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Neurotensin receptors have been studied as molecular targets for the treatment of pain,
schizophrenia, addiction, or cancer. Neurotensin (NT) and Contulakin-G, a glycopeptide
isolated from a predatory cone snail Conus geographus, share a sequence similarity at
the C-terminus, which is critical for activation of neurotensin receptors. Both peptides
are potent analgesics, although affinity and agonist potency of Contulakin-G toward
neurotensin receptors are significantly lower, as compared to those for NT. In this
work, we show that the weaker agonist properties of Contulakin-G result in inducing
significantly less desensitization of neurotensin receptors and preserving their cell-surface
density. Structure-activity relationship (SAR) studies suggested that both glycosylation and
charged amino acid residues in Contulakin-G or NT played important roles in desensitizing
neurotensin receptors. Computational modeling studies of human neurotensin receptor
NTS1 and Contulakin-G confirmed the role of glycosylation in weakening interactions with
the receptors. Based on available SAR data, we designed, synthesized, and characterized
an analog of Contulakin-G in which the glycosylated amino acid residue, Gal-GalNAc-
Thr10, was replaced by memantine-Glu10 residue. This analog exhibited comparable
agonist potency and weaker desensitization properties as compared to that of Contulakin-
G, while producing analgesia in the animal model of acute pain following systemic
administration. We discuss our study in the context of feasibility and safety of developing
NT therapeutic agents with improved penetration across the blood-brain barrier. Our
work supports engineering peptide-based agonists with diverse abilities to desensitize
G-protein coupled receptors and further emphasizes opportunities for conotoxins as novel
pharmacological tools and drug candidates.
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INTRODUCTION
Contulakin-G was discovered over 15 years ago as a member
of the neurotensin (NT) family from the venom of preda-
tory marine snail, Conus geographus (Figure 1A; Craig et al.,
1999). Contulakin-G is a 16 amino acid peptide with two post-
translational modifications: pyroglutamate (Z) at the N-terminus,
and β-D-Gal-(1→3)-α-D-GalNAc-(1→) disaccharide attached to
Thr10 (Figure 1B). Contulakin-G exhibited potent analgesic activ-
ity in three pain models in rats following intrathecal delivery,
namely in tail-flick (acute pain), formalin test, and CFA-induced
allodynia inflammatory pain (Craig et al., 2002; Han et al., 2008).
Both NT and Contulakin-G exhibited comparable potencies in a
rat formalin assay (ED50 for Contulakin-G was 0.07 nmol (Allen
et al., 2007), while ED50 for NT was 0.11 nmol (Roussy et al., 2008).
In mice, the analgesic potency of Contulakin-G (ED50 = 1 pmol)
was 600 times higher than that of NT in the formalin assay

following intrathecal administration (Craig et al., 2002; Han et al.,
2008). Contulakin-G (coded as CGX-1160) was granted an orphan
drug designation by the US Food and Drug Administration (FDA)
and reached a clinical development stage for the treatment of
chronic intractable pain following intrathecal administration in
patients with spinal cord injury (Business Wire, August 30th 2005).

The C-terminal sequence of Contulakin-G shares a similarity
with an endogenous NT found in vertebrate animals (Figure 1B).
NT is a 13 amino acid neuropeptide involved in a variety of
central and peripheral neuromodulatory effects (Nemeroff et al.,
1992; Vincent et al., 1999; Dobner, 2005; Boules et al., 2006).
Pleiotropic properties of NT are supported by its involvement
in Parkinson’s disease, nociception, cancer, blood pressure, glu-
cose control, autism spectrum disorders, appetite, and feeding
(Mazella et al., 2012; Boules et al., 2013, 2014; Kleczkowska and
Lipkowski, 2013). NT also plays a role in the pathophysiology of
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FIGURE 1 | (A) A shell of predatory marine snail Conus geographus from
which Contulakin-G was originally isolated. (B) Comparison of Contulakin-G
with neurotensin derived from various vertebrate animals. The peptides
share a similarity in the C-terminal part of the sequence which is critical for
interactions with neurotensin receptors.

mental diseases (Boules et al., 2013, 2014). Metabolically stable
NT analogs that penetrate the blood-brain-barrier (BBB) could
be used for the treatment of pain, schizophrenia, or substance
abuse (Boules et al., 2006; Dobner, 2006). Several NT analogs
exhibit potent antinociceptive activities (al-Rodhan et al., 1991;
Gui et al., 2004; Dobner, 2006), whereas our group showed that
glycosylated or lipidated NT analogs also exhibit potent anticon-
vulsant activities (Lee et al., 2009; Green et al., 2010). Branched
NT analogs have anticancer (Falciani et al., 2010, 2013a,b) and
anti-apoptotic activities (Devader et al., 2013). Recent advances in
developing new agonists for NT receptors include NTS-1 selective
small-molecules (Peddibhotla et al., 2013; Di Fruscia et al., 2014;
Hershberger et al., 2014) and NTS2-selective mimetics (Einsiedel
et al., 2011; Held et al., 2013). Pleiotropic nature of NT includes
promoting progression of certain types of cancer (Wu et al., 2013),
providing new challenges and opportunities for preclinical and
clinical development of NT-based analogs. Taken together, NT
analogs are pharmacological tools and potential therapeutic agents
for a variety of medical conditions which involve neurotensin
receptors.

Contulakin-G was previously shown to be an agonist for all
three subtypes of neurotensin receptors, NTS1, NTS2, and NTS3
with submicromolar potency (Craig et al., 1999). By measuring
phosphoinositide accumulation in CHO cells expressing hNTS1,
Craig et al. (1999) determined the agonist potency of Contulakin-
G and NT as 0.96 μM and 1.4 nM, respectively. We hypothesized
that the weaker-agonist property of Contulakin-G can result in
decreased neurotensin receptor desensitization, hence improving
its analgesic properties due to preserving the target receptor occu-
pancy. Desensitization of neurotensin receptors was extensively
studied in various cells (Souaze et al., 1997, 2006; Vandenbul-
cke et al., 2000; Souaze, 2001; Mazella and Vincent, 2006; Souaze
and Forgez, 2006), while the weaker-agonist phenomenon was
previously described for various GPCRs (Clark et al., 1999). To

test this hypothesis, we studied structure-agonist relationships for
Contulakin-G and NT using endogenously expressed NT recep-
tors in human colonic adenocarcinoma HT-29 cells (Amar et al.,
1986; Turner et al., 1990). Here we report that: (1) Contulakin-G
is a weaker agonist exhibiting significantly lower desensitization
potency, as compared to that of NT, and (2) both glycosylation
and charged amino acid residues contribute to desensitization
properties of Contulakin-G and NT, and (3) SAR results support
engineering neuropeptide-based agonists with diverse agonist and
desensitization potencies. Our work provides a basis for engineer-
ing novel pharmacological tools for neurotensin receptors with
varying desensitization properties.

MATERIALS AND METHODS
GENERAL SYNTHETIC PROCEDURES
Fmoc-amino acids were purchased from Chem–impex Inter-
national Inc. Reagents, chemicals, and memantine HCl, were
obtained from Aldrich Chemical Corporation and used with-
out further purification. Fmoc-Leu-Wang resin (0.57 meq/g)
was obtained from Peptide International Inc. Fmoc-Thr(α-TF-
Ac6)-OH was obtained from Sussex Research Laboratories Inc.
Peptides were synthesized automatically on Symphony Pep-
tide Synthesizer (Protein technology Inc) or Apex 396 Peptide
Synthesizer (AAPPTec Inc). Fmoc-protected amino acids (five-
fold) were coupled automatically onto Fmoc-Leu-Wang resin
by PyBop method (Fmoc-amino acid/PyBop/DIPEA, 1:0.98:2,
molar ratio). Manual coupling reactions were performed under
N2 atmosphere, unless otherwise indicated. Peptide purifica-
tion was carried out using a semi-preparative diphenyl column
(Vydac, 219TP101522) or a semi-preparative C18 column (Vydac,
218TP510) on a Waters 600 pump system equipped with a Waters
2487 dual wavelength detector (λ1 = 220 nm, λ2 = 280 nm).
The purities of peptides were determined on a Vydac diphenyl
column (218TP54) in Waters Alliance 2695 system unless indi-
cated otherwise. The HPLC mobile phases were: buffer A, water
(0.1% TFA), and buffer B, 90% acetonitrile in water (0.1%
TFA). Peptides were quantified on a Cary 50 Bio UV-visible
spectrophotometer. Peptide metabolic stability was monitored
using YMC ODS-A S-5 120 Å column (AA12S052503WT) and
Waters Alliance 2695 system. Metabolic stability assays were per-
formed using an Eppendorf thermomixer. Peptide identities were
verified by MALDI-TOF MS at the University of Utah Core
Facility.

CHEMICAL SYNTHESIS OF CONTULAKIN-G
Chemical syntheses of Contulakin-G and its glycosylated analogs
were previously published (Craig et al., 1999; Westerlind and
Norberg, 2006). Contulakin-G was synthesized on an Apex 396
automated peptide synthesizer (AAPPTec) on 30 μmol scale apply-
ing standard solid-phase Fmoc (9-fluorenylmethyloxycarbonyl)
protocols. The peptide was constructed on a preloaded
Fmoc-L-Leu-Wang resin. 10-fold excess of amino acids were
used. Coupling activation was achieved with 1 equivalent
of 0.4 M benzotriazol-1-yl-oxytripyrrolidinophosphonium hex-
afluorophosphate (PyBOP) and 2 equivalents of 2 M N,N-
diisopropylethyl amine (DIPEA) in N-methyl-2-pyrrolidone
(NMP) as the solvent. Each coupling reaction was conducted
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for 60 min. Fmoc deprotection was carried out for 20 min
with 20% piperidine in dimethylformamide (DMF). Fmoc-Thr(α-
TF-Ac6)-OH (1.25-fold) was manually coupled on the resin for
2 h. After assembling all the amino acids, Contulakin-G was
removed from the resin by a 3.5 h treatment with 0.5 mL
of Reagent K (TFA/water/phenol/thioanisole/1,2-ethanedithiol
82.5/5/5/5/2.5 by volume) and subsequently filtered and precip-
itated with 10 mL of cold methyl-tert-butyl ether (MTBE). The
crude peptide was then collected by centrifugation at 7,000 × g for
4 min and washed once with 10 mL of cold MTBE. The washed
peptide pellet was dissolved in 10% acetonitrile in 0.1% TFA in
water and purified by reversed-phase (RP) HPLC using a semi-
preparative C18 Vydac column (218TP510, 250 mm × 10 mm,
5-μm particle size) eluted with a linear gradient ranging from 15
to 55% of solvent B, at a flow rate 4 ml/min. The eluent was mon-
itored by measuring absorbance at 220 nm. Purity of the peptide
was assessed by an analytical C18 Vydac reversed-phase HPLC
(218TP54, 250 mm × 4.6 mm, 5 μm particle size) using a lin-
ear gradient ranging from 5 to 65% of solvent B in 30 min with
a flow rate 1 ml/min. In the next step, deacetylation reaction of
Thr(α-TF-Ac6) was performed with 50 mM of sodium methoxide
in methanol for 2.5 h, at RT. The progress of deacetylation was
monitored by RP-HPLC. The peptide was purified again using the
same method as described above. Molecular mass of Contulakin-
G was confirmed by MALDI-TOF mass spectrometry. Final yield
was 3.5%.

SYNTHESIS OF CONTULAKIN-G-MEMANTINE
Fmoc-protected amino acids (fivefold) were coupled automati-
cally onto Fmoc-L-Leu-Wang resin (0.57 meq, 50 μmol scale)
by PyBop method (Fmoc-amino acid/PyBop/DIPEA, 1:0.98:2,
molar ratio) on Symphony Peptide Synthesizer. Fmoc-Glu(OAll)-
OH was assembled at the10th position. After coupling all the
amino acids, the resin was treated with HOAc (0.25 mL),
N-methylmorpholine (0.125 mL), and CH2Cl2 (5 mL), and
Pd0(PPh3)4 (0.32 g, 0.277 mmol) under Nitrogen protection for
2 h to remove the allyl protecting group of Glu10. The resin was
washed with CH2Cl2 and neutralized with DIPEA. Excess Palla-
dium residues were removed after treating the resin with 0.02 M
sodium diethyldithiocarbamate in DMF solution. The resin was
washed again with DMF and CH2Cl2. The acid group of Glu10

was activated with one-fold of PyBOP (26 mg, 50 μmol, HOBt
(6.75 mg, 50 μmol) and DIPEA (26 μL, 150 μmol) for 5 min,
followed by the addition of memantine hydrochloride (10.8 mg,
50 μmol), and shaken for 24 h. The peptide was cleaved from the
resin with Reagent K and was precipitated out of MTBE. The crude
peptide was purified with semi-preparative HPLC (Vydac diphenyl
column, 219TP101522). The buffer A and the buffer B were used
to produce a linear gradient from 5 to 50% of buffer B over 50 min
with a flow rate of 10 mL/min. The elution was monitored by UV
detection at 220 nm. Purified analogs were quantified by mea-
suring UV absorbance at 274.6 nm (molar absorbance coefficient
ε = 1420.2 cm−1M−1). Peptide purification was monitored using
an Alliance HPLC system with a linear gradient from 5 to 95%
buffer B over 30 min. The purity of the final product was >95%. A
scheme for the chemical synthesis is provided in the Supplemental
Material (Figure S1). Final yield was 20%.

CALCIUM ACTIVATION ASSAY
HT-29 cells were seeded into black-sided, clear bottom, cell-
culture treated 96-well plates for each assay. The cells were seeded
at 45,000–50,000 cells per well and grown overnight until 95%
confluent. The growth media consisted of DMEM supplemented
with 10% FBS, 4 mM L-glutamine, and 20 mM HEPES. The
cells were loaded with 1 μM of Fluo-4-NW (Life Technologies,
Grand Island, NY, USA) and incubated in the dark at room
temperature for an hour. Then, the cells were exposed to the
Contulakin-G analogs (10 μM–10 pM), and the fluorescence was
measured as Arbitrary Fluorescence Units (AFU) by the scanning
microplate fluorometer Flexstation (Molecular Devices, Sunny-
vale, CA, USA). Results were expressed as a percentage of the 1 μM
peak response. Fluorescence data from quadruplicate experiments
were analyzed using Graphpad Prism 3.0, and EC50 values were
calculated.

DESENSITIZATION OF NEUROTENSIN RECEPTOR ACTIVATION
Desensitization of the NTR-mediated functional response (cal-
cium mobilization) following exposure to Contulakin-G and NT
was evaluated in HT-29. The cells were exposed to Contulakin-G
or NT for 10 min (10 μM–100 pM). After exposure to Contulakin-
G or NT, cells were washed with PBS and incubated in growth
media for 15 min in the absence of peptide. The cells were loaded
with the calcium sensitive dye Fluo-4-NW (Life Technologies,
Grand Island, NY, USA) and incubated in the dark at room temper-
ature for an hour. During the calcium mobilization assay, the cells
were re-exposed to the same peptide (at 1 μM only) and increased
fluorescence was detected using the scanning microplate fluorom-
eter Flexstation (Molecular Devices, Sunnyvale, CA, USA). DC50

values for desensitization calculated from quadruplicate exper-
iments using Graphpad Prism 3.0. Results were expressed as a
percentage of the 1 μM peak response in the control cells (not
previously exposed to any peptide).

DETERMINATION OF CELL SURFACE DENSITY OF NTR
To measure the recovery of cell-surface receptors upon the acti-
vation, binding assay was employed using Europium-labeled
NT (Eu-NT) as a ligand (PerkinElmer, Waltham, MA, USA).
The higher fluorescence signal would imply more NTR on the
cell surface. The HT-29 cells were exposed to the agonists
for 10 min. At the indicated time point, cells were washed
with media and the binding assay was performed in quadru-
plicate. Eu-NT and ligands were diluted in binding buffer
(50 mM Tris-HCl pH 7.5, 5 mM MgCl2, 25 mM EDTA, 0.2%
BSA). Samples were incubated at room temperature for 90 min
in a total volume of 200 μL. Following incubation, samples
were washed four times with wash buffer (50 mM Tris-HCl
pH 7.5, 5 mM MgCl2). Enhancement solution (200 μL) was
added, and the plates were incubated at room temperature for
30 min. The plates were read on a Wallace VICTOR3 instru-
ment using the standard Eu-TRF measurement (λex = 340 nm,
400 μs decay, and λem = 615 nm for 400 μs). Competi-
tion curves were analyzed from quadruplicate experiments with
GraphPad Prism using the sigmoidal concentration–response
(variable slope) classical equation for non-linear regression
analysis.

www.frontiersin.org February 2015 | Volume 6 | Article 11 | 3

http://www.frontiersin.org/
http://www.frontiersin.org/Experimental_Pharmacology_and_Drug_Discovery/archive


Lee et al. Contulakin-G is analgesic targeting neurotensin receptors

TAIL FLICK TEST
Pain sensitivity in the tail flick assay was measured using a radiant
heat beam focused on the animal’s tail while it was on an auto-
mated Plantar/Tail Analgesic Meter, Series 8 (Model 336TG; IITC,
Woodland Hills, CA, USA). The latency, in seconds, to the tail
flick response was recorded as a measure of the acute thermal pain
threshold. The test substance was administered intraperitoneally
(i.p.,), at a volume of 0.1 ml/10g body weight using a 1 mL syringe
with a 26G 3/8 bevel needle. Immediately before the test, the mouse
was habituated to the plexiglass restraining tube with its tail pro-
truding for 2–3 min before the test. Tails were stimulated at ∼3 cm
from tip. For the tail flick test, once the power source was man-
ually triggered, a radiant heat beam of light was applied to the
tail and the latency of the mouse to remove its tail from the heat
source was automatically recorded at the moment the tail flick
breaks the beam of light. The latency was analyzed for each mouse
tested and average latency to tail withdrawal ±SEM. determined
for each group. These values were compared statistically by Stu-
dent’s t-test (two groups) or by one-way ANOVA (three or more
groups) and considered significantly different if the p-value was
less than 0.05. An animal receiving the requisite volume of vehicle
was alternated with each mouse given the test drug (n = 8 per
group). All animals were allowed free access to both food (Prolab
RMH 3000) and water except when they were removed from their
cages for the experimental procedure. All mice were housed, fed,
and handled in a manner consistent with the recommendations
in the National Research Council Publication, “Guide for the Care
and Use of Laboratory Animals.”

HOT PLATE TEST
Mice were brought to the testing room and allowed to acclima-
tize for 10 min before the test begins. Pain reflexes in response to a
thermal stimulus were measured using a Hot Plate Analgesia Meter
from IITC Instruments (IITC,Woodland Hills, CA, USA). The sur-
face of the hot plate was heated to a constant temperature of 55◦C,
as measured by a built-in digital thermometer with an accuracy
of 0.1◦C. Mice were placed on the hot plate (25.4 cm × 25.4 cm),
which was surrounded by a clear acrylic cage (19 cm tall, open top),
and the Start/Stop button on the timer was activated. The latency
to the hindlimb response was measured to the nearest 0.1 s by
manually stopping the timer when the response was observed. The
mouse was immediately removed from the hot plate and returned
to its home cage. Animals were tested one at a time and were not
habituated to the apparatus prior to testing. Each animal was tested
only once. The latency to response for each mouse was recorded
and the average latency to hind paw response ±SEM. determined
for each group. These values were compared statistically by Stu-
dent’s t-test (two groups) or by one-way ANOVA (three or more
groups) and considered significantly different if the p-value was
less than 0.05. An animal receiving the requisite volume of vehicle
were alternated with each mouse given the test drug (n = 8 per
group).

COMPUTATIONAL MODELING AND ANALYSIS
Homology model of human NTS1 receptor was built using
knowledge-based method. The crystal structure of NTR1 from
Rattus norvegicus [PDB entry 4GRV (White et al., 2012)] was

selected as template (with 89% sequence identity) and homology-
modeling exercise was performed using the Prime module (version
3.1) of Schrödinger Suite (Schrödinger, 2012). The built model
was refined using molecular mechanics based energy minimiza-
tion and molecular dynamics simulation was performed for
further structural analysis and characterization. Due to the high
homology of the NTR1 and NTS1 at the binding site (94%
sequence identity) and the constrained peptide-binding channel,
coordinates of the contulakin-G peptide (SNATKKPYIL) were
initialized using the coordinates from the NT crystal structure
[PDB entry 4BUO (Egloff et al., 2014)]. Only the C-terminal
residues (RRPYIL) of the NT crystal structure were used for ini-
tialization with the Arg residues were substituted for Lys and the
rest of the peptide (N-terminal) was constructed using xLEaP
module of Amber package (Case et al., 2012). The generated
model peptide was minimized in vacuum without altering the
rest of the system. To understand the effect of glycosylation (β-D-
Gal(1→3)-αD-GalNAc-(1→)) of the Contulakin-G on binding to
NT receptor, two systems were created with (a) glycosylated and
(b) de-glycosylated Contulakin-G. The disaccharide moiety was
attached to the Thr10 position of Contulakin-G and geometry
optimized using the online carbohydrate builder web-server for
Amber-Glycam force field (http://www.glycam.com). Both sys-
tems were solvated using a pre-equilibrated box of TIP3P water
model (Jorgensen et al., 1983) maintaining a minimum distance
of 15 Å between any protein atom and the edge of the box. The
final orthorhombic box contained a total of 54,596, or 54,617
atoms for the de-glycosylated or glycosylated system, respec-
tively. To neutralize the system, ten Cl- ions were added to the
simulation box, with parameters compatible with the AMBER
force field and the TIP3P water model (Joung and Cheatham,
2008).

Molecular dynamics (MD) simulation was performed using
the GPU version of the AMBER12 simulation package (Case and
Kollman, 2012; Gotz et al., 2012). During the initial stage, the sol-
vent atoms around the protein were relaxed by minimizing the
system using 1000 steps of steepest descent algorithm. The protein
heavy atoms were restrained during the minimization step with a
harmonic potential of 100 kcal/mols/Å2. Following minimization,
both systems were heated in the NVT ensemble from 150 to 300 K
in 50 ps using time-steps of 1 fs. The protein backbone atoms were
restrained using 1 kcal/mol/Å2 force constant during the heating
step and velocities were randomly initialized from a Maxwell–
Boltzmann distribution at 150 K. In all cases, bonds involving
hydrogen atoms were restrained using the SHAKE algorithm with
a geometric tolerance of 0.0001 Å (Miyamoto and Kollman, 1992).
Periodic boundary conditions were imposed and the Particle Mesh
Ewald (Darden et al., 1993) summation was used to approximate
the electrostatic interactions (real-space non-bonded interaction
truncated at 8.0 Å). During the initial 5 ns equilibration phase,
simulations were performed in the NpT ensemble with a 2 fs time
step and using a reference temperature of 300 K controlled through
a Langevin thermostat (2.0 ps−1 collision frequency; Pastor et al.,
1988) The system pressure was maintained around 1 atm using
an isotropic weak-coupling algorithm (Berensen et al., 1984; 5 ps
relaxation time). Both deglycosylated and glycosylated systems
were simulated for 30 ns and snapshots were saved every 10 ps
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for analysis. Conformations from last 20 ns of the simulation
were used for estimating the binding free energy using MM/PBSA
(Molecular mechanics/Poisson–Boltmann Surface area) approach
using the single trajectory method (Massova and Kollman, 2000;
Miller et al., 2012).

RESULTS
AGONIST PROPERTIES OF CONTULAKIN-G AND NT
To compare agonist activities of Contulakin-G and NT, we mea-
sured intracellular calcium mobilization in human colorectal
cancer cell line HT-29, which is known to express high lev-
els of NTS1. After incubation of the cells with Fluo-4-NW, the
fluorescence emission due to intracellular calcium mobilization
elicited by exposure to the peptide agonists was determined.
The dose-response experiments for Contulakin-G and NT are
shown in Figure 2A, yielding EC50 = 32.4 ± 14.5 nM and
EC50 = 0.8 ± 1.0 nM, respectively. These results confirmed pre-
vious findings that Contulakin-G was a weaker agonist for the
neurotensin receptors, as compared to that of NT (Craig et al.,
1999).

Next, we tested the hypothesis that weak agonist properties of
Contulakin-G would result in inducing less desensitization of the
target receptors, as compared to that of NT. To compare desen-
sitization properties of Contulakin-G and NT, we developed an
assay in which the cells were exposed to a 10 min pre-treatment
with varying concentrations of the agonist, followed by the wash
step. Then, the washed cells were treated with a pulse of agonist,
followed by measuring the intracellular calcium mobilization. The
concentration-response curves and the scheme summarizing the
desensitization experiments are shown in Figures 2B,C, respec-
tively. Contulakin-G (DC50 = 444.0 ± 40.8 nM) was 120-times
less potent than NT (DC50 = 3.7 ± 1.9 nM) in the desensitization
assay (Table 1). To further investigate differences in the desensiti-
zation of neurotensin receptors upon exposure to Contulakin-G or
NT, we determined the availability of the cell surface neurotensin
receptors. The experimental design (Figure 3A) was similar to
that of the desensitization assay (10 min exposure to the agonist,
followed by agonist washout), however, we employed the receptor-
binding assay at various time points post-exposure, instead of
measuring the intracellular calcium mobilization. As shown in
Figure 3B, significantly higher levels of the cell-surface neu-
rotensin receptors were observed when the cells were exposed to
100 nM Contulakin-G, as compared to the same concentration of
NT. At either higher or lower concentrations of both agonists, the
differences in changes of the surface-bound receptors were smaller
(Figure 3C). Our findings suggested that the weaker agonist prop-
erties of Contulakin-G resulted in less ability to desensitize the
receptors by preserving their cell-surface density.

STRUCTURAL DETERMINANTS OF DESENSITIZATION PROPERTIES OF
CONTULAKIN-G AND NT
Previous work showed that the removal of the glycosylated
residue from Contulakin-G, [Thr10]Contulakin-G, resulted in 16
to 25-fold increase in the binding affinity to NTS1, while con-
currently improving the agonist potency of the deglycosylated
analog (Craig et al., 1999). As summarized in Figure 1, the pres-
ence of the glycoamino acid and the extended N-terminus are

FIGURE 2 | Comparing agonist properties of NT and Contulakin-G.

(A) Concentration-dependent changes of the intracellular calcium in HT-29
cells that express high levels of NTS1. The potency values EC50 were
32.4 ± 14.5 nM and 0.8 ± 1.0 nM for Contulakin-G and NT, respectively.
RFU stands for Relative Fluorescence Units, expressed as a percentage of
the 1 μM peak response. The baseline was similar for both NT and
Contulakin-G. (B) Representative dose-response curves in the
desensitization assay. Contulakin-G (DC50 = 444.0 ± 40.8 nM) was
120-times less potent than NT (DC50 = 3.7 ± 1.9 nM) in desensitizing
neurotensin receptors. The results were expressed as a percentage of the
1 μM peak response in the control cells (not previously exposed to the
agonist). (C) Schematic representation of the desensitization assay.

the two most apparent structural differences between Contulakin-
G and NT. In addition, an alignment of NT sequences pointed
to the conserved Lys6 residue, which was absent in Contulakin-
G. Our structure-desensitization relationship study (summarized
in Table 1) employed several NT analogs with replacements of
the positively charged residues, as well as several Contulakin-G
analogs varying in the length of the N-terminus, or having various
non-natural amino acid residues at position 10. The SAR results
for NT suggested that removing the negatively charged residue
in position 4, did not affect its agonist potency, but decreased
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Table 1 |The structure-desensitization relationships for NT and Contulakin-G in activating the neurotensin receptors.

Name EC50 [nM] DC50 [nM] DC50/EC50 Sequence

Neurotensin

NT 0.8 ± 1.0 3.7 ± 1.9 4.6 ZLYENKPRRPYIL

[K8, K9] NT 20.2 ± 5.2 67.0 ± 18.1 3.3 ZLYENKPKKPYIL

[A4] NT 0.6 ± 0.1 11.7 ± 1.4 20 ZLYANKPRRPYIL

[K4] NT 1.4 ± 0.1 30.5 ± 6.2 22 ZLYKNKPRRPYIL

[E6] NT 4.7 ± 1.4 57.5 ± 5.9 12 ZLYENEPRRPYIL

Contulakin-G

Contulakin-G 32.4 ± 14.5 444 ± 41 14 ZSEEGGSNAT(g)KKPYIL

[T10] Contulakin-G 1.1 ± 0.7 144 ± 17 131 ZSEEGGSNATKKPYIL

[des GGS] Contulakin-G 15.0 ± 4.1 329 ± 49 22 ZSEENATKKPYIL

[Ahp5] Contulakin-G 4.2 ± 3.0 706 ± 160 168 ZSEE(Ahp)SNATKKPYIL

palmitoyl-Contulakin-G 46.0 ± 8.3 4.2 ± 0.8 0.1 ZSEEGGSNKK(p)KKPYIL

memantine-Contulakin-G 43.2 ± 13.1 1506 ± 517 35 ZSEEGGSNKE(m)KKPYIL

JMV-449 1.1 ± 0.2 11.8 ± 2.0 11 K(ψCH2NH)KPYIL

g, glycosyl; p, paltimoyl; m, memantine; Ahp, aminoheptanoic acid; ψCH2NH, pseudo peptide bond.

its desensitization potency by approximately fivefold. The Glu-
replacement of the conserved Lys6 decreased the agonist potency
(sixfold) whereas its desensitization properties (defined as a ratio
DC50/EC50) increased only twofold, as compared to that for NT.
The double replacement of the conserved Arg residues affected the
agonist potency, but not desensitization properties of the NT ana-
log. These data suggested a role of electrostatics in determining
the receptor-agonist interactions.

Our SAR studies for Contulakin-G confirmed the impor-
tance of the glycoamino acid in determining interactions with
neurotensin receptors (Table 1). The deglycosylated analog of
Contulakin-G, [T10]Contulakin-G, exhibited comparable agonist
potency to NT, whereas had strikingly different desensitization
properties. This uncoupling of the agonist and the desensitiza-
tion properties was further emphasized in the analog in which
the Gal-GalNAc-Thr10 was replaced with a lipoamino acid.
The Contulakin-G analog containing palmitoyl-Lys10 residue,
palmitoyl-Contulakin-G, had comparable agonist potency to that
of the glycosylated analog, however, its desensitization potency
was different by two orders of magnitude. Shortening the
length of Contulakin-G to that of NT (13-AA) by a central
removal of three neutral residues, Gly5-Gly6-Ser7, in the analog
[desGGS]Contulakin-G, did not significantly change its agonist
properties. This was further confirmed by replacing the Gly5-
Gly6-Ser7 fragment with a backbone spacer, amino-heptanoic acid
[Ahp5]Contulakin-G.

STRUCTURAL ANALYSIS OF BINDING OF CONTULAKIN G PEPTIDE AND
NTS1 RECEPTOR USING COMPUTATIONAL MODELING
To better understand a role of glycosylation on decreasing the
potency of Contulakin-G, MD simulations were performed on
the glycosylated and de-glycosylated Contulakin-G interacting
with human NTS1 receptor. Due to the unavailability of the
human neurotensin crystal structure, the receptor was built
using homology-modeling exercise [Prime module, Schrodinger

Suite (Schrödinger, 2012)]. Macromolecular docking of pep-
tides and protein are often limited due to inherent challenges
in enumerating the degrees of freedom for the ligand and in
addition to presence of non-standard post-translational modifica-
tion. Introduction of post-translational modification of substrate
might also induce conformational changes in protein receptor
that are best represented using explicit solvent MD simulation
(Moreira et al., 2010).

The integrity of the system was verified using the root mean
square deviation (Figure S2) from the reference structure and
it was clear that deglycosylated system showed lesser deviations
compared to glycosylated system. In principal, the main devia-
tions were observed at the N-terminal region of the peptide and
its surrounding residues. Based on the 30 ns of explicit solvent
MD simulation, it was evident that in both cases, the C-terminal
six residues (KKPYIL) interacted with the NTS1 receptor iden-
tically (see Figure 4A). The C-terminal of the deglycosylated
peptide made favorable interactions via salt bridge formation
between carboxyl moiety of the peptide and the two-arginine
residues (Arg94 and Arg241) of the receptor. These arginine
residues are internally stabilized by cation-pi interactions pro-
vided by neighboring Tyr145 residue. This formation of salt
bridge between the peptide and receptor defined the anchor-
ing point for the C-terminal peptide and positioned Lys12 of
the deglycosylated peptide to form hydrogen bond with Glu332.
In addition to this; the N-terminal residues of deglycosylated
peptide (SNAT) formed various hydrogen bond with the extra-
cellular loop residues (Ser213–Asp215) and Ala48–Glu58 during
the course of the simulation. Although, both peptides exhibited
very similar interactions at the C-terminal region, glycosylation
of Thr10 residue altered the conformation of the rest of the
peptide significantly as compared to deglycosylated peptide. The
key interaction between Lys12-Glu332 is lost due to restructur-
ing of the N-terminal region and the backbone-hydrogen bond
network between the extracellular loop and the N-terminal region
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FIGURE 3 | Effects of Contulakin-G and NT on cell-surface neurotensin

receptors. (A) Schematic representation of the experiment measuring
surface-bound neurotensin receptors upon exposure to the agonist. HT-29
cells were exposed to 100 nM of agonist for 10 min. Then, at the indicated
time, cells were washed, and the binding assay was performed using
Eu-NT as a ligand. (B) The time-dependence of the surface-bound
neurotensin receptors upon exposure to the agonist. The higher
fluorescence shows more NTR is available on the cell surface. AFU stands
for Arbitrary Fluorescence Unit determined by the fluorescence microplate
reader. (C) The NTR density on cell surface upon the agonists exposure at
various agonist concentrations.

is disrupted due to the presence of bulky glycosyl modification.
Also, the glycosyl moiety is positioned close to the extracellular
loop (Ser213–Asp215) is presented with various unfavorable inter-
actions comparatively. Based on the electrostatic surface mapping
using Poisson–Boltzmann software, the glycosylated moiety was
seen anchored close to the negatively charged region (Asp215,
Glu53, and backbone carbonyl group of the extracellular loop
Ser213–Asp215) of the NTS1, and in turn restrained due to
electrostatic repulsion (Figure 4B).

In the absence of direct comparison between experiment and
computational approach, qualitative trend was assessed using
estimation of binding free energy using simulation. To further
gain insight into molecular interactions of Contulakin-G, free
energy of binding (ΔG) was estimated using MM-PBSA approach.
Using conformations from MD simulation, ΔG for both systems
were calculated. The de-glycosylated and glycosylated analogs of

FIGURE 4 | Neurotensin receptor interacting with Contulakin-G.

(A) A snapshot from MD simulation of Contulakin-G interacting with NTR1
receptor, both glycosylated (red) and non-glycosylated peptides (yellow) are
shown using van der Waals model with Cα atoms only, while NTR1
receptor (gray) is depicted using cartoon representation. In both cases, the
glycosylating residue (Thr10) residue is colored green and the glycosyl
moiety is shown using licorice model. (B) Top view of the binding site, with
NT receptor colored using electrostatic potential (positively charged as
blue, negatively charged as red using APBS software). The disaccharide
moiety of Contulakin-G atoms are shown using licorice model while the
peptide is shown using Cα atoms only (white). The rest of the peptide
buried inside is not visible due to surface masking.

Contulakin-G interacted with NTS1 receptor with ΔG of –90.00
and –57.68 kcal/mol, respectively (Table 2). Computational anal-
ysis predicted that the de-glycosylated peptide interacted with
NTS1 with a much higher affinity compared to the glycosylated
Contulakin-G. Analysis of the energetic components contributing
toward the free energy revealed that the van der Waals and non-
polar solvation energies were similar in both systems. However,
the electrostatic and polar solvation energies differed significantly
(Table 2), therefore pointing that the presence of the disaccharide
moiety may confer electrostatic repulsion with the NTS1, in-line
with the decreased agonist potency observed in the experiments
with the glycosylated Contulakin-G.

CONVERTING CONTULAKIN-G INTO A PERIPHERALLY ACTIVE
ANALGESIC WITH NON-DESENSITIZING PROPERTIES
Contulakin-G is a very potent analgesic in the formalin assay fol-
lowing direct administration into the CNS (Allen et al., 2007).
Previous studies showed the analgesic efficacy of Contulakin-G
in the tail flick latency test (Wagstaff et al., 2000), similarly to
other NT analogs (Boules et al., 2006). Contulakin-G and NT
are not systemically active analgesics, likely due to poor pene-
tration across the BBB and/or high susceptibility to proteolytic
degradation. Our studies to compare proteolytic degradation of
Contulakin-G and NT in brain homogenates or serum (Supple-
mental Material) confirmed previous findings that the glycoamino
acid protected Contulakin-G from degradation (Wagstaff et al.,
2000). Due to its polar character, the glycosylation could also
contribute to a limited penetration of Contulakin-G across the
BBB and a lack of systemic activity as an analgesic, given that the
antinociceptive activity of NT analogs is mediated by neurotensin
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Table 2 | Binding free energies from MM-PBSA calculation.

Energies (kcal/mol)

De-glycosylated Glycosylated

ΔE (vdw) –85.98 –87.02

ΔE (Elec) –441.07 –360.58

ΔE (Polar Solv) 446.32 400.34

ΔE (Non-polar Solv) –9.28 –10.41

ΔG (Total) –90.00 –57.68

Conformations from MD ensemble were used for free energy calculation.

receptors located in the CNS (Dobner, 2006; Boules et al., 2013;
Kleczkowska and Lipkowski, 2013). We hypothesized that replac-
ing a glycoamino acid residue in Contulakin-G with a non-natural
and more hydrophobic residue would retain its weaker-agonist
and desensitization properties while improving its systemic
activity.

To test our hypothesis, we designed and synthesized a
novel Contulakin-G analog, memantine-Contulakin-G contain-
ing memantine coupled to Glu10 (Figure 5A). Memantine is a
non-competitive N-methyl-D-aspartate (NMDA) receptor par-
tial antagonist, and it was selected due to its hydrophobic
nature and relatively small size, favoring the BBB penetration.
The chemical synthesis of this analog is summarized in Sup-
plemental Information and described in Methods. The agonist
potency of memantine-Contulakin-G was comparable with that
of Contulakin-G, however, its desensitization properties were
approximately threefold weaker, yielding an analog with a 35-
fold separation of the agonist and desensitization potencies (as
defined by DC50/EC50; Table 1). Both peptides were tested in
analgesic tests in mice, the hot plate and the tail flick assays
at a single dose 4 mg/kg. As shown in Figure 5B, and sum-
marized in Table 3, memantine-Contulakin-G was active in
the tail flick assay, however, its analgesic activity in the hot
plate assay was unclear due to the activity of memantine-alone,
as a control. Memantine-Contulakin-G, at doses 8–20 mg/kg,
i.p., was also active in suppressing seizures in the 6 Hz
(32 mA) mouse model of epilepsy while showing no rotorod

FIGURE 5 |The structure (A) and the analgesic activity of

memantine-Contulakin-G analog following an intraperitoneal

administration of 4 mg/kg bolus dose (B).Tail flick latency was measured
at 15 min and 30 min time points following administration of the analog.

Table 3 | Comparing analgesic activities of Contulakin-G analogs

containing either a disaccharide or memantine in position 10.

Tail flick latency Hot plate

Contulakin-G 4.06 ± 0.37 4.94 ± 0.79

Memantine-Contulakin 11.59 ± 3.54** 8.09 ± 1.06*

Memantine 4.836 ± 0.264 7.9 ± 0.49*

Saline 4.68 ± 0.42 5.412 ± 1.9

The analogs were administered i.p., at a dose 4 mg/kg.
*p < 0.05, **p < 0.01.

toxicity (unpublished data), further confirming its improved CNS
bioavailability.

DISCUSSION
Contulakin-G is a marine natural product which targets neu-
rotensin receptors and exhibits potent analgesic activities. This
peptide reached clinical testing for the treatment of neuropathic
pain in spinal cord injury patients, thus becoming one of several
conotoxin-based therapeutic agents with the Investigational New
Drug (IND) status. Several key characteristics of Contulakin-G
are: (1) it is a very potent analgesic compound following intrathe-
cal delivery in animal models of pain (Wagstaff et al., 2000; Allen
et al., 2007; Han et al., 2008), (2) its analgesic activity is mediated
by neurotensin receptor (Business Wire, 27 September 2005), (3) it
is a weaker than NT agonist with the decreased ability to desensitize
neurotensin receptors (Craig et al., 1999, and this work). Unlike
all previously characterized analgesic conotoxins, Contulakin-G
has no disulfide bridges, making this linear peptide susceptible
to rapid proteolytic degradation. Previous studies (Wagstaff et al.,
2000) and our current work showed that Contulakin-G maintains
high resistance to proteolysis in both serum and brain homogenate
media (Figure S3). Pharmacokinetic studies of Contulakin-G con-
firmed significant concentrations of the peptide several hours after
bolus injections (Kern et al., 2007). One conclusion from this
study is that Contulakin-G is a potent in vivo analgesic by being
a metabolically stable and long-lasting agonist which induces less
desensitization of target neurotensin receptors.

One translational aspect of developing Contulakin-G as NT-
based analgesics is its lack of efficient penetration across the
BBB (Wagstaff et al., 2000; Allen et al., 2007). This fact raises a
more general question about preclinical and clinical development
efforts of NT-based agonists for CNS indications. There are sev-
eral BBB-penetrant NT analogs which exhibit analgesic activities
following systemic administration, for example NT69L (Boules
et al., 2006), ANG2002 (Demeule et al., 2014), or polyamine-NT
(Zhang et al., 2009). BBB-penetrant and NTS1-selective agonist,
PD149163 (Wustrow et al., 1995), was developed by Pfizer and
is active in drug self-administration test (Hanson et al., 2013)
and in cognitive performance test (Keiser et al., 2014). Another
example of BBB-penetrant NT analog is the anticonvulsant NT-
BBB-1, which was active in a pharmacoresistant model of epilepsy
(Green et al., 2010). Thus, from a translational perspective, sys-
temically active NT analogs which exert CNS effects seem more
attractive as drug leads, as compared to that of Contulakin-
G, which requires intrathecal delivery. In our current study, we
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provided a proof-of-concept example of designing Contulakin-G
analog (memantine-Contulakin-G) which maintains weak ago-
nist and desensitization properties while producing analgesia
in the tail flick assay following systemic administration. Our
structure-desensitization relationship data (Table 1) open new
strategies for designing NT-analogs which can penetrate the BBB
and exhibit diverse abilities to desensitize neurotensin recep-
tors. However, systemic administration of the BBB-permeable NT
analogs to target the CNS has to overcome the safety challenges,
given a role of NT in promoting cancer progression (Dupouy
et al., 2009; Alifano et al., 2010; Wu et al., 2013; Younes et al.,
2014; Zhang et al., 2014). Possible cancer-enhancing activities
of the systemically active NT analogs should be carefully eval-
uated when considering IND-enabling studies for both acute
and chronic indications. One possible strategy to mitigate the
safety-related undesirable activities is to generate and exam-
ine highly subtype-selective NT agonists for NTS1, NTS2, and
NTS3, or for specific receptor heterodimers (our preliminary
efforts to generate peptoid-based analogs of Contulakin-G with
more selectivity toward NTS2 suggested a loss of the agonist
activities of the hybrid analogs at concentrations up to 3 μM,
unpublished data).

Our SAR and computational modeling data suggested that
differences between Contulakin-G and NT as agonists can
be accounted for, in large part, by the presence of glyco-
sylation. Glycosylation of neuropeptides is rather uncommon
post-translational modification, as compared to larger polypep-
tides and proteins. Contulakin-G from a marine cone snail,
bradykinin from wasps and somatostatin from a catfish are three
known examples of naturally glycosylated neuropeptides tar-
geting GPCRs (Yoshida et al., 1976; Rocchi et al., 1987; Gobbo
et al., 1992; Piek et al., 1993; Craig et al., 1999; Chen et al.,
2000). All three peptides share similar glycosylation pattern:
O-glycosylated threonine with a galactosamine-galactose moi-
ety, β-D-Gal-(1→3)-α-D-GalNAc-(1→) Thr, also found in
Thomsen-Freidenreich antigens (TF-antigens) expressed on a sur-
face of cancer cells (van den Akker et al., 1996; Gambert and
Thiem, 1997; Glinsky et al., 2001; Siebert et al., 2002; Kunz,
2003). Our modeling study predicted that the presence of the
glycoamino acid significantly decreased the free binding energy
to neurotensin receptor, also affecting electrostatic interactions
between the peptide and receptors. It is tempting to hypothesize
here that despite weakening interactions with the target recep-
tors [to make a prey fish more sluggish as a part of “nirvana”
cabal (Olivera, 1997; Olivera et al., 1999)], the glycosylation of
Contulakin-G offers an evolutionary advantage for C. geogra-
phus, due to protecting this secreted peptide from metabolic
degradation.

This work opens new opportunities in engineering NT-based
analogs with varying abilities to modulate agonist-induced desen-
sitization of neurotensin receptors, a well-characterized phe-
nomenon that has been shared by GPCRs including neurotensin
receptors (Vincent et al., 1999; Pelaprat, 2006). In our study, we
employed HT29 cells endogenously expressing NTS1 receptors
which activation results in the calcium mobilization and stimulat-
ing inositol triphosphate pathways (Amar et al., 1986; Turner et al.,
1990). The trafficking of NTS1-NT complex varies according to a

cell type, as well as time of exposure to the agonists (Vandenbulcke
et al., 2000; Souaze, 2001; Mazella and Vincent, 2006). Short-term
(minutes) exposure to NT, such as that applied in our experi-
ments, caused the receptor activation, uncoupling of NTS1 from
G proteins, binding to β-arrestin, then endocytosis (Souaze and
Forgez, 2006). Noteworthy, a chronic exposure of NTS1 to high
concentrations of an agonist had different effects; 6 h exposure
to 100 nM of the agonist JMV449 significantly upregulated levels
of NTS1 mRNA. After 48 h, the cells maintained a high level of
125I-NT-binding sites, only approximately twofold lower as com-
pared to that of the unchallenged cells (Souaze et al., 1997; Souaze
and Forgez, 2006). Our current work confirmed that short-term
exposure to weaker agonists may result in less desensitization of
GPCRs (Clark et al., 1999). Noteworthy, at the highest concen-
trations of Contulakin-G (∼30-fold EC50), neurotensin receptors
were internalized (Figure 3C). Based on the computer model-
ing data we hypothesize that additional SAR study focused on
Lys12 may identify analogs with even less desensitizing properties.
Several analogs of Contulakin-G studied here already produced
differences of several orders of magnitude with respect to uncou-
pling the agonist and desensitization potencies. Our SAR results,
while limited, suggest that desensitization of neurotensin recep-
tors can be significantly uncoupled from the agonist potencies, and
that substitutions in charged amino acid residues in NT analogs
are attractive sites to engineer agonists with diverse desensitization
potencies. These opportunities are supported by other findings,
where MAS receptor ligands were reported to induce less desen-
sitization (Tirupula et al., 2014). Non-desensitizing properties for
agonist-based drug leads have direct relevance to their pharmaco-
logical properties, as exemplified by β2-agonists (Duringer et al.,
2009) or salvinorin A (Groer et al., 2007; Cunningham et al.,
2011).

In conclusion, Contulakin-G is a marine glycopeptide with
analgesic properties by being a metabolically stable and weaker
than NT agonist of neurotensin receptors, resulting in prolonged
half-life and circulation while inducing significantly less desensi-
tization of the cell-surface receptors. The analog of Contulakin-G
in which the glycosylated residue was replaced by memantine had
comparable agonist potency and weaker desensitization proper-
ties as compared to that of Contulakin-G, also producing analgesic
activity following systemic administration. Our structure-activity
relationship and computer modeling studies suggested that the
replacements of the charged and glycoamino acid residues in
Contulakin-G may lead to the systemically active NT analogs
with diverse potencies for activating and desensitizing neurotensin
receptors.
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