pathogenesis of TD

Research on disease pathogenesis and treatment involves comparing a diseased condi-
tion to a healthy one. The discovery of differentially regulated proteins in a disease seems
to be a particular focus of inquiry. Those proteins might be a promising biomarker in
pharmacological and clinical research. This kind of data might be helpful after combining
with other biological data to establish a disease’s target picture. Too far, a plethora of
research has demonstrated the essential proteins encode in combat against TD. Following
are some significant proteins involved in tibial dyschondroplasia.

4.1. Role of Chondrogenic Marker Proteins

The damaged articular cartilage has a deficient ability to mend itself from causing any
impairment [46]. Collagen II and aggrecan are two of the bones’ most crucial extracellular
matrix components [47]. Any defect in collagen (type II) results either in approximate or
quantitative alteration, depending on the mutant site. As a result, the clinical symptoms of
collagen II abnormalities range from neonatal mortality to minor skeletal dysplasia [48].
Similarly, aggrecan is also a significant proteoglycan in the articular cartilage, expressed
by chondrocytes. This protein is essential in chondro-skeletal morphogenesis during
development [49]. Furthermore, due to its glycosaminoglycan concentration, aggrecan
plays an integral part in producing the cartilage’s persistent negative charge, resulting in
its water-attracting qualities [50].

In this way, these macromolecules are helpful in the process of “decellularized extra-
cellular matrix” (dECM), which is directly connected with the maintenance of the native
environment for promoting cell proliferation and differentiation [51] (Figure 3). Hence,
reducing these macromolecules may affect normal and pathological bone development [52].
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4.2. Role of CD147 (EMMPRIN/Basigin) Protein

The Cluster of differentiation 147 (CD147) protein decrypted by the BSG gene is an
immunoglobulin superfamily member interacting with the cell membrane. It has a type
I integral membrane binding site with 269 amino acids that features two ig domains at
the N-terminal [53]. It is also known as an extracellular matrix metalloproteinase inducer
(EMMPRIN) or basigin [54], located on the exterior of apoptotic cells. It may stimulate the
transcription or activation of matrix metalloproteinase (MMP) in neighboring mesenchymal
and malignant cells, hence promoting tumor invasion [55]. Recent investigations have
shown that CD147 is expressed in malignant cells and various other cells, including fibrob-
last and keratinocytes [56]. Additionally, it is vital to replenish the extracellular matrix
components required for continuous bone formation [57]. Furthermore, it is involved in
cellular reflexes, metabolism, inflammation, distant metastasis, metalloproteinase produc-
tion, apoptosis, angiogenesis, proliferation, and differentiation [58,59]. According to Asgari
et al., CD147 has a compelling part in cell migration and survival/apoptosis. It can control
p53, Bax, and Bcl-2 independently [60].

4.3. Role of Angiogenesis Proteins

Angiogenesis is the process through which new capillaries develop from pre-existing
vessels under different growth factors [61]. Almost all cells survive due to growth factors
and interaction with the extracellular matrix. The depletion of growth factors, including
VEGF, bFGF, and angiopoietin-1, may cause uncontrolled apoptosis. So, their activation
has been shown to promote survival by blocking apoptosis [62]. The action of VEGF is
transduced by two tyrosine kinase receptors, flt-1, and flk-1. Cell multiplication and sur-
vival have been linked to flk-1, whereas chemotaxis and vascular permeability have been
linked to flt-1 [62]. The protein kinase B (or Akt) and MAPK are parts of the flk-1-activated
signaling pathway [62,63]. Moreover, VEGF has been demonstrated to enhance cell sur-
vival by activating the PI3K/Akt pathway [61,64]. Surprisingly, VEGF’s survival function
relies on VEGF binding to VEGFR2 (KDR/flk-1) [64]. Hence, VEGFR2 and PI3K/Akt
signal transduction pathways are critical in VEGF-induced survival enhancement. Fur-
thermore, Akt-dependent stimulation of endothelial nitric oxide synthase (NOS) results in
increased endothelial NO production, which is one of the downstream effector mechanisms,
mediating the antiapoptotic VEGF action [65,66]. Alternatively, the PI3K/Akt pathway
promotes survivin transcription and can suppress the p38 mitogen-activated protein kinase
(MAPK) [67,68]. The VEGF induces MAPK/ERK pathway stimulation and suppresses the
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stress activated protein kinase/c-Jun amino-terminal kinase pathway, which is implicated
in the antiapoptotic action mediated by VEGF. Interestingly, activation of the PI3K/Akt
pathway mediates the survival impact of VEGF on cells and the migrating effect of VEGF
via Akt-dependent phosphorylation and eNOS activation [69] (Figure 4).
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4.4. Role of Apoptotic Proteins

Apoptosis participates in the development, regeneration, and integrity of multicellular
organisms. It is critical to multiply, eliminate and maintain homeostatic physiological
functions during the transformation, development, and tissue renewal processes [70]. This
natural cell death process is genetically predetermined and involves the destruction of
cells in response to specific signals under different mediators (Table 1) [71]. However,
if this common cell death mechanism fails, the effects might be disastrous. This entire
mechanism is interconnected to multiple conserved anticlines. It terminates for stimulating
and destroying cellular inputs [72] in different growth plate zones under the effect of
pesticides, e.g., thiram. Typically, programmed cellular senescence is regulated by a
range of intra and extracellular signals guided by the cell’s surroundings and internal
signaling [73]. It has been shown that some proteins hold both pro and anti-apoptotic
functions in the cell, which plays a pivotal part in the governance of apoptosis [74]. The
apoptosis inducer, mediator, and executioner genes are regularly transduced into those cells
to compensate for the absence of the endogenous homologue [75]. Moreover, several factors
contribute to the effectiveness of molecular-targeted specific medications; understanding
these factors offers insight into an effective treatment plan for designing molecular-targeted
medicines [70].
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Table 1. The various mediators of apoptosis and their functions [76].

Mediators Function

Bcl-2
Intrinsic pathway

Anti-apoptotic
mediators

Control permeability of mitochondria

Bcl-xL Inhibit p53, Bax, Bak, and granzyme B

c-FLIP

Extrinsic pathway

Prevent caspase-8 from binding with different
death receptors

NF-κB Upregulate c-FLIP and IAPs (anti-apoptotic mediators);
accelerate growth; activate anti-apoptotic p65 gene regulator

IAP

Alternate pathway

Mimic Bcl-2; inhibit caspase-9

Survivin Regulate mitosis of cell cycle; inhibit caspases-3
and caspase-7

XIAP Inhibit caspase-3, caspase-7, caspase-9; activate NF-κB

JAK, STAT

Cytokine receptors

Induction of survival genes through the NF-κB activation

MAPK Translocate to nucleus; induce anti-apoptotic factors
regarding genetic production

PKR Phosphorylation of protein initiation factor 2 α and IκB
kinase complex; delay apoptosis

CDKs, cyclins, and
CDK inhibitors Control machinery of cell cycle

TRAIL

Extrinsic pathway

Pro-apoptotic
mediators

A ligand that binds to TNF-α

TNF-α Bind to TNF-α; breakdown sphingomyelin into ceramide

FasL Bind to Fas; breakdown sphingomyelin into ceramide

DISC Activate caspase-8, 10; recruit c-FLIP; cleave tBid for
increasing MOMP

TRADD, FADD Recruit procasapase-8, 10

TWEAK Ligand that binds to receptors of pro-apoptosis

NGF Ligand that binds to receptors of pro-apoptosis

BH3-only

Intrinsic mitochondrial
pathway

Mediate death stimuli from environment and cell; inactivate
Bcl-2, Bcl-xL, and trigger Bax/Bak

Bim Bind and inhibit Bcl-2 and Bax/Bak

Bmf Bind and inhibit Bcl-2

Bik, Bad Bind and inhibit Bcl-2

Bid Activate tBid, inactive Bcl-2

PUMA, NOXA Activate Bax for MOMP increase

Bax, Bak Cause cytochrome c release, caspase-12 activation, and ER
depletion of calcium

AIF

Mitochondrial
substances

Induce caspase independent condensation of chromatin and
DNA fragmentation

Endo G Break DNA

Smac/DIABLO,
HtrA2/Omi Bind and neutralize IAPs

Procaspases-2,-3,-9 Initiate caspase cascade

Cytochrome c Reduce mitochondrial-membrane potential; bind to
procaspase-9 and Apaf-1 for enhancing apoptosome

ER pathway TRAF2 dissociation and caspase-12 activation; cytochrome
c release
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Table 1. Cont.

Mediators Function

-3, -6, -7 Caspases (effector) Cleaving proteins of cell membrane, nucleus, and cytoplasm

Granzyme B

Alternate substances

Activate effector of caspases

Ceramide Inhibit Bcl-2; cytochrome c release; activate caspase-9,
activate Bax; release cathepsins

p53 Suppress Bcl-2 transcription; Bax production, insulin
growth factor binding protein-3; Fas receptor upregulation

Cathepsin D Activate procaspase-3, 9; Bid cleavage

c-Abl tyrosine
kinase Cytochrome c release

There are two primary apoptotic mechanisms: the intrinsic approach, which involves
early mitochondrial disruption caused by cellular stress or cytotoxic assaults, and the
extrinsic system, activated by death receptor stimulation [77].

4.4.1. Intrinsic/Mitochondrial-Mediated Proteins

The intrinsic mechanism mainly relates to mitochondrial-mediated apoptotic path-
ways, activated by numerous extra and intracellular stressors, including oxidative damage,
irradiation, and cytotoxic medication [78]. Besides being controlled or triggered by extra-
neous stimulants, apoptosis may also be governed by stimuli such as cellular infliction
and oxidative strain [79]. The attributes of the Bcl family (Bax and Bcl-2) are known as
pro-apoptotic or anti-apoptotic proteins and are found on the mitochondrial membrane.
They are critical mediators of the intrinsic apoptotic process [80], resulting in cytochrome c
(Cyto C) release within the cytoplasm upon disrupting the mitochondrial membrane. The
clemency of Cyto C within the cytoplasm results in forming a network including APAF1
and pro-caspase 9, which is referred to as an apoptosome (Figure 5). This combination
cleaves and activates executioners, such as Caspase-3 and Caspase-7, ensuring cell death at
the end of the process [81]. Thus, intrinsic mitochondrial dysfunction leads to decreased in-
ner mitochondrial function, increased superoxide ion synthesis, mitochondrial malfunction,
and the affluence of MCG (matrix calcium glutathione) [82].

4.4.2. Bcl-2 Family Proteins

The Bcl-2 proteins family firmly guards against intrinsic or mitochondrial cell death.
This family group is unruffled of similar constructional proteins along with antagonistic
activities [83]. Initiators, effectors, and anti-apoptotic proteins are all members of the Bcl-2
family. Usually, pro-apoptotic proteins and stimulants counteract apoptotic-promoting
activities directly with the anti-apoptotic proteins. When these pro and anti-apoptotic
proteins are balanced, a cell’s survival or death is determined [4]. The balance among these
proteins is tangled with programmed cell death through the involvement of mitochon-
dria [84]. This is why it’ is essential to keep an eye out for abnormalities that might cause
an imbalance in mitochondrial biogenesis, resulting in the destruction of inner membrane
potentiality and an upturn in superoxide ions generation [70].

All Bcl-2 proteins have a unique series of homology in sustained areas, called BH
(Bcl-2 homology) motifs, that determine shape and activity [85]. All candidates of the
anti-apoptotic category and a subgroup of the representative pro-apoptotic type are a multi-
domain group of proteins having a series similarity within three to four BH domains. Such
a subgroup of pro-apoptotic members termed BH3 exclusive proteins demising domain
since mandatory multi-domain Bcl-2 family proteins [86].
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4.4.3. Anti-Apoptotic Bcl-2 Proteins

The resistance mechanism against apoptosis is recognized as one of the defining
characteristics of cells [87]. Many studies have proved that the increase of anti-apoptotic
Bcl-2 proteins plays a central role in B cell lymphomagenesis [88]. Another possibility is
that the expression level of these proteins is a sign of how reliant the cell is on the protein to
keep itself stable [89]. Apoptosis is inhibited initially by the competence of anti-apoptotic
members to pickle and detain the pro-apoptotic proteins (e.g., Bax and Bak), preventing
mitochondrial membrane damage [90]. To prevent apoptosis from releasing Cyto C from
the membrane, these Bcl-2 family proteins reside on the outer mitochondrial subunit [83].

The dysregulation of anti-apoptotic proteins occurs during malignancies that further
promote tumor formation [91]. The equilibrium of such proteins is disrupted when Bcl-
2 (or related proteins) are dysregulated, or BH3-only proteins or effector proteins are
depleted [92] (Figure 6). The numerous genetic pathways behind these anomalies are
discussed elsewhere [93]. However, it is critical to recognize that the elevated levels of
pro-survival protein members may be an epigenetically mediated adaptive response to
cellular stress. In summary, cells with increased Bcl-2 expression function as a safeguard
against apoptosis in cellular stressors (Figure 5). As Letai describes, these cells are “primed
for death” and should thus be very sensitive to the lack of Bcl-2′s protective role [92].
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4.4.4. Pro-Apoptotic Bcl-2 Proteins

The anti-apoptotic proteins contribute to cell continuity by controlling or keeping the
levels of pro-apoptotic proteins [94]. In contrast, the pro-apoptotic proteins are members
of the Bcl-2 family with several BH domains. These members are structurally related and
have pro-survival relatives. During an apoptotic event, Bax and Bak homodimerize and
oligomerize in the exterior mitochondrial layer, resulting in the discharge of Cyto C within
the cytoplasm [84]. Numerous research has been conducted to determine the prognostic
value of pro-apoptotic proteins. For instance, the mRNA intensity of Bax and Bcl-2 was
evaluated in colorectal cancer patients. According to the results, Bax substantially induced
tumor cell apoptosis and regulated Bcl-2 to prevent apoptosis [95].

The mitochondrial cell death pathway is interceded by multi-domain proteins such as
Bax and Bak, with anti-apoptotic proteins. Various genetic and biochemical studies act as
upstream regulating entities that resist the intrinsic death-inducing behavior at mitochon-
drial membranes [96]. Their interaction with mitochondrial membranes has been exten-
sively investigated, revealing that these proteins regulate mitochondrial outer membrane
permeability (MOP) for apoptotic proteins’ discharge, e.g., cytochrome [97,98]. Various con-
ditions have been found to activate their action, showing that these pro-apoptotic proteins
may remain dormant until triggered. For example, Bax is located in the cytosol instead of
interacting membrane organelles before any cell death signal [99]. The presence of Bax in
its inactive soluble form shows that the C-terminal membrane-anchoring motif is snuggled
into the same niche that most likely engages BH3 peptides [100]. Bax changes its shape in
response to still-unknown signals, forming oligomers, revealing its C-terminal membrane-
anchoring motif, and entering into mitochondrial membranes [96,101]. Additional proteins
(e.g., Bak and Bok) seem to be present in membranes on a constitutive basis. Even if Bax
or Bak are embedded in the outer mitochondrial membrane, oligomerization appears to
be required to discharge cytochrome c and other apoptotic proteins [96]. Additionally,
anti-apoptotic proteins of the Bcl-2 family may create pathological conditions conducive to
apoptosis by their capacity to attach and trigger Bax, Bak, and Bok.

4.4.5. Activation of the Executioner Caspase-3 and Caspase-7

The execution phase is the last stage in the induction of apoptosis. It is distinguished
by vacuolization, chromatin condensation, genomic instability, and blebbing of the cell
membrane [82]. It is initiated by a series of events, with the executioner (e.g., caspases-3
and -7) acting as the culmination point of the process [102]. It is thought that the cleav-
age and activation of executioners cause significant intracellular proteolysis and cellular
functioning impairment [103,104]. Additionally, activation and aggregation of these two
caspases have already been distinguished as biochemical apoptotic hallmarks [105]. Be-
cause of their almost identical activity toward specific synthetic peptide substrates, the
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primary executioners are widely believed to have functionally similar roles inside the
cell death mechanism [106]. As a result, the expression of these executor caspases is crit-
ical for providing a reliable biomarker of disease progression. For instance, a study that
evaluated Caspase-3 expression in healthy and cancerous prostates concluded that the
absence of Caspase-3 in cancerous affected cells may destroy apoptotic components [107]
(Figure 7). A study on MCF7 cells discovered that the overexpression of Caspase-3 increases
chemosensitivity to develop drug counteraction [108]. Moreover, it is an efficient marker
for detecting gastric cancer differentiation, development, invasion, and dissemination
through modulation of infiltrating lymphocyte apoptosis [109]. In contrast, Caspase-7
activates the spontaneously anti-parallel complex formation of two precursor variants. Few
research studies have investigated the role of this caspase type in apoptosis regulatory
oversight and its relationship to clinicopathological characteristics. For example, its re-
duced protein expression level was found to be a strong predictor in all breast tumors [110].
The findings further indicated that Caspase-7 is abnormally produced and contributes to
cellular adhesion and division, making it a potential target for the treatment of different
disorders [111].
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4.5. Role of Inflammasome Proteins

An inflammation is some kind of a defensive immunological response triggered by
an innate immune system in feedback to damaging stimuli [112]. Stimulation of the
inflammasome complex is triggered when chronic inflammation persists, resulting in
the release of pro-inflammatory cytokines (for example, interleukin-1beta) over time. To
reduce inflammation and induce cell death, this protein complex has been shown to have
a substantial role in carcinogenesis and cancer progression [113]. Hence, it is a crucial
modulator of the innate immune system [114].

An NLRP3 base inflammasome seems to be a critical part of the innate immunity that
various stimuli may trigger. It incorporates NLRP3, an apoptosis-associated speck-like
protein with a CARD (ASC), and pro-Caspase-1 [115] (Figure 8). Nevertheless, Caspase-1
is notorious for generating pyroptosis and was first discovered to activate apoptosis under
beta cell lymphoma 2 (Bcl-2) inhibition [116]. Moreover, it is involved in apoptosis in
several clinical situations [117]. It has recently been discovered that NLRP3 inflammasomes
are formed due to intrinsic apoptosis [118,119]. The Caspase-3 and Caspase-7 break down
the membrane protein pannexin1 during apoptosis. This helps free pannexin1 channel
activity from self-inhibition caused by its cytoplasmic C-terminal tail. After cleaving these
executioners, pannexin 1 sends K+ out of the cell to activate the NLRP3 inflammasome,
which in turn produces IL-1β [120]. So, the NLRP3 base inflammasome has much impor-
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tance in bone-related disorders. According to research by Kin et al., patients experiencing
arthritis had increased expression of the NLRP3 inflammasome, which was associated with
elevated pro-inflammatory mediators [121] (Figure 7). Another study by Pan et al. found
that nucleosides, including nucleoside analogues, may stimulate host immune responses in
mice with type II collagen-induced arthritis by interacting with TREM receptors on the skin
and NLRP3 inflammasomes [122]. As a result, combining these pro-inflammatory cytokines
may result in phenotypic alterations in cells throughout the ossification process [115,123].
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5. Prevention and Treatment against Apoptotic Events of TD

According to our previous studies, chlorogenic acid (CGA) in the feed may lower the
prevalence of tibial dyschondroplasia as it targets specific mediators related to apoptotic
events [12,26,27,45,124]. CGA is the most abundant phenolic acid in nature, being synthe-
sized when quinic and caffeic acids are esterified. It occurs naturally in various fruits, herbs,
and vegetables, including kiwi fruit, coffee beans, tobacco leaves, and honeysuckle [125]. It
has been seen in pharmacological trials to have significant antioxidant, anti-inflammatory,
antiviral, anticancer, cardioprotective, anti-apoptotic, and free radical scavenging proper-
ties [27,45,126,127]. Zhang et al. discovered that CGA might stimulate osteoblast growth
and speed the S phase transition process. Additionally, it may promote Bcl-2 expression
and limit Bax activation during apoptosis, ultimately decreasing osteoblast apoptosis [128].
It has been shown in recent work by Kulyar et al. that CGA has therapeutic benefits for
TD chickens by modulating a variety of pathways associated with apoptosis and inflam-
masome [27,45]. Furthermore, targeting micro RNAs is a better therapy for overcoming
such disorders. It is well known that miRNAs control mRNA expression via binding
to their 3′-UTRs. These microRNAs (miRNAs) convoluted in various skeletal buildup
aspects [129–131]. Such miRNAs attach to complemental bases in 3′ untranslated part of
particular target mRNAs, preventing the production of specific proteins [132]. The major
biological actions such as cell proliferation, apoptosis, cell differentiation, and metabolism
are influenced by miRNAs. As a result, miRNA expression alterations may significantly
impact normal and abnormal cells [133]. The miR-460a is an essential micro RNA involved
in many structural and metabolic cellular processes [134]. Moreover, it is correlated with
inflammatory genes, including IL-1β, in broiler chickens [134,135]. Some other options can
be used from the treatment perspective (Table 2).
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Table 2. Alternative treatment options for controlling apoptotic events in tibial dyschondroplasia.

Name Active Components References

Morinda officinalis Iridoids glycoside [136]
Resveratrol Phytoalexin, polyphenolic [137]
Hesperetin Flavonoids [138]
Angelica Ferulic acid, butylidenephthalide, and polysaccharides [139]

Tetrandrine Alkaloids [140]
Puerarin Isoflavone [141]

Berberine II Alkaloids (Isoquinoline) [142]
Sophoridine Matrine [143]

Bauhinia championii flavone Flavonoids [144]
Achyranthes bidentata Phytosterone, phytoecdysteroids, saccharides and saponins [145]

Sinomenine Alkaloids [146]

Recent research has focused on the idea that, in contrast to pro-apoptotic, the anti-
apoptotic approach in tibial dyschondroplasia may occasionally be advantageous as it
reduces the inflammatory response [45]. In fact, an earlier regulation of apoptosis may be
beneficial for chondrocytes’ survival. Moreover, local and international industries adopt a
proper nutritional strategy for preventing tibial dyschondroplasia (e.g., a proper ratio of
calcium, phosphorus, and vitamin D [147,148]) and vaccination for other bone disorders,
e.g., viral and bacterial arthritis, chondronecrosis, osteomyelitis, etc. [149,150].

These findings provide fresh knowledge to researchers. Even though several signif-
icant research studies have contributed to a deeper understanding of the treatment and
prevention of tibial dyschondroplasia, the knowledge is still inadequate for such a critical
issue. As a result, the discovery of effective and very sound therapy is urgently required.
Moreover, future research on the mechanism of protein-to-protein interaction with the latest
scientific findings may lay the foundation for associated bone disorders, e.g., osteoarthritis
and osteoporosis.

6. Conclusions

Tibial dyschondroplasia (TD) has been the most severe tibiotarsus disease, causing
tibial epiphysis in fast-growing chickens. It causes unusual apoptosis in the tibial growth
plate (GP), reducing chondrocyte activity and compromising osteogenesis. According to
different pathologic findings and molecular mechanisms, apoptosis and inflammasome are
critical. Hence, a deep insight into these pathways is necessary to know the most effective
therapeutic approach.
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inhibitory-κB; IAPs, surviving of apoptosis proteins; XIAP, X-linked inhibitor of apoptosis protein;
JAK, Janus kinase; STAT, signal transducers and activators of transcription; MAPK, mitogen-activated
protein kinase; PKR, protein kinase R; CDK, cyclin-dependent kinase, TRAIL, tumor necrosis factor-
related apoptosis inducing ligand; FasL, Fas ligand; DISC, death-inducing signaling complex; c-FLIP,
FLICE-like inhibitory protein; MOMP, mitochondrial outer membrane permeability; FADD, Fas-
associated death domain; TRADD, TNFR1-associated death domain; TWEAK, TNF-like WEAK
inducer of apoptosis; NGF, nerve growth factor; Bcl-2, B-cell lymphoma 2; BH3, Bcl-homology-3; tBid,
truncated Bid; Bax, Bcl-2-associated protein x; Bak, Bcl-2-associated protein k; Apaf-1, apoptotsis
activating factor-1—Activates procaspase 9; AIF, apoptosis inducing factor; Endo G, endonuclease
G; IAPs, surviving of apoptosis proteins; Smac/DIABLO, second mitochondrial-derived activator
of caspases—Director inhibitor of apoptosis-binding protein with Low pI; TRAF2, TNF receptor
associated factor 2.
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