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BRIEF DEFINITIVE REPORT

    Hematopoietic stem cells (HSCs) have robust 
proliferative potential, as they can undergo ex-
tensive expansion to quickly restore hematopoie-
sis after transplantation or histological injury. 
However, under steady state, HSCs proliferate at 
a very low rate and most HSCs are kept in the G 0  
phase of the cell cycle ( 1 ). Disruption of HSC 
quiescence leads to premature exhaustion of the 
stem cell pool and causes hematological failure 
under stress conditions ( 2, 3 ). Thus, HSC self-re-
newal and quiescence have to be fi nely balanced 
to maintain a stable HSC pool that is capable of 
producing blood cells for the lifetime of the or-
ganism. Although numerous transcription factors 
and cell cycle molecules have been identifi ed to 
regulate HSC self-renewal, it is not understood 
how nuclear regulatory factors adjust the HSC 
self-renewal rate to accommodate hematopoiesis 
under homeostatic and cytopenic conditions. It 
has been reported that HSCs are relocated from 
the osteoblastic niche to vascular zones in the 
BM after myeloablation ( 4 ). The translocation of 
HSCs is accompanied with an increase in HSC 
proliferation, suggesting that signals emanating 
from the BM niche where HSCs reside deter-
mine the balance between quiescence and self-
renewal of HSCs. 

 The chemokine CXCL12 is the major che-
moattractant for HSCs ( 5 ). It is expressed at 

a high level by osteoblasts, endothelial cells, and 
by a subset of reticular cells scattered through-
out the BM ( 6, 7 ). Inactivation of CXCL12 or 
its receptor CXCR4 impairs the translocation 
of HSCs from the fetal liver to the BM dur-
ing embryogenesis ( 8 – 11 ), and direct ablation 
of CXCR4 signaling or indirect modulation of 
CXCL12 level by proteases results in mobiliza-
tion of primitive hematopoietic cells and com-
promises their engrafting activity ( 4, 12 – 14 ). 
This suggests an important role for CXCR4/
CXCL12 in BM retention of primitive hema-
topoietic cells. Additional eff ects of CXCR4 on 
HSCs are still not fully understood, and studies 
evaluating its regulatory role in the cell cycle 
yielded contradictory results ( 7, 15 ). To better 
understand the function of CXCR4 in HSCs, 
we deleted the  Cxcr4  gene during adult hemato-
poiesis. We found that the compartment of 
primitive hematopoietic cells (Flt3  �   Lin  �   Sca-1 +  
c-Kit +  cells) was stably maintained in the BM 
in the absence of CXCR4 and sustained long-
term hematopoiesis. These CXCR4-defi cient 
primitive hematopoietic cells proliferated vig-
orously and outcompeted the coexisting WT 
counterpart in the same host. CXCL12 di-
rectly inhibited the cell cycle of WT, but 
not  Cxcr4  � / �   , primitive hematopoietic cells. 
Thus, our results demonstrate a critical role 
of CXCR4 in restraining HSCs in the quies-
cent state. 
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 The quiescence of hematopoietic stem cells (HSCs) is critical for preserving a lifelong 

steady pool of HSCs to sustain the highly regenerative hematopoietic system. It is 

thought that specialized niches in which HSCs reside control the balance between HSC 

quiescence and self-renewal, yet little is known about the extrinsic signals provided by 

the niche and how these niche signals regulate such a balance. We report that CXCL12 

produced by bone marrow (BM) stromal cells is not only the major chemoattractant 

for HSCs but also a regulatory factor that controls the quiescence of primitive hematopoi-

etic cells. Addition of CXCL12 into the culture inhibits entry of primitive hematopoietic 

cells into the cell cycle, and inactivation of its receptor CXCR4 in HSCs causes excessive 

HSC proliferation. Notably, the hyperproliferative  Cxcr4    � / �    HSCs are able to maintain 

a stable stem cell compartment and sustain hematopoiesis. Thus, we propose that 

CXCR4/CXCL12 signaling is essential to confi ne HSCs in the proper niche and controls 

their proliferation. 
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the absence of CXCR4, even though a substantial amount of 
 Cxcr4  � / �    Flt3  �  LSK cells emerged into the periphery. 

   C xcr4  � / �    primitive hematopoietic cells are multipotent 

and sustain hematopoiesis 

 To examine stem cell function of  Cxcr4  � / �    Flt3  �  LSK cells, we 
evaluated their reconstitution effi  ciency using a competitive 
repopulating assay. Diff erent numbers of  Cxcr4  � / �    BM cells 
(CD45.2) were transplanted, along with a constant dose (2  ×  
10 5 ) of competitive BM cells (CD45.1), into lethally irradiated 
mice. Regeneration of HSCs and blood cells in the recipients 
was measured by fl ow cytometry 8 wk after transplantation. In 
mice that had received equal numbers (2  ×  10 5 ) of  Cxcr4  � / �    
and competitor BM cells, no more than 10% of the Flt3  �  LSK 
cells were of  Cxcr4  � / �    donor origin. Even a large dose (10 6 ) of 
 Cxcr4  � / �    BM cells produced only 50% chimerism in the 
Flt3  �  LSK compartment and provided little contribution to B 
and myeloid cells ( Fig. 2 A ).  These results are in line with pre-
vious reports showing impaired engrafting capacity of  Cxcr4  � / �    
primitive hematopoietic progenitors ( 12, 18 ). 

 Compromised reconstitution activity of  Cxcr4  � / �    HSCs 
could be attributed to defects in homing, self-renewal, or dif-
ferentiation. To circumvent the requirement for CXCR4 in 
HSC homing and to directly assess the diff erentiation potential 
of  Cxcr4  � / �    HSCs in vivo, we fi rst transplanted equal numbers 
(2.5  ×  10 6 ) of  Cxcr4 C/C   (CD45.2, H-2 b/b ) and WT (CD45.1, 
H-2 b/b ) marrow cells into lethally irradiated hosts (H-2 b/d ), and 
then deleted  Cxcr4  and examined frequencies of donor- derived 
hematopoietic cells 14 wk after  Cxcr4  ablation. In contrast 
to the reduced engraftment observed in mice that received 
 Cxcr4  � / �    donor cells,  Cxcr4 C/C   donor cells yielded a much 
higher proportion (71%) of Flt3  �  LSK cells over WT donor 
cells (29%), and engrafted the myeloid compartment effi  ciently 

  RESULTS AND DISCUSSION  

 The population of   C xcr4  � / �    primitive hematopoietic cells 

is stably maintained 

 To investigate the function of CXCR4 at early hematopoietic 
developmental stages, we conditionally ablated CXCR4 func-
tion in adult primitive hematopoietic cells. We crossed  Cxcr4 -
fl oxed mice ( Cxcr4 f/f  ) to tamoxifen-inducible Cre transgenic 
mice ( ROSA CRE-ERT2  ) ( 16, 17 ), and we activated Cre by in-
jecting tamoxifen. 6 tamoxifen injections over 9 d led to  > 99% 
deletion of  Cxcr4  in HSCs (Fig. S1, available at http://www
.jem.org/cgi/content/full/jem.20072513/DC1). Hereafter, 
we refer to  ROSA CRE-ERT2  Cxcr4 f/f   mice before tamoxifen in-
duction as  Cxcr4 C/C   mice, and after tamoxifen treatment as 
 Cxcr4  � / �    mice. Control animals used in the following studies 
are Cre  �    Cxcr4 f/f   mice because  ROSA CRE-ERT2  Cxcr4 +/f   and 
Cre  �    Cxcr4 f/f   are phenotypically identical (Fig. S2). 

 The involvement of the chemokine CXCL12 in HSC 
function was fi rst documented by a study showing that colo-
nization of HSCs in the fetal BM was abolished in CXCL12  � / �   
animals ( 8 ). Extensive studies have been conducted ever since 
to defi ne the role of CXCL12 and CXCR4 in homing and 
retention of HSCs. Early transplantation experiments demon-
strated that primitive hematopoietic cells required CXCR4 
and CXCL12 interaction for effi  cient engraftment ( 12, 18 ). 
Later studies involved transplantation of CXCR4-inactivated 
primitive hematopoietic cells into irradiated hosts, and showed 
that the recovery of these cells in the BM within 24 h was 
quantitatively normal compared with that of WT cells ( 13, 19 ). 
These results imply that early BM homing of primitive hema-
topoietic cells might be CXCR4 independent, but BM reten-
tion of these cells requires CXCR4. However, it is not clear 
from these experiments whether HSCs behave in the same 
way as hematopoietic progenitors. Specifi cally, these stud-
ies did not directly examine whether extravasation of CXCR4-
inactivated primitive hematopoietic cells from the circulation 
into the BM stroma, indeed, occurred. Moreover, we cannot 
conclude from these transfer experiments as to whether BM 
homing and retention of HSCs under the steady state requires 
CXCR4 because the BM microenvironment of the recipients 
used in these studies had been altered by irradiation ( 20 ). 

 To fully evaluate this issue, we inactivated CXCR4 in 
8-wk-old mice in which HSCs had colonized in the BM 
and had reached a steady state, and then determined the con-
tent of phenotypically defi ned HSCs in the BM and periph-
ery at diff erent times after the fi nal tamoxifen injection. 
Flow cytometry analysis revealed that a population of cells 
bearing characteristic markers of hematopoietic primitive 
cells, including long-term HSCs (Flt3  �   Lin  �   Sca-1 +  c-Kit +  
[Flt3  �  LSK]), was markedly increased in the peripheral blood 
and spleen in mutant but not in WT animals 12 d after ta-
moxifen treatment ( Fig. 1 B ).  This population continued to 
be high in the periphery, even 32 wk later ( Fig. 1 C ). During 
the same period, the cell counts of  Cxcr4  � / �    Flt3  �  LSK cells 
in the BM remained stable and were even slightly higher than 
that of WT ( Fig. 1 C ). These data showed that the compart-
ment of phenotypic HSCs was stably retained in the BM in 

  Figure 1.      Cxcr4  � / �    HSCs are retained in the BM.  (A) Dot plots represent 

the Flt3  �  LSK population in the BM of  Cxcr4  � / �    (KO) and control mice (WT) at 

day 12 after tamoxifen treatment. The percentages of gated populations of 

Flt3  �  LSK cells  ±  the SD are shown. (B) Absolute numbers of Flt3  �  LSK cells in 

the femur (BM), peripheral blood (PB), and spleen (Sp) of  Cxcr4  � / �    and con-

trol mice at day 12 and week 15 after tamoxifen treatment. Values are the 

mean  ±  the SD ( n  = 6). (C) Absolute numbers of Flt3  �  LSK cells in the femur 

and tibia (BM) and spleen (SP) 32 wk after tamoxifen treatment. Values are 

the mean  ±  the SD ( n  = 4). Open bars represent data of WT mice; fi lled bars 

show data of mutant animals in B and C.   
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   C xcr4  � / �    primitive hematopoietic cells 

are hyperproliferative 

 In the mixed BM chimeras, the cellularity of  Cxcr4  � / �    
Flt3  �  LSK cells was twofold higher than that of the WT ( Fig. 
2 B ), suggesting that the expansion of these cells was cell in-
trinsic and could result from enhanced survival or self-renewal 
of HSCs. Because we did not observe changes in apoptosis 
detected by annexin V staining of freshly isolated  Cxcr4  � / �    
Flt3  �  LSK cells (Fig. S4, available at http://www.jem.org/
cgi/content/full/jem.20072513/DC1), we decided to exam-
ine whether CXCR4 defi ciency promoted HSC proliferation 
using a BrdU-uptake assay. In WT mice, we found that 4-d 
BrdU exposure yielded 28% of BrdU +  LSK cells, and that a 
longer labeling period (15 d) raised this population to 63%. 
In contrast, the frequency of BrdU +  LSK cells had increased 
from 64 to 91% during the same interval in mice that had 
 Cxcr4  deleted ( Fig. 3 B ).  The proliferation rate of mutant 
primitive hematopoietic cells was  � 3-fold higher than that of 
WT 14 wk after  Cxcr4  deletion ( Fig. 3 C ). Analysis of the cell 
cycling status by measuring RNA and DNA content revealed 
that the number of cycling  Cxcr4  � / �    LSK cells remained high 
even 32 wk after  Cxcr4  deletion ( Fig. 3 D ). In accordance 
with enhanced proliferation of  Cxcr4  � / �    HSCs,  Cxcr4  � / �    

(53%) in a competitive situation ( Fig. 2, B and C ). Although 
competent in myelopoiesis, mutant donor cells were severely 
impaired in generating B cells ( Fig. 2 C ). We then determined 
whether  Cxcr4  � / �    HSCs were able to generate common 
lymphoid progenitors (CLPs; Lin  �   Sca lo  c-Kit lo  IL-7R �  + ). We 
found that although  Cxcr4  � / �    CLPs were barely detectable in 
the BM, a large number of these cells emerged in the periphery 
and persisted for  > 3 mo ( Fig. 2 D ). Together, these data reveal 
that  Cxcr4  � / �    Flt3  �  LSK cells retained in the BM are multipo-
tential and able to sustain myelopoiesis and lymphopoiesis up 
to the CLP stage for  > 3 mo. 

 In the absence of CXCR4, HSCs cannot home to the BM 
niche to reconstitute hematopoiesis ( Fig. 2 A ). To carry out a 
repopulating assay to confi rm the existence of  Cxcr4  � / �    long-
term HSCs, we isolated BM cells 11 wk after  Cxcr4  deletion, 
infected them with retroviral vector expressing WT CXCR4, 
and then transplanted these infected cells into irradiated recip-
ients. Our data presented in Fig. S3 (available at http://www
.jem.org/cgi/content/full/jem.20072513/DC1) clearly show 
that a robust hematopoiesis was restored by  Cxcr4  � / �    BM cells 
in which CXCR4 was reexpressed. This result unequivocally 
demonstrates that HSCs are maintained for at least 11 wk in 
the absence of CXCR4. 

  Figure 2.    Cxcr4  � / �    HSCs sustain hematopoiesis.  Open bars represent data of WT mice; fi lled bars show data of mutant animals. (A) BM cells were 

isolated from  Cxcr4  C/C  and control mice 6 wk after tamoxifen treatment and cotransplanted into recipients at the indicated ratios (2  ×  10 5  of WT cells). 

Hematopoiesis was analyzed 8 wk after transplantation. Bars with SD show cell counts of HSCs, B cells, and myeloid cells in the BM and spleen (Sp). 

(B)  Cxcr4 C/C  , WT, or an equal number (2.5  ×  10 6 ) of  Cxcr4 C/C   and WT BM cells were transferred into irradiated recipients. 2 mo after transplantation, mice were 

treated with tamoxifen to delete  Cxcr4 . LSK cells in BM chimeras were enumerated 14 wk after tamoxifen treatment ( n  = 3). (C) BM chimeras were gener-

ated as described in B. Bars (mean  ±  the SD;  n  = 3) show the frequencies of donor-derived LSK, B cells, and myeloid cells of either mutant or WT origin. 

(D) Total cell numbers of CLPs in the BM and spleen 15 wk after tamoxifen treatment.   
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that the proportion of WT primitive hematopoietic cells ar-
rested in the G 0  phase was progressively increased in the pres-
ence of increasing doses of CXCL12. In contrast, the percentage 
of cycling  Cxcr4  � / �    primitive hematopoietic cells was not af-
fected at all by even the highest dose of CXCL12 ( Fig. 4 A ).  
These results thus demonstrate that CXCL12 prevents the 
entry of HSCs into the active cell cycle. Furthermore, because 
the proliferation of  Cxcr4  � / �    primitive hematopoietic cells 
cannot be suppressed by CXCL12, we conclude that this ac-
tion is mediated solely by CXCR4 and not by CXCR7, 
which is a newly identifi ed receptor of CXCL12 ( 21 ). 

 To gain further insight into the mechanisms by which 
CXCR4 defi ciency aff ected cell cycle regulation, we purifi ed 
Flt3  �  LSK cells from WT and  Cxcr4  � / �    BM, and quantifi ed 
expression of various cell cycle regulators by quantitative RT-
PCR (qRT-PCR). Consistent with the hyperproliferative sta-
tus of mutant cells, the expression of cyclin D1 was increased 
fourfold in  Cxcr4  � / �    Flt3 - LSK cells over control cells. Previ-
ous reports have shown that p21 cip1/waf1  and Gfi -1 were re-
quired to impose G 0  arrest of HSCs. However, these molecules 
were expressed at similar levels in WT and  Cxcr4  � / �    primitive 
hematopoietic cells. Interestingly, the cyclin-dependent kinase 
inhibitor p57 kip2 , which was expressed at a particularly high 

mice died more readily from hematological failure after de-
pletion of cycling HSCs by weekly challenge with the cell-
cycle cytotoxic agent 5-fl uorouracil ( Fig. 3 E ). 

 To address whether hyperproliferation was a cell autono-
mous property of  Cxcr4  � / �    HSCs, we transplanted an equal 
number (2.5  ×  10 6 ) of  Cxcr4 C/C   (CD45.2, H2 b/b ) and WT 
(CD45.1, H2 b/b ) marrow cells into recipients (H2 b/d ), and 
then deleted  Cxcr4  4 wk after transplantation. The prolifera-
tion rate of HSCs was examined by a BrdU-uptake assay 
14 wk after  Cxcr4  deletion. We found that 47% of  Cxcr4  � / �    
LSK cells had incorporated BrdU over a 4-d period, whereas 
only 18% of WT LSK cells were BrdU +  ( Fig. 3 F ). Because 
 Cxcr4  � / �    LSK cells proliferated at a higher rate than the ac-
companied WT LSK cells in the same BM, we conclude that 
CXCR4 acts intrinsically in primitive hematopoietic cells to 
enforce quiescence. 

 CXCR4 signaling inhibits cell-cycle progression of primitive 

hematopoietic cells 

 Next, we investigated whether CXCR4 signaling directly in-
hibited cell-cycle progression of HSCs. The cell cycling pro-
fi le of primitive hematopoietic cells were analyzed 24 h after 
BM cells cultured with diff erent doses of CXCL12. We found 

  Figure 3.   CXCR4 defi ciency causes hyperproliferation of primitive hematopoietic cells.  Open bars represent data of WT mice; fi lled bars show 

data of mutant mice. (A) The histogram shows representative profi les of BrdU +  LSK cells. The shaded histogram represents background staining using an Ig 

isotype-matched control antibody. (B) 2 wk after  Cxcr4  deletion,  Cxcr4  � / �    and WT mice were labeled with BrdU for 4 or 15 d. Bars  ±  the SD ( n  = 4) repre-

sent percentages of BrdU +  cells within the LSK compartment. (C) Bars  ±  the SD show percentages of BrdU +  LSK cells 15 wk after  Cxcr4  deletion. Mice were 

given BrdU for 20 h. (D) Cell cycle profi les revealed by pyronin Y/Hoechst staining of Flt3  �  LSK cells in mice 32 wk after  Cxcr4  deletion ( n  = 4). The percent-

age of cells in the given quadrants represents the means  ±  the SD. (E) 2 wk after tamoxifen treatment, mice were injected weekly with 5-fl uorouracil 

(100 mg/kg bodyweight). The survival rate of WT ( n  = 5, open circle) and  Cxcr4  � / �    ( n  = 10, fi lled circle) mice was monitored. (F) Equal numbers (2.5  ×  10 6 ) 

of  Cxcr4 C/C   and WT BM cells were cotransplanted into BDF1 recipients. 4 wk after transplantation, mice were treated with tamoxifen. 14 wk later, mice 

were labeled with BrdU for 4 d. LSK frequencies of BrdU +  cells are shown ( n  = 3).   
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was aff ected by CXCR4 defi ciency under the steady state. 
Our results showed that hematopoiesis was sustained for at 
least 8 mo, indicating the persistence of functional HSCs in 
the BM after CXCR4 inactivation. Indeed, we observed that 
the phenotypic  Cxcr4  � / �    HSCs (Flt3  �  LSK cells) were stably 
retained. Remarkably, when both  Cxcr4  � / �    and WT HSCs 
were present in the same BM, the cellularity of  Cxcr4  � / �    
HSCs exceeded that of the WT, and the expansion of mutant 
HSCs was at the expense of competitive WT HSCs. In marked 
contrast, when  Cxcr4  deletion preceded transplantation, even 
fi vefold more  Cxcr4  � / �    HSCs could not compete with the 
cotransplanted WT HSCs. Together, our fi ndings suggest that 
CXCR4 plays a critical role in guiding HSCs into the proper 
BM niche. However, after seeding in the stem cell niche, 
HSCs can be retained through a CXCR4-independent mech-
anism. We also noted that a prominent fraction of HSCs ap-
peared in the periphery after  Cxcr4  deletion, similar to a 
previous study showing that the CXCR4 antagonist AMD3100 
rapidly mobilized HSCs ( 14 ). It remains to be determined 
whether these results refl ect that there are two subsets of HSCs 
that have diff erent requirements for BM retention or simply 
indicate that overly proliferated HSCs cannot be contained in 
the BM niche. Recently, a new CXCL12 receptor, CXCR7, 
has been identifi ed, and its binding to CXCL12 is unaff ected 
by AMD3100 ( 21 ). It will be interesting to elucidate whether 
diff erent HSC subsets diff erentially express CXCR4 and 
CXCR7, and whether CXCR7 and CXCR4 have distinct 
roles in homing and BM retention of HSCs. 

 It has been proposed that the stem cell niche in BM regu-
lates self-renewal and diff erentiation of HSCs. However, the 
niche signals that restrain HSCs in the quiescent state have 
not been identifi ed. Our data demonstrate an inhibitory ef-
fect of CXCR4 signaling on proliferation of primitive hema-
topoietic cells, as increased doses of CXCL12 progressively 
inhibit G 0  → G 1  cell cycle progression of LSK cells. Consistent 
with the in vitro data, we found many more cycling cells in 
the  Cxcr4  � / �    Flt3  �  LSK compartment than in the cotrans-
planted WT population. It is noteworthy that hematopoiesis 
remained robust even 8 mo after  Cxcr4  deletion, suggesting 
that extensive proliferation of  Cxcr4  � / �    HSCs did not ex-
haust the mutant stem cell pool during this period. In this re-
gard,  Cxcr4  � / �    HSCs diff er from those carrying mutations in 
cell cycle regulators like p21 cip1/waf1  and Gfi -1, in which hy-
perproliferation causes depletion of HSCs in a competitive 
environment ( 2, 3 ). Indeed, both p21 cip1/waf1  and Gfi -1 were 
expressed at similar levels in WT and  Cxcr4  � / �    HSCs. Inter-
estingly, our study identifi ed p57 kip2  as one of the putative 
targets of CXCR4 signaling pathways. These data suggest 
diff erent functions of cell cycle regulators in HSCs. Further 
experiments are required to determine whether p57 kip2  spe-
cifi cally inhibits HSC proliferation, whereas p21 cip1/waf1  plays 
additional roles in HSC self-renewal. 

 Recently, results of an independently derived line of 
CXCR4 conditional knockout mice were published, which 
showed that in the absence of CXCR4 primitive hematopoi-
etic cells (LSK cells) were retained in the BM and became 

level in long-term HSCs ( 22 ), was reduced to one third of the 
normal level in  Cxcr4  � / �    primitive hematopoietic cells. 

 To assess whether CXCR4 signaling controls p57 kip2  ex-
pression, sorted HSCs (Flt3  �  CD48  �  LSK cells) were incu-
bated with CXCL12 for 24 h and p57 kip2  expression levels 
were determined by qRT-PCR. As shown in  Fig. 4 C , 
CXCL12 treatment signifi cantly elevated the p57 kip2  ex-
pression level in HSCs, thus establishing p57 kip2  as one of the 
direct targets downstream of CXCR4 signaling pathway. 

 Concluding remarks 

 In this study, we ablated CXCR4 after HSCs had seeded in 
the BM and directly assessed whether BM retention of HSCs 

  Figure 4.   CXCL12 inhibits cell cycle progression of HSCs.  

(A)  Cxcr4   � / �   and control BM cells were cultured for 24 h in the presence of 

cytokines and with CXCL12 at the indicated concentrations. Dot plots 

show cycling CD48  �  Flt3  �  LSK cells detected by pyronin Y/Hoechst stain-

ing. Bars (means  ±  the SD) show the ratio of LSK cells in the G 0  versus G 1  

phase of cell cycle from three independent experiments. (B) Relative ex-

pression levels represent the ratio of each gene transcript in  Cxcr4  � / �    

versus WT Flt3  �  LSK cells. cDNA input was normalized to the level 

of  � -actin. Values are the means  ±  the SD of three experiments. 

(C) CD48  �  Flt3  �  LSK BM cells were sorted from WT mice and cultured in the 

presence of cytokines with or without 300 ng/ml of CXCL12 for 24 h. Each 

value was normalized to  � -actin expression levels and is presented as fold 

induction compared with the p57 kip2  expression level (set to 1) detected in 

CXCL12-untreated cells. Results (means  ±  the SD) are obtained from three 

experiments using independently sorted cells. P = 0.019.   
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conjugated anti-Sca1. Long-term HSCs defi ned as Flt3  �   LSK were visual-

ized by staining BM cells with biotin-Flt3 followed by streptavidin-FITC 

with the combination of the aforementioned antibodies. Common lym-

phoid progenitors (Lin  �   c-Kit lo  and Sca-1 lo  IL-7R �  + ) were distinguished 

by biotinylated anti – IL-7R �  followed by streptavidin-FITC and anti-

bodies against Lin, c-Kit, and Sca-1, as described. For lineage analyses, 

cells were stained with APC-B220, PE-TCR, and PE-Cy5-Gr1. All anti-

bodies were obtained from eBioscience. BM cellularity was calculated 

from two femurs. 

 Proliferation analysis.    Cxcr4  � / �    and WT BM cells were cultured in me-

dium (OptiMEM; Invitrogen) with 7% FCS (HyClone), 50 ng/ml SCF, 

10 ng/ml IL-3, and 10 ng/ml IL-6. All cytokines were purchased from 

R & D Systems. 24 h after incubation with diff erent doses of CXCL12, cells 

were harvested for cell cycle analysis. For BrdU uptake assay,  Cxcr4  � / �    mice 

were injected with BrdU (1 mg/mouse, i.p.) and fed with drinking water 

containing 1mg/ml BrdU for various periods, as indicated. BM cells were 

stained with antibodies against PE-Cy5-Lin, APC-Sca1, and PE-Cy7-c-Kit, 

and permeabilized, followed by staining with FITC-BrdU. For cell cycle 

analysis, cells were fi xed with 4% paraformaldehyde and labeled with 

0.5  μ g/ml pyronin Y (Sigma-Aldrich) and 1  μ g/ml Hoechst 33342 (Fluka), 

and analyzed on an LSR II fl ow cytometer (BD Biosciences). 

 Gene expression analysis.   LSK cells were purifi ed from  Cxcr4  � / �    and WT 

mice by FACS sorting. After mRNA extraction with TRIzol (Life Technol-

ogies), cDNA was synthesized using Superscript II (Invitrogen). qRT-PCR 

was done with the ABI7700 Sequence Detection System (Applied Biosys-

tems). Sequences of the primers used for qRT-PCR are listed in Table S1 

(available at http://www.jem.org/cgi/content/full/jem.20072513/DC1). 

 Transplantation.   8-wk-old BDF1 recipient mice (B6D2F1/J; The Jackson 

Laboratory; H2-D d ) received 2 doses of 500 rads within a 6-h interval. 

Donor BM cells from WT (CD45.1),  Cxcr4  � / �   , and  Cxcr4 C/C   mice (CD45.2) 

were then transferred into irradiated recipients. Recipient mice were in-

jected with tamoxifen to delete  Cxcr4  at various times after transplantation, 

as indicated in the text. 

 Online supplemental material.   Fig. S1 shows effi  cient deletion of  Cxcr4  

in primitive hematopoietic cells. Fig. S2 shows a normal HSC compartment 

in  ROSA CRE-ERT   2  mice. Fig. S3 shows that CXCR4-defi cient primitive he-

matopoietic cells are indeed functional HSCs. Fig. S4 shows that CXCR4 

defi ciency does not aff ect HSC survival. Table S1 lists primers for qRT-

PCR. The online version of this article is available at http://www.jem

.org/cgi/content/full/jem.20072513/DC1. 
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hyperproliferative, a phenotype nearly identical to that de-
scribed herein ( 7 ). However, this report noted a drastically 
reduced HSC compartment (CD34  �   LSK cells) in the BM 
accompanied by impaired hematopoiesis 4 mo after  Cxcr4  de-
letion. In this mouse model, the  Cxcr4  gene was deleted by 
poly I/poly C – activated Mx-Cre. It should be pointed out 
that the poly I/poly C treatment used in this study is deleteri-
ous to HSCs, because injections of poly I/poly C (300  μ g/
mouse, 4 times) wiped out WT HSCs in 2 d and HSCs in the 
BM did not recover even 3 wk after the treatment. On the 
contrary, tamoxifen administration used in our system did not 
cause noticeable toxic eff ect on the WT HSC compartment. 
Under these diff erent conditions, although the  Cxcr4  � / �    HSC 
compartment was preserved in mice treated with tamoxifen, it 
was  “ lost ”  in mice that received poly I/poly C. At present, the 
precise reason for this discrepancy cannot be ascertained, but 
might be related to a distinct role of CXCR4 in HSC survival 
in homeostatic state or under hematologic stress caused by 
poly I/poly C treatment. CXCL12 has been reported to en-
hance survival of primitive hematopoietic cells ( 23, 24 ), and of 
myeloid progenitor cells after cytokine withdrawal ( 25 ). Al-
though we did not observe any changes in apoptosis of freshly 
isolated  Cxcr4  � / �    HSCs as compared with the WT HSCs, it is 
possible that the survival of  Cxcr4  � / �    HSCs is impaired under 
stress conditions, thereby compromising hematologic recov-
ery from chemoablation such as poly I/poly C treatment. It is 
also conceivable that both WT and  Cxcr4  � / �    HSCs could no 
longer reside in the stem cell niche under stress condition after 
poly I/poly C treatment. Although WT HSCs may repopu-
late the BM niche, Cxcr4  � / �   HCSs could not, thereby result-
ing in depletion of the mutant HSCs. 

 In summary, we demonstrate that the CXCL12 – CXCR4 
axis is essential for HSCs homing into the BM, but less 
critical for the BM retention. Our results also indicate that 
CXCR4 signaling restricts HSCs in quiescence, and it prob-
ably does so through up-regulating the cell cycle inhibitor 
p57 kip2 . Interestingly, HIV/gp120, which is a viral ligand of 
CXCR4, has been shown to inhibit neural progenitor cell 
proliferation ( 26 ). This result thus suggests a universal role of 
CXCR4 signaling in the control of the quiescence of other 
somatic stem cells. Further investigation will be required to 
determine whether this inhibition also involves the same cell 
cycle regulators. It is also worthwhile to examine whether 
this mechanism may also contribute to HIV-1 – associated de-
mentia and immunodefi ciency. 

  MATERIALS AND METHODS  
 Mice.    Cxcr4 fl /fl    mice were crossed to  Cxcr4 fl /fl  ROSA CRE-ERT2/+   mice (pro-

vided by T. Ludwig, Columbia University, New York, NY) to generate 

 Cxcr4 C/C   mice. To delete  Cxcr4 , two sets of three consecutive administra-

tions of tamoxifen (5 mg/mouse, i.p.) were delivered 3 d apart. Mice were 

maintained under specifi c pathogen – free conditions, and used according to 

the protocol approved by the Columbia University Institutional Animal 

Care and Use Committee. 

 Flow cytometry.   BM cells were stained with PE-Cy5 – conjugated anti-

bodies against lineage markers (Lin), including B220, CD3, CD4, CD8, 

CD11b, Gr1, and Ter119; PE-Cy7 – conjugated anti – c-Kit; and APC-
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