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Abstract: Hyperspectral unmixing, which decomposes mixed pixels into endmembers and
corresponding abundance maps of endmembers, has obtained much attention in recent decades.
Most spectral unmixing algorithms based on non-negative matrix factorization (NMF) do not explore
the intrinsic manifold structure of hyperspectral data space. Studies have proven image data is smooth
along the intrinsic manifold structure. Thus, this paper explores the intrinsic manifold structure of
hyperspectral data space and introduces manifold learning into NMF for spectral unmixing. Firstly,
a novel projection equation is employed to model the intrinsic structure of hyperspectral image
preserving spectral information and spatial information of hyperspectral image. Then, a graph
regularizer which establishes a close link between hyperspectral image and abundance matrix is
introduced in the proposed method to keep intrinsic structure invariant in spectral unmixing. In this
way, decomposed abundance matrix is able to preserve the true abundance intrinsic structure, which
leads to a more desired spectral unmixing performance. At last, the experimental results including
the spectral angle distance and the root mean square error on synthetic and real hyperspectral data
prove the superiority of the proposed method over the previous methods.
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1. Introduction

Airborne and spaceborne hyperspectral remote sensing technology have made remarkable
progress in the past two decades. Hyperspectral image is acquired by hyperspectral imager and
is composed of pixels formed by tens to hundreds of wavebands in a narrow band (bandwidth less
than 10 nm) from 300 nm to 2500 nm. Because of the high spectral resolution of the hyperspectral
imagery, it can be used as a reference for identifying the ground object, so the hyperspectral imaging
technique shows huge application prospects [1]. The basic unit of the hyperspectral imager that
receives the ground signal is the pixel. Each pixel records an electromagnetic signal reflected by
surface materials in the spot on the ground corresponding to the (one-pixel) instantaneous field of
view (IFOV) of the hyperspectral imager, which is called spectral information. The spot may contain
different ground objects. These ground objects have different spectral signals which are the basic
components of spectral signal of the pixel. If one pixel contains only one ground object, the pixel is
a pure pixel. If one pixel contains multiple ground objects, the pixel is a mixed pixel. Mixed pixels
arise for one of two reasons. First, if the spatial resolution of the hyperspectral imager is low enough
that adjacent ground objects can jointly occupy a single pixel. Second, mixed pixels appear when
distinct materials are combined into a homogeneous mixture [2]. Due to the technical bottleneck in
the design and manufacture of hyperspectral imagers, the spatial resolution of hyperspectral data
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is limited to a certain extent even though super-resolution techniques are utilized [3], so the mixed
pixels are common in hyperspectral remote sensing images. To identify the ground objects and their
proportions in the mixed pixels is meaningful. Spectral unmixing aims to decompose the spectrum of
mixed pixels into a set of constituent spectra, or endmembers, and a set of corresponding fractions,
or abundances, which indicate the proportion of endmembers in the pixel [2,4]. Figure 1 shows the
schematic overview of hyperspectral image acquisition and spectral unmixing.
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The various research communities have proposed numerous methods for spectral unmixing.
Based on the assumption that there is at least one pure pixel per endmember in hyperspectral
images, many scholars have proposed corresponding algorithms, such as N-finder (N-FINDER) [5],
vertex component analysis (VCA) [6], simplex growing algorithm (SGA) [7], and maximum volume
by Householder Transformation (MVHT) [8]. In fact, due to the limited spatial resolution of the
hyperspectral imager, there are a large number of mixed pixels in the hyperspectral remote sensing
images. The resulting value of the spectral unmixing methods based on the assumption of pure
pixels will have a large error. Therefore, some scholars have proposed some spectral unmixing
methods without adopting pure pixels assumption, such as minimum volume simplex analysis
(MVSA) [9], simplex identification via split augmented Lagrangian (SISAL) [10], and dependent
component analysis (DECA) [11]. In addition, there are methods that can generate endmembers and
abundance information at the same time, such as non-negative matrix factorization (NMF) [12] and
minimum volume enclosing simplex (MVES) [13]. In the above methods, because NMF can generate
endmember matrix and abundance matrix at the same time and is suitable for the extraction of mixed
pixels, the research of NMF theory is the focus of many scholars. NMF theory is applied to spectral
unmixing in the literature [14]. However, this method simply performs mathematical operations
and lacks clear geographical significance [14]. To apply NMF theory to spectral unmixing, different
scholars add different constraints to the standard non-negative matrix factorization objective function,
making the mathematical model more in line with the actual geographical significance. They optimized
the corresponding mathematical model solving method and achieved a certain spectral unmixing
effect [15–21]. MVC-NMF [18] regards the minimum monomorphic volume formed by endmembers as
a constraint. L1/2-NMF [20] with sparseness constraints is proposed to obtain the best sparse solution
of endmember abundances.

Hyperspectral images are characterized by large amounts of data, high dimensions, and high
band correlation. The different bands of hyperspectral images, especially the adjacent bands, are highly
correlated, resulting in a certain degree of information redundancy [22]. Especially for hyperspectral
classification, the number of bands is not positively correlated with the accuracy. On the contrary,
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when the number of bands reaches a certain limit, the overall classification accuracy will decrease,
resulting in the so-called Hughes phenomenon [23]. It makes sense to reduce the dimensions
of hyperspectral images. Manifold learning [24] is a nonlinear method of dimension reduction.
Manifold learning (e.g., Laplacian Eigenmap [25]) is to find the low-dimensional manifold in the
high-dimensional space and to find the corresponding embedded mapping. Researchers have
shown that the image data cannot fill up uniformly the high-dimensional Euclidean space [25].
The image data can be viewed as data sampled from a low dimensional manifold embedded in
a higher-dimensional space. These image data smoothly change along the geodesic of the data
manifold [25]. All above-mentioned spectral unmixing algorithms only consider the Euclidean
structure of the hyperspectral data space. In fact, hyperspectral data are more likely lie on
low-dimensional manifold [26]. Inspired by manifold learning, we transform the hyperspectral image
data projection into a low-dimensional space to model its intrinsic structure, thereby realizing the
hyperspectral image dimension reduction to facilitate spectral unmixing. It is known that hyperspectral
image not only contains abundant spectral information of the ground objects, but also includes spatial
distribution of the ground objects. Most of the above mentioned methods treat hyperspectral images as
a collection of spectral vectors and neglect the possible spatial correlations between pixels. Yet, in the
literature [27], a prior of spatial correlations between the different pixels of the hyperspectral image is
utilized in spectral unmixing algorithm which leads to improve spectral unmixing accuracy. Weighted
non-negative matrix factorization designs appropriate weights integrating the spatial information
in local neighborhood to enhance spectral unmixing [28]. Inspired by this, the spatial information
of the hyperspectral image is preserved when modeling the intrinsic structure of the hyperspectral
image. Endmember spectral variability is an inevitable phenomenon in hyperspectral imaging and
is a source of error in spectral unmixing accuracy [29]. A hierarchical weighted sparsity unmixing
(HWSU) method improves spectral unmixing accuracy by decreasing the influence of the endmember
spectral variability [30]. In modeling the intrinsic structure of hyperspectral image, it is necessary
to consider reducing the influence of spectral endmember variability to improve the accuracy of
hyperspectral unmixing. Meanwhile, we attempt to establish the close link between hyperspectral
image and abundance matrix and construct the graph regularization to preserve intrinsic structure
invariant in hyperspectral unmixing. In addition, sparse constraint that reduces the risk of getting
stuck in local minima in non-convex minimization computations will be introduced into the proposed
method in the paper, which enhances the sparsity of endmember abundances.

Finally, a novel algorithm which can preserve intrinsic structure invariant in hyperspectral
unmixing named PISINMF is proposed for hyperspectral unmixing. PISINMF improves two aspects
to improve spectral unmixing accuracy. Firstly, L1/2 regularizer with regularization parameter defined
in the literature [31] is adopted as sparsity constraint for improving the sparsity of endmember
abundances. Secondly, the intrinsic structure of hyperspectral image is modeled, which preserves
spectral information and spatial information of hyperspectral images. The above mentioned intrinsic
structure, as a priori knowledge, is constructed with graph regularization that makes the intrinsic
structure of the decomposed abundance information consistent with the intrinsic structure of the
true abundance information. PISINMF is experimented on synthetic hyperspectral data and real
hyperspectral data to verify its validity.

The rest of the paper is organized as follows: the second part introduces the proposed method
of PISNMF, the third part introduces the experimental results and analysis of synthetic data and real
data, the fourth part introduces discussion and the fifth part introduces the conclusions.

2. The Proposed PISINMF Method

Mixed pixels are typically modeled using a linear mixture model or a nonlinear mixture model.
As a rule of thumb, the linear mixturemodel is associated with mixtures for which the pixel components
are homogeneous surfaces in spatially segregated patterns. On the contrary, the nonlinear mixture
model takes the intimate association or interaction with more than one component into account [30].
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The linear mixture model is simpler than the nonlinear model, and the linear model’s calculation
results meet the accuracy requirements. The linear mixture model can explain the formation of
hyperspectral image and conform to the actual statistical laws. In this paper, we will introduce the
proposed algorithm model based on the linear mixture model. The schematic overview of the proposed
method is shown in Figure 2.
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2.1. Linear Mixture Model

The linear mixture model is based on the following three assumptions. Firstly, a finite number of
endmembers within each IFOV linearly contribute pixel spectral signals according to their coverage
percentage (abundance). Secondly, the ground objects are homogeneous surfaces in spatially segregated
patterns. Thirdly, the electromagnetic energy of neighboring ground objects within each IFOV does
not affect each other [32–34].

Based on the above assumptions, the linear mixture model of the l-band hyperspectral image
containing n pixels with m endmembers can be expressed as follows:

X = GA + ε (1)

where X = [x1, . . . , xn] ∈ Rl×n represents the hyperspectral image (xi represents the ith pixel regarded
as l-band spectral vector, l denotes band number, n denotes number of hyperspectral image pixels);
G = [g1, . . . , gm] ∈ Rl×m represents the endmember matrix (gi represents the ith endmember signature);
A = [a1, . . . , an] ∈ Rm×n denotes abundance matrix; ε denotes an error matrix meaning the noise
of hyperspectral image. In general, X is a known hyperspectral image. Endmember matrix G and
abundance matrix A are the solution targets.

Aij denotes the proportion of the area occupied by the ith endmember in the jth pixel. According
to the linear mixture model assumption, the abundance matrix A needs to satisfy requirements that
each element within it is non-negative and the sum over the columns of A are unity. Aij obeys the
following constraints expressed in Equation (2):

Aij ≥ 0, ∀i, j
m
∑

i=1
Aij = 1, j = 1, 2, . . . , n (2)

2.2. Modeling Intrinsic Structure of Hyperspectral Images

The proposed method transforms the hyperspectral image data projection into a low-dimensional
space to model its intrinsic structure preserving spectral information and spatial information of
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hyperspectral images, thereby realizing the low-dimensional representation of the hyperspectral image
to facilitate spectral unmixing.

The first law of geography is expressed as “Everything is related to everything else, but near
things are more related than distant things” [35]. With that in mind, we divide the hyperspectral
image into multiple local windows, considering only the relation between the central pixel and the
surrounding pixels in the local window, ignoring the pixels outside the local window. Figure 3 shows
the local window of hyperspectral image. Assume that the hyperspectral image with n pixels, equals
to r × s pixels, is arranged on r × s grids. The spatial coordinate of the top left corner grid is (0, 0).
The grid spatial coordinate is increased from left to right, from top to bottom until the coordinate of
the bottom right corner grid is (r,s). In Figure 3, a black grid and red grids constitute a local window
in which the black grid represents central pixel and red grids represent surrounding pixels. The size
of the local window can be expressed by the product of the number of grids at the outermost edge
of the local window. For example, the size of the local window in Figure 3 is 5 × 5. xi and xj are the
hyperspectral image pixels which represent spectral signals. Let us consider the case in which pixel
xi is the central pixel of a local window. If the pixel xj is a surrounding pixel of pixel xi in the local
window, we define j ∈ N(i). If the pixel xj does not belong to surrounding pixels of pixel xi in the local
window, we define j /∈ N(i).
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Then we model the intrinsic structure of the local window of the hyperspectral image. xi and xj
are connected by an edge if the pixel xj is a surrounding pixel of pixel xi in the local window. The edges
can be weighted by the heat kernel [25]. The heat kernel is expressed as follows:

Kσ

(
xi, xj

)
=


e−
‖xi−xj‖

2

σ , j ∈ N(i)

0, j /∈ N(i)

(3)

where σ is a scaling parameter of the heat kernel. xi,xj are the ith and jth column vectors of the
hyperspectral image X. It is known from Equation (3) that when the pixel xj is in the local window,
it is connected to the central pixel xi, and the strength of the connection can be weighed by the heat
kernel. When the pixel xj is outside the local window, its connection to the central pixel does not exist.
This is consistent with the first law of geography. The σ value adapted to different intrinsic structures
of local windows is given by the following equation:

σ =
1

h− 1 ∑
j∈N(i)

‖xi − xj‖2 (4)

where h is the number of surrounding pixels of the central pixel xi in the local window.



Sensors 2018, 18, 3528 6 of 25

A hyperspectral image not only contains abundant spectral information of ground objects, but
also includes spatial correlations between each pixel. Utilization of spatial correlations between pixels
will be incorporated in modeling the intrinsic structure of hyperspectral image. Inspired by the above
principle, the closer the surrounding pixel xj is to the spatial distance of the central pixel xi, the more
the surrounding pixel xj contributes to the central pixel xi. It is also obvious that the closer the spectral
similarity between the surrounding pixel xj and the central pixel xi, the more the surrounding pixel
xj contributes to the central pixel xi. Assume that (p, q) and (b, c) are the spatial coordinates of the
central pixel xi and the surrounding pixel xj, respectively. Then xi and xj also can be expressed as
x(p, q) and x(b, c). Accounting for the effects of spectral information and spatial information, how
much the surrounding pixel xj contributes to the central pixel xi can be reflected by Equations (5)–(7):

Mi,j =


1√

µ×ν , j ∈ N(i)

0, j /∈ N(i)
(5)

µ =

√
(p− b)2 + (q− c)2 (6)

ν = arccos(
〈x(p, q), x(b, c)〉
‖x(p, q)‖‖x(b, c)‖ ) (7)

where < x(p, q), x(b, c)> denotes the inner product of the two spectra, and ||·|| denotes the vector
magnitude. µ value characterizes spatial distance difference between the central pixel xi and the
surrounding pixel xj. The smaller the value of µ, the closer the surrounding pixel xj is located with
respect to the central pixel xi and the more contribution pixel xj has to the central pixel xi. ν represents
the spectral angle distance between xi and xj. Spectral angle distance reflects the difference in the
geometric characteristics of the two spectral vectors. If the ν value is smaller, the more similar the
geometric feature of the surrounding pixel xj is to the central pixel xi and the more contribution the
pixel xj has to the central pixel xi. Mi,j is a simplified representation of the degree of the contribution.
Equation (5) is convenient to calculate and can reflect the effect of the surrounding pixel xj on the
central pixel xi. Accounting for the effect of the surrounding pixel xj on the central pixel xi, we promote
Equations (3)–(8):

Wi,j =


Mi,j ∗ e−

‖xi−xj‖
2

σ , j ∈ N(i)

0, j /∈ N(i)

(8)

If the value of Wi,j is larger, the surrounding pixel xj is more closely related to the central pixel
xi. Compared with Equation (3), Equation (8) better reveals spectral geometric differences, spatial
distance information, and spectral similarity of pixel pairs in the local window.

The spectral information of the pixel reflects the physical and chemical characteristics of the
ground objects in the hyperspectral image. However, the spectral curve of the same ground object
will change under different environments, which is called endmember spectral variability. Figure 4
shows the spectral curves of trees and rocks. As can be seen from Figure 4, curve 1 of the blue line is
the spectral curve of trees under weak sunlight, curve 2 of orange line is the spectral curve of trees
under strong sunlight, and curve 3 of gray line is the spectral curve of rocks. Because of the change in
the intensity of solar radiation, the spectral curve of the tree mutates. The spatial position of the three
ground objects of Figure 4 is as shown in Figure 5. It is assumed that the ground object of the central
pixel is tree1 whose spectral information is curve 1. The ground objects of the two surrounding pixels
are tree2 and rock whose spectral curves are curve 2 and curve 3, respectively.

We use Equations (3) and (8) to project the relation between the central pixel and the surrounding
pixels into the low-dimensional space. The resulting projection values are shown in Table 1.
After projecting by Equation (3), projection value of the relation between tree1 and tree2 is relatively
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equal to projection value of the relation between tree1 and rock. According to the projection results of
Equation (3), we think that the effect of the two surrounding pixels on the central pixel is nearly the
same, and that the ground objects of the two surrounding pixels are close, which is obviously contrary
to the actual situation. After projecting by Equation (8), projection value of the relation between tree1
and tree2 is much larger than projection value of the relation between tree1 and rock. According to
the projection results of Equation (8), compared with the surrounding pixel including the curve 3,
we determine that the surrounding pixel containing the curve 2 is closer to the central pixel, which is
in accordance with the real situation.
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Table 1. Resulting projection values.

Projection Equation (3) Equation (8)

Projection value of the relation between tree1 and tree2 0.0079 0.1640
Projection value of the relation between tree1 and rock 0.0069 0.0220

Hyperspectral image can be segmented into homogeneous and transition areas [27,28,36]. Pixels in
homogeneous areas have large values relatively close to each other [28]. Pixels in transition areas have
relatively small values compared with homogeneous pixels [28]. Segmenting the homogeneous and
transition areas of hyperspectral images is conductive to improve spectral unmixing accuracy [27,28].
For each central pixel xi with coordinate (p, q), the whole relations with its all surrounding pixels in the
local window can be calculated in the Equation (9). Wi,j can be used to calculate the strength of the
central pixel xi connection with surrounding pixel xj. The whole relations between the central pixel
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xi with coordinate (p, q) and its all surrounding pixels in the local window can be denoted as ϕ(p, q)
or ϕ(i):

ϕ(p, q) = ϕ(i) = ∑
j∈N(i)

Wi,j (9)

Given hyperspectral image with r × s pixels, the whole relations of all local windows of
hyperspectral image can be described as R matrix in the Equation (10). Figure 6 shows simulated
hyperspectral image and whole relations of all local windows of simulated spectral image according to
Equation (10). We see that Figure 6b inherits the spatial distribution characteristics of the simulated
hyperspectral image. In Figure 6b, yellow represents a larger value and blue represents a smaller
value. According to the definition of homogeneous and transition areas, the areas of dark yellow and
light yellow are homogeneous areas while the blue areas are transition areas. Therefore, R matrix can
segment the homogeneous and transition areas of hyperspectral image:

R =

 ϕ(1, 1) · · · ϕ(1, s)
...

. . .
...

ϕ(r, 1) . . . ϕ(r, s)

 (10)

Based on the above analysis, we choose Equation (8) as the projection equation, which will project
the hyperspectral image into the low dimensional space. We determine each pixel of the hyperspectral
image as the central pixel to create a local window with size of 5 × 5. Then we use the projection
Equation (8) to project the relation between the central pixel and the surrounding pixels into the
low-dimensional space to model the intrinsic structure of hyperspectral images.
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2.3. PISINMF Algorithm Model

Spectral unmixing is designed to extract endmember spectrum and corresponding abundance
from hyperspectral image data, in accordance to the linear mixture model expressed by Equation (1).
NMF has been introduced into spectral unmixing, which aims at obtaining endmember matrix G and
abundance matrix A to approximately represent the given non-negative matrix X. In order to measure
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the degree of approximation, the loss function based on the square of the Euclidean distance between
X and GA is expressed as:

min
G,A

f (G, A) = ‖X−GA‖2
F (11)

where the operator ‖.‖F represents the Frobenius norm.
Unfortunately, because of the non-convexity of NMF, the algorithm has a large number of local

minima. In order to reduce the influence of the non-convexity of NMF on spectral unmixing accuracy,
sparsity constraints are introduced into standard NMF [14,20]. In [20], L1/2 regularizer has been proven
to provide the best sparse solution. Therefore, L1/2 regularizer is adopted as sparsity constraint for
improving the sparsity of endmember abundances. Thus, NMF with sparsity constraints is written as:

min
G,A

f (G, A) = ‖X−GA‖2
F + λ‖A‖1/2 (12)

where λ is the regularization parameter which weights the contribution of ‖A‖1/2. ‖A‖1/2 is defined
in the Equation (13):

‖A‖1/2 =
m

∑
i=1

n

∑
j=1

A1/2
ij (13)

Motivated by a temperature schedule in the simulated annealing technique, the regularization
parameter λ is defined in the Equation (14) to avoid getting stuck in local minima. The regularization
parameter λ shows its effectiveness in [31]. Thus, it will be adopted as the regularization parameter
that controls the impact of the sparsity measure function ‖A‖1/2:

λ = α0e−
t
τ (14)

where α0 and τ are constants to regularize the impact of sparsity constraints and t is the iteration
number in the process of optimization [31].

Given the hyperspectral data {xi}n
i=1, the abundance data {ai}n

i=1, and the endmember matrix G,
the following relation exists in Equation (15):

xi = Gai (15)

xi ∈ Rl is an individual pixel of hyperspectral image X. ai ∈ Rm is abundance data corresponding
to endmembers. From the perspective of dimensionality reduction, the endmember matrix can be
regarded as a new base matrix in the m-dimension space. The hyperspectral image is represented
as a linear combination of the new base matrix. ai can be regarded as the representation of xi in
m-dimension space. Equation (15) can be further promoted to Equation (16):

‖xi − xj‖ = ‖G(ai − aj)‖ (16)

We learn from Equation (16) that the more similar xi and xj are, the more similar the abundance
of given pixel xi is to the abundance of given pixel xj. Therefore, a close link between xi and ai reveals
a close link between hyperspectral image and decomposed abundance matrix. Based on the above
analysis, once xi and xj are close, the abundance ai of pixel xi and the abundance aj of pixel xj in the
m-dimension space are close too. Inspired by the above analysis, a graph regularizer is introduced in
PISINMF to keep local structure invariant between hyperspectral image and decomposed abundance
matrix. Graph regularizer is written as:

n

∑
i=1

∑
j∈N(i)

‖ai − aj‖2Wi,j =
n

∑
i=1

aT
i aiDii −

n

∑
i=1

∑
j∈N(i)

aT
i ajWi,j = Tr

(
A(D−W)AT

)
(17)
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where Tr(.) represents the trace of matrix, (·)T represents the transpose of matrix, W is weight matrix
in which Wi,j is element, D is a diagonal matrix and Dii = ∑

j∈N(i)
Wi,j.

To make PISINMF have the ability to preserve the intrinsic structure invariant, the regularization
term of Equation (17) obtained in the previous section is incorporated into the Equation (12). The cost
function of PISINMF is written as:

min
G,A

f (G, A) = ‖X−GA‖2
F + λ‖A‖1/2 +

µ

2
Tr
(

A(D−W)AT
)

(18)

where µ ≥ 0 is the regularization parameter of the graph regularizer.

2.4. The Update Rules for PISINMF

The projection gradient learning [14] method following the standard gradient learning is adopted
to obtain the iterative rule for PISINMF. To make G and A non-negative, we use the function max{0, x}
to set the negative components to zero while leaving the non-negative components unchanged. Based
on the iterative rule, the non-negative matrix X is decomposed to obtain G and A. If the result of the
k-th iteration is G(k) and A(k), the iterative rule is written as:

G(k+1) = max
{

0, G(k) − α(k)∇G f
(

G(k), A(k)
)}

(19)

A(k+1) = max
{

0, A(k) − β(k)∇A f
(

G(k), A(k)
)}

(20)

where α(k) and β(k) denote the learning step, ∇G f (G, A) and ∇A f (G, A) are the first-order derivatives
of the function f (G, A) expressed in Equations (21) and (22):

∇G f (G, A) = 2GAAT − 2XAT (21)

∇A f (G, A) = 2
(

GTGA + 0.5 ∗ λA−
1
2 + µ ∗A ∗D

)
− 2
(

GTX + µ ∗A ∗W
)

(22)

If α and β are equal to some small positive numbers, the equations are equivalent to conventional
gradient descent. When setting α = G/

(
GAAT) and β = A/GTGA, the iterative rule of G and A

could be turned into the multiplicative update rule [27]. The multiplicative rules are written as:

G← G. ∗
(

XAT
)

/
(

GAAT
)

(23)

A← A. ∗
(

GTX + µ ∗A ∗W
)

./
(

GTGA + 0.5 ∗ λA−
1
2 + µ ∗A ∗D

)
(24)

where .∗ and ./ represent the multiplication of elements and the division of elements within the
matrix, respectively.

2.5. Implementation Issue

The multiplicative rules of PISINMF algorithm model do not consider the sum over the columns
of abundance to be unity. To make the results of PISINMF algorithm model more accurate, X and G
are replaced by X and G in Equation (25):

X =

 X

δ1T
n

G =

 G

δ1T
m

 (25)

where 1n(1m) is a n (m)-dimensional column vector of all 1 s. δ in Equation (25) is the weight value
and can control the influence of the sum over the columns of abundance to be unity on the objective
function. In the implementation, a relatively small value of δ (i.e., δ ≤ 40) will cause the sum of each
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column of A to be much smaller than one. On the contrary, a larger value of δ (i.e., δ ≥ 60) will cause
the sum of each column of A to be closer to one, but it reduces the convergence rate. So δ is selected as
50 to meet the needs of precision and efficiency in PISINMF model.

In general, the initial value of the endmember matrix G can be calculated by the endmember
extraction algorithm or randomly chosen data. In PISINMF algorithm model, we use the VCA
algorithm or other endmember extraction algorithms to set the initial value of endmember matrix G.

The initial value of the abundance matrix A can be calculated using the least squares method
expressed as following Equation (26):

A =
(

GTG
)−1

GTX (26)

To make the initial value of the abundance matrix A non-negative, we force the matrix A to be
non-negative according to Equation (27):

A = max(A, 0) (27)

The PISINMF algorithm model sets two stop criteria in the iterative optimization process. One of
the stop criteria is the maximum number of iterations, another stop criteria is that a threshold τ should
be specified for the Equation (28):

1
n

n

∑
i=1

√
1
l
‖X−GA‖2

F ≤ τ (28)

2.6. The Procedure of PISINMF

The procedure of PISINMF is summarized as follows:

Step 1. Determine the endmember number m; initialize the endmember matrix G by VCA algorithm
or other endmember extraction algorithms for synthetic hyperspectral data and real
hyperspectral data; initialize the abundance matrix A using Equations (26) and (27);

Step 2. Update G by Equation (23);
Step 3. Replace matrices G and X with matrices G and X according to Equation (25);
Step 4. Update A by Equation (24);
Step 5. Replace matrices G and X with matrices G and X;
Step 6. Repeat step 2–step 5 until any one of the stop criteria is satisfied.

3. Experimental Results and Analysis

The paper uses synthetic hyperspectral data and real hyperspectral images to verify and analyze
the algorithm model. The experiment is to verify the effectiveness of the PISINMF algorithm and to
compare the performance with classical algorithms.

Spectral angle distance (SAD) is often used to calculate the degree of approximation between the
estimated endmember spectrum and the true endmember spectrum. SAD is defined as follows:

SADi = arccos

(
gi

T ĝi
‖gi

T‖‖ĝi‖

)
(29)

where gi is the estimated ith endmember signature and ĝi is the ith endmember signature. The smaller
calculated SAD value, the closer the extracted spectral endmember is to the true spectrum.

The root mean square error (RMSE) of the entire image measures the similarity between the
estimated abundance and the true abundance. RMSE is written as:
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RMSE =

√
1
n

n

∑
i=1

(ai − âi)
2 (30)

where ai is a column vector of the estimated abundance A and âi is a column vector of the true
abundance. If the calculated RMSE value is smaller, the accuracy of the decomposed abundance matrix
can be considered to be closer to the true abundance.

The parameters of the PISINMF algorithm model are as follows: (1) the maximum number of
iterations is set to 1000 in all the synthetic hyperspectral data and real hyperspectral data experiments;
(2) regularization parameter µ in PISINMF algorithm model is experimentally selected between
0.005 n/m2 and 0.05 n/m2 for all the synthetic hyperspectral data and real hyperspectral data
experiments, with which PISINMF algorithm model can reach a satisfactory performance; (3) threshold
τ should be specified as 0.001; (4) α0 and τ are selected as 0.1 and 25, respectively; (5) The size of the
local window is selected as 5 × 5 in PISINMF.

3.1. Synthetic Hyperspectral Data

Five endmember signatures (ammonioalunite, calcite, kaolinite, jarosite, muscovite) have been
extracted from the USGS Spectral Library [37]. As shown in the Figure 7, the endmember signatures
have 420 spectral bands. The five endmember signatures are mixed to form corresponding abundance
matrix according to the Dirichlet distribution, ensuring that abundance is non-negative and the sum of
each column of the abundance matrix is unity. Mixing coefficients are used in order to make some pixels
mixed in higher degree. If the abundance of a pixel is larger than mixing coefficient, the pixel is replaced
with a mixture made up of all endmembers of equal abundances. Different experimental environmental
conditions, such as different signal-to-noise ratios (SNR), different abundance mixing coefficients,
and different spatial dimensions are set to test the unmixing ability of the PISINMF algorithm. In the
same environment the unmixing ability of the PISINMF algorithm and other algorithms is compared.
The results of the comparison are evaluated using SAD and RMSE standards. To evaluate anti-noise
ability, zero-mean white Gaussian noise is added to the synthetic hyperspectral data. SNR is defined
as:

SNR = 10log10
E
[
XTX

]
E[εTε]

(31)

where X and ε represent the observation and noise of pixels, respectively. E[·] denotes the
expectation operator.
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Figure 7. Five endmember signatures extracted from the USGS Spectral Library.

Firstly, the synthetic hyperspectral data experiments verify that the PISINMF algorithm has the
ability to preserve intrinsic structure invariant. The size of the synthetic hyperspectral data is 30 × 30,
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the abundance mixing coefficient is 0.8, and the signal-to-noise ratio is 30 db, respectively. PISINMF,
L1/2-NMF, VCA are used to obtain the estimated abundance from the synthetic hyperspectral data.
Then, the estimated abundance and the true abundance are projected onto the low-dimensional space
using the Equation (8). In order to compare the ability of three methods (PISINMF, L1/2-NMF, VCA) to
preserve the intrinsic structure, Equation (32) is used to compare the difference between the projection
value of the estimated abundance and the projection value of the true abundance. If the error value is
smaller, the ability to preserve the intrinsic structure is stronger:

NORMp =

√
n

∑
i=1

(
Pi − P̂i

)2 (32)

where Pi stands for the projection value of the estimated abundance and P̂i stands for the projection
value of the true abundance.

The error values of the three methods are recorded in Table 2. The difference between the intrinsic
structure of the true abundance and the intrinsic structure of the estimated abundance is shown in
Figure 8. To more visually show the difference, we accumulate the error between the central pixel of
Figure 8 and its surrounding pixels in the local window. Sum of difference values based on the central
pixels in the local window is shown in Figure 9. In Table 2, NORMp of PISINMF is smaller than the
other two methods (L1/2-NMF, VCA). As can be seen from Figures 8 and 9, compared to the other two
methods (L1/2-NMF, VCA), the intrinsic structure of the estimated abundance obtained by PISINMF is
closer to the intrinsic structure of true abundance.Sensors 2018, 18, x FOR PEER REVIEW  13 of 24 
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Figure 9. Sum of difference values between central pixels and all surrounding pixels in the
local window.

Table 2. The error values of the intrinsic structure of estimated abundance.

PISINMF L1/2-NMF VCA

NORMp 0.5741 0.7053 0.7120

The synthetic hyperspectral data experiments verify the anti-noise ability of the PISINMF
algorithm model. We test the anti-noise ability of PISINMF, L1/2-NMF and VCA under different
SNR conditions. The number of pixels in the synthetic hyperspectral data is 2401, the abundance
mixing coefficient is 0.8, and the signal-to-noise ratios are 15, 30, 45, 60, ∞ db, respectively. Performance
is evaluated using SAD and RMSE standards. The accuracy of the extracted endmember spectra is
evaluated using the average value of SAD, and the accuracy of the obtained abundance is evaluated
by RMSE. Table 3 provides SAD values for each method and Table 4 provides RMSE values for
each method under different SNR conditions. Figure 10 shows the plots of the experimental results
with different SNR. By comparison, PISINMF has smaller RMSE and SAD values than the other two
algorithms (L1/2-NMF, VCA) under different SNR conditions. Particularly when SNR = 15 dB, the SAD
and RMSE values of PISINMF are obviously superior to that of L1/2-NMF and VCA.
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Figure 10. Experimental results with different SNR (a) RMSE; (b) SAD.

Table 3. SAD comparison with different SNR

SNR PISINMF L1/2-NMF VCA

15 0.0336 0.0370 0.0435
30 0.0328 0.0372 0.0430
45 0.0270 0.0318 0.0372
60 0.0266 0.0318 0.0412
∞ 0.0292 0.0331 0.0401
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Table 4. RMSE comparison with different SNR.

SNR PISINMF L1/2-NMF VCA

15 0.0895 0.0941 0.1015
30 0.0682 0.0762 0.0855
45 0.0569 0.0674 0.0740
60 0.0654 0.0694 0.0730
∞ 0.0635 0.0705 0.0729

Experiments test the PISINMF algorithm’s unmixing ability under different abundance mixing
coefficients. Therefore, the synthetic hyperspectral dataset has a signal-to-noise ratio of 35 db, a number
of pixels of 2401, and abundance mixing coefficients of 0.6, 0.7, 0.8, and 0.9, respectively. Table 5
provides SAD values for each method and Table 6 provides RMSE values for each method under
different abundance mixing coefficients conditions. Figure 11 shows the plots of the experimental
results with different abundance mixing coefficients. As can be seen from Figure 11, SAD value and
RMSE value of the three methods show a downward trend as abundance mixing coefficients increase.
By comparison, RMSE value and SAD value of the PISINMF model algorithm are smaller than those
of the other two algorithms (L1/2-NMF, VCA) under different abundance mixing coefficients.
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Figure 11. Experimental results with different abundance mixing coefficients: (a) RMSE; (b) SAD.

Table 5. SAD comparison with different abundance mixing coefficients.

Mixing Coefficients PISINMF L1/2-NMF VCA

0.6 0.0630 0.0700 0.0740
0.7 0.0305 0.0353 0.0557
0.8 0.0403 0.0440 0.0557
0.9 0.0119 0.0186 0.0205

Table 6. RMSE comparison with different abundance mixing coefficients.

Mixing Coefficients PISINMF L1/2-NMF VCA

0.6 0.2416 0.2645 0.2681
0.7 0.1997 0.2199 0.2228
0.8 0.1853 0.2033 0.2105
0.9 0.1768 0.1859 0.1919

Experiments test the algorithm’s unmixing ability under different spatial dimensions conditions.
Spatial dimension here is referred to the number of mixed pixels. The synthetic hyperspectral dataset
has a signal-to-noise ratio of 35 db, an abundance mixing coefficient of 0.8, and the number of pixels
are set to 900, 2500, 4900, and 8100, respectively. The accuracy of endmember spectra is evaluated
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using the mean value of SAD and the accuracy of the abundance is evaluated using RMSE. Table 7
provides SAD values for each method and Table 8 provides RMSE values for each method under
different spatial dimensions conditions. Figure 12 shows the plots of the experimental results with
different numbers of pixels. In Figure 12, we can see that the SAD value and RMSE value of PISINMF
show a relatively stable trend with the increase of the number of pixels, indicating that the number
of pixels has limited influence on the precision of spectral unmixing. By comparison, PISINMF has
smaller RMSE and SAD values than the other two algorithms (L1/2-NMF, VCA) under the conditions
of different numbers of mixed pixels, indicating that the PISINMF algorithm is suitable for different
number of pixels.Sensors 2018, 18, x FOR PEER REVIEW  16 of 24 
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Figure 12. Experimental results with different numbers of pixels in the scene: (a) RMSE; (b) SAD.

Table 7. SAD comparison with different numbers of pixels in the scene.

Number of Pixels PISINMF L1/2-NMF VCA

900 0.0288 0.0314 0.0360
2500 0.0281 0.0319 0.0370
4900 0.0278 0.0321 0.0388
8100 0.0297 0.0334 0.0395

Table 8. RMSE comparison with different numbers of pixels in the scene.

Number of Pixels PISINMF L1/2-NMF VCA

900 0.0549 0.0656 0.0678
2500 0.0558 0.0649 0.0682
4900 0.0569 0.0652 0.0678
8100 0.0577 0.0659 0.0687

3.2. Real Hyperspectral Data

In this section, there are two real hyperspectral data used to verify the algorithm. The first real
hyperspectral dataset is Samson hyperspectral image which covers the spectral range of 400 nm–900 nm
with a band width of 3.2 nm. The hyperspectral dataset has been available on the internet [38]. This data is
owned by Oregon State University and is provided by WeoGeo. The hyperspectral dataset was acquired
by the SAMSON instrument, a push-broom, visible to near IR, hyperspectral sensor. This dataset has been
atmospherically corrected using TAFKAA, a hyperspectral atmospheric correction algorithm. This data
is in units of remote sensing reflectance. As the original image with 952 × 952 pixels is too large, a
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subimage with 95 × 95 pixels has been extracted from the original image [39]. A region of 95 × 95 pixels
is shown in Figure 13.

By visual observation, the image is mainly covered by water, tree and rock. So the number
of the endmembers is selected as 3. The reference endmember spectra are obtained according to
the literature [30]. Some pixels corresponding to the three ground objects are randomly selected in
Figure 13 by visual observation. The number of pixels selected for each ground object is 30. We calculate
the average value of pixels corresponding to each ground object as the reference endmember signature.

Table 9 provides SAD values for each method (PISINMF, L1/2-NMF, MVC-NMF, MVES), and the
best result is denoted by bold font. As can be seen from Table 9, PISINMF has the highest number of
the best-performance cases. The abundance maps for L1/2-NMF, MVC-NMF, MVES and PISINMF are
shown in Figure 14.Sensors 2018, 18, x FOR PEER REVIEW  17 of 24 
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Table 9. SAD results on the Samson data.

PISINMF L1/2-NMF MVC-NMF MVES

Water 0.0798 0.0835 0.1365 0.1895
Tree 0.0612 0.0728 0.0968 0.0653
Rock 0.0123 0.0168 0.0298 0.0438

AVERAGE 0.0511 0.0577 0.0877 0.0995

Figure 15 displays a comparison of the endmember spectra of the PISINMF algorithm with the
reference spectra. The color map value of the abundance map is shown in Figure 14. The color of
the abundance map corresponds to the value 0–1. The closer the color is to the blue, the closer the
abundance value is to 0. This indicates that there is no such ground object distribution in the area.
The closer the color is to the yellow, the closer the abundance value is to 1, indicating that more ground
objects are distributed in the area. Compared with the abundance maps of other methods, we can see
that the abundance map of PISINMF is closer to the distribution of real ground objects. The water,
rock and tree abundance maps of the PISINMF algorithm are basically consistent with the original
map. However, in the water abundance maps of the MVES and MVCNMF algorithms, some areas
of the water abundance map are misjudged. Although the abundance maps of L1/2-NMF are similar
to PISINMF, the abundance maximum value of PISINMF is relatively close to 1 while the abundance
maximum value of L1/2-NMF is about 0.7. According to the meaning of the color map of abundance
map, the abundance information of PISINMF is closer to the real situation by visual observation.

The section will analyze the second real hyperspectral data about the Cuprite mineral area in the
western part of Nevada, USA, which is a mineralogical site that has been established as a reference
site for hyperspectral and other remote sensing instruments [40–42]. This image was obtained by an
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Airborne Visible-Near/Infrared Imaging Spectrometer (AVIRIS) sensor on 19 June 1997. Cuprite data
has been widely used to validate spectral unmixing algorithm. The real spectral library of ground
objects in this area is available online [37]. Experiments will use the PISINMF algorithm to extract
endmembers and abundance maps corresponding to endmembers from the image. The experiment
uses the USGS Spectral Library as reference standard and uses SAD to measure the accuracy of the
extracted endmember spectra. The subimage of 250 × 190 pixels is taken from the real hyperspectral
data for experimentation. The subimage has been atmospherically corrected [6]. Figure 16 shows the
80th band of the subimage. In experiments, the low SNR bands and the water vapor absorption bands
(1–6, 104–113, 148–167, and 219–224) have been removed [20]. The number of endmembers in the
selected region is estimated to be 12 using the VD method [43] with false alarm probability Pf = 10−5.
The endmember signatures extracted by the PISINMF algorithm and other algorithms are compared
with the USGS library, and spectral similarities are quantified using the SAD standard. In the results,
kaolin is divided into two endmembers due to the endmember spectral variability.
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Figure 17 displays a comparison of the endmember spectra of the PISINMF algorithm with the
spectral curve of the USGS library. The endmember spectral curves of the PISINMF algorithm are
represented by dotted lines, and the reference endmember spectral curves of the USGS library are
represented by solid lines in Figure 17. Table 10 provides SAD values for each method (PISINMF,
L1/2-NMF, MVC-NMF, MVES), and the best result is denoted by bold font. As can be seen from
Table 10, the PISINMF algorithm has the highest number of endmember minimum SAD values, and
the PISINMF algorithm has the smallest endmember SAD mean value. So the PISINMF algorithm is
superior to other algorithms (L1/2-NMF, MVC-NMF and MVES).
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Figure 15. Results on the SAMSON image: Comparison of the reference spectra (blue line) with the
endmember spectra extracted by PISINMF (orange line): (a) Water; (b) Tree; (c) Rock.
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Figure 16. Subimage of AVIRIS Cuprite data (band 80).
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Figure 17. Results on the AVIRIS Cuprite image: Comparison of the USGS library spectra (solid
line) with the endmember spectra extracted by PISINMF (dotted line). (a) Alunite; (b) Andradite; (c)
Buddingtonite; (d) Dumortierite; (e) Kaolinite_1; (f) Kaolinite_2; (g) Muscovite; (h) Montmorillonite; (i)
Nontronite; (j)Pyrope; (k) Sphene; (l) Chalcedony.

Table 10. SAD results on the AVIRIS Cuprite data.

PISINMF L1/2-NMF MVC-NMF MVES

Alunite 0.1433 0.2305 0.2380 0.1302
Andradite 0.1082 0.0673 0.0750 0.1444

Buddingtonite 0.0873 0.1117 0.1015 0.2638
Dumortierite 0.0797 0.1230 0.0757 0.1288
Kaolinite#1 0.0693 0.1025 0.1360 0.1304
Kaolinite#2 0.0564 0.0968 0.1374 0.1222
Muscovite 0.0878 0.0848 0.1434 0.2132

Montmorillonite 0.0553 0.0635 0.0601 0.1565
Nontronite 0.0809 0.0824 0.0864 0.2949

Pyrope 0.1548 0.0809 0.1267 0.1127
Sphene 0.0529 0.1168 0.2490 0.1423

Chalcedony 0.0804 0.1315 0.1045 0.1502
AVERAGE 0.0880 0.1132 0.1314 0.1697

4. Discussion

In this study, we investigate the validity of preserving intrinsic structure invariant in hyperspectral
unmixing to improve spectral unmixing accuracy. The experimental results of synthetic data
and real data prove that the proposed PISINMF algorithm is superior to the typical algorithms
(i.e., MVC-NMF, L1/2-NMF, MVES, VCA). However, some issues still need to be resolved or improved
for further research.

First, since the true ground object distribution is unknown, the intrinsic structure of the true
ground object distribution cannot be modeled. However, we can make full use of hyperspectral
imagery as a priori knowledge and model its intrinsic structure. Equation (8) which utilizes spatial
information and spectral information of hyperspectral image is chosen as projection equation to model
the intrinsic structure of hyperspectral image. If the spatial distance between the surrounding pixel
and the central pixel is farther, the weaker the relation between them is. The relation between them
is mapped by Equation (8), and the projection value is small. If the surrounding pixels are closer to
the central pixel, the stronger the relation between them is. The relation between them is mapped by
Equation (8), and the projection value is large. The result value of Equation (8) can reflect the distance
information between the surrounding pixels and the central pixel to some extent. Meanwhile, R matrix
based on Equation (8) can segment the homogeneous and transition areas of hyperspectral images.
Segmentation image inherits the spatial distribution characteristics of the original hyperspectral image.
Moreover, compared with Equation (3), Equation (8) utilizing spectral information better reveal the
real situation of the distribution of ground objects, which has been explained in the previous examples.
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As mentioned earlier, graph regularizer which establishes a close link between hyperspectral image and
decomposed abundance matrix is introduced in PISINMF algorithm model to keep intrinsic structure
invariant between hyperspectral image and decomposed abundance matrix. Synthetic hyperspectral
data experiments prove that graph regularizer can promote the intrinsic structure of the estimated
abundance obtained by PISINMF closer to the intrinsic structure of true abundance.

Second, in the PISINMF algorithm model, how to choose the size of the local window is considered.
Different sizes of local windows affect the spectral unmixing accuracy. In Figure 18, as the size of
the local window becomes larger, the spectral unmixing accuracy is improved. But choosing a large
size of the local window consumes more computation. Meanwhile, a large size of the local window
means that the local window contains surrounding pixels that are farther away from the central pixel.
According to Equation (8), if the spatial distance of the surrounding pixel from the central pixel is
further, its effect on the central pixel is smaller. So there is no need to choose a large size of the local
window. It is reasonable to select the size of the local window as 5 × 5 in PISINMF algorithm model.
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Third, L1/2 regularizer as sparsity constraints has been introduced into the PISINMF algorithm
model to improve the sparsity of endmember abundances. How to select the regularization parameter
λ to control the impact of the sparsity constraints is an open theoretical issue. In [44], the regularization
parameter λ is dependent on the sparsity criteria, which is widely adopted in other spectral unmixing
methods [20]. The optimization method mentioned in [20] can only guarantee that the sparse solution
converges to the local minimum. However, due to the non-convexity of the non-negative matrix
function, there are multiple local minima. To avoid getting stuck in local minima, we refer to the
research [31] to define the regularization parameter λ in the paper. Additionally, the experimental
results show that it is superior to traditional sparsity criteria.

5. Conclusions

The PISINMF model, which can preserve intrinsic structure invariant in hyperspectral unmixing,
is proposed in the paper. In the PISINMF model, a novel projection equation which utilizes spatial
information and spectral information of hyperspectral image is adopted to model the intrinsic structure
of hyperspectral image data. Compared with the heat kernel, a novel projection equation can better
reveal the real situation of the distribution of ground objects. Graph regularizer establishes a close
link between hyperspectral image and abundance matrix and is introduced in PISINMF algorithm
model to keep intrinsic structure invariant. Compared with VCA and L1/2-NMF, the experiments of
synthetic hyperspectral data show that the intrinsic structure of the estimated abundance obtained by
PISINMF is closer to the intrinsic structure of true abundance. Besides, sparse constraints that reduces
the risk of getting stuck in local minima in non-convex minimization computations is introduced
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into the PISINMF model, which enhances the sparsity of endmember abundances. The PISINMF
model is compared with several classical hyperspectral unmixing models, including VCA, L1/2-NMF,
MVC-NMF and MVES. The experimental results of synthetic hyperspectral data with different SNR
levels, mixing coefficients and pixel numbers prove that the PISINMF algorithm model is superior
to other classical methods using SAD and RMSE standards. Two real hyperspectral datasets are
experimented to verify the effectiveness of the PISINMF model. Experimental results on two real
hyperspectral datasets demonstrate that the PISINMF model outperforms other several classical
algorithms. Specifically, the overall SAD accuracy of the PISINMF model is approximately 9–22%
higher than that of the L1/2-NMF model.
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